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Abstract 21 

Background  22 

Bovines have been repeatedly highlighted as a major reservoir for human Schistosoma japonicum infection in 23 

rural farming villages in China. However, little is known about the individual and environmental risk factors for 24 

bovine schistosomiasis infection. The current body of literature on individual-level risk factors features 25 

inconsistent, and sometimes contradictory results, and to date, few studies have assessed the broader 26 

environmental conditions that predict bovine schistosomiasis. 27 

Methodology/Principal Findings 28 

Using data collected as a part of a longitudinal study in 39 rural villages in Sichuan, China from 2007 to 2016, we 29 

aimed to identifying the strongest individual, household and village-level predictors of bovine S. japonicum 30 

infection. Candidate predictors for this assessment included: 1) physical/biological characteristics of bovines, 2) 31 

potential human sources of environmental schistosomes, 3) socio-economic indicators, 4) potential animal 32 

reservoirs, and 5) agricultural risk factors. A Random Forests machine learning approach was used to determine 33 

which of our candidate predictors serve as the best predictors of bovine schistosomiasis infection in each survey 34 

year. Of the five categories of predictors, high-risk agricultural practices and animal reservoirs, specifically, bovine 35 

density at the village-level, were repeatedly found to be among the top predictors of bovine S. japonicum 36 

infection.  37 

Conclusion/Significance 38 

Our findings highlight the potential utility of presumptively treating bovines residing in villages and households that 39 

engage in high-risk agricultural practices, or bovines belonging to villages with particularly high levels of bovine 40 

ownership. Additionally, village-level predictors were stronger predictors of bovine infection than household-level 41 

predictors, suggesting future investigations and interventions may need to apply a broad ecological lens in order 42 

to successfully extricate and address environmental sources of ongoing transmission.  43 

  44 
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Author Summary  45 

Schistosomiasis is a burdensome global disease that is frequently transmitted between humans and animals. The 46 

parasite that causes schistosomiasis is released into water by snails that become infected via contact with eggs 47 

from human or animal feces, allowing other human and animal hosts to become infected when they come in 48 

contact with contaminated water.  In China, bovines are believed to be the most common animal source of human 49 

infections, though little is known about what factors promote bovine infections. Because schistosomiasis is a 50 

sanitation-related, water-borne disease transmitted by many animals, we hypothesized that several environmental 51 

factors – such as the lack of improved sanitation systems, or participation in agricultural production that is water 52 

or fertilizer-intensive – could promote schistosomiasis infection in bovines. Our study investigated this using data 53 

collected in 39 villages in a region of China where bovine and human schistosomiasis both occur. We found that 54 

several agriculture-related factors and bovine density in the village were predictive of bovine infection status. 55 

These findings highlight the importance of assessing environmental sources of disease transmission across large 56 

geographic scales, and suggest that preventative treatment of bovines residing in high risk villages may help to 57 

control local transmission. 58 

 59 

 60 
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Introduction 72 

Schistosomiasis is among the most burdensome helminth infections, with transmission being reported in 73 

a total of 78 countries in 2018 and approximately 230 million people in need of preventative treatment (1). 74 

Although great strides have been made in the last several decades in the control of schistosomiasis in several 75 

countries worldwide (1), pockets of reemergent or persistent transmission within such areas highlight the need for 76 

careful consideration of possible local drivers of transmission (2, 3).  A poignant example of this is found when 77 

looking at the transmission of Schistosoma japonicum in China, where despite well-established control programs 78 

and great progress towards elimination since the mid-1950s (4), a 2018 national report highlighted that there 79 

remains 450 endemic counties where transmission interruption has yet to be achieved (5). S. japonicum has been 80 

found to be transmitted by at least 40 species of wild and domestic mammals (6), and animal activities near likely 81 

transmission sites may be important sources of reemergence and persistence. In China, several domesticated 82 

and wild animals have been identified as being capable of carrying and transmitting S. japonicum, including 83 

bovines, pigs, goats, dogs, cats and rodents (7, 8). Estimates from Jiangxi Province of Eastern China suggest that 84 

bovines may be responsible for as much as 75% of human transmission (9). This substantial contribution is 85 

thought to be related to the high degree of environmental overlap between humans and bovines during 86 

agricultural production, as well as the large amount of fecal output of bovines, which has been estimated to be as 87 

high as 100 times that of human fecal production each day (6, 10, 11). Additionally, the high frequency of 88 

livestock movement via the livestock trade within mountainous regions of China further highlights the important 89 

role that bovines may be playing in the S. japonicum transmission cycle in endemic areas (12, 13).  90 

Despite increasing awareness that bovines may be an important driver of human schistosomiasis 91 

infection, little is known about what factors are likely to be influencing infection within bovine populations. Studies 92 

have highlighted several risk factors associated with other bovine infectious diseases, including individual 93 

characteristics like old-age, male sex, a range of breeds and uses (e.g. dairy, beef or agricultural work), group 94 

characteristics like herd size and herd density, and environmental characteristics like contact with other animals 95 

and the presence/absence of irrigation systems (14-19). While recent assessments of bovine risk of S. bovis 96 

infection in Eastern Africa have also studied individual-level risk factors such as bovine sex, age, breed and body 97 

condition, the results are contradictory (20-26). Reasons for such discrepancies have not been fully elucidated, 98 
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though Defersha & Belete (2018) hypothesize that it may be related to variations in management practices for 99 

different bovine groups (e.g. separation of sexes or of age groups) and different grazing ranges or grazing 100 

patterns allowed on different farms (e.g. smaller grazing area of very young and very old bovines) (23).   101 

Outside of eastern Africa, few studies have set out to characterize predictors of bovine schistosomiasis 102 

infection. One study from Malaysia found that low weight, male sex, and older age were all risk factors for S. 103 

spindale infection in a range of different cattle species, though notably, no water buffalo species were included in 104 

this study (27). By comparison, in Southern China, a study conducted primarily among water buffaloes (96.2% 105 

water buffalos, 3.8% cattle) found that infection intensity was highest in bovines under the age of two (28). These 106 

seemingly contradictory results may potentially be explained by isolation and limited grazing for calves in 107 

Malaysia (27), as well as potential genus-related differences in acquired immunity and self-cure rates (29). Of the 108 

two main types of bovines found in S. japonicum endemic areas, yellow cattle are believed to be more susceptible 109 

to infection than water buffalo based on studies assessing worm establishment success in the two genera (30, 110 

31). Nevertheless, He et al. (2001) also point out that water buffaloes may still act as important hosts in 111 

marshland areas of China, as they are more likely to spend time in water, and therefore more likely to be involved 112 

in the S. japonicum transmission cycle (10).  113 

As S. japonicum is the primary species responsible for schistosomiasis infection in both humans and 114 

bovines in China, and given the considerable role that bovines are posited to have in contributing to human 115 

infection risk, studies aimed at assessing potential predictors of S. japonicum infection in bovines are of 116 

paramount importance. Not only is there a great deal of disagreement in the current body of literature over the key 117 

risk factors for bovine schistosomiasis infection, the limited studies to date have almost exclusively focused on 118 

physical/individual-level characteristics rather than broader environmental conditions. As such, this study set out 119 

to assess potential individual and environmental predictors of bovine S. japonicum infection in 2007, 2010 and 120 

2016 at the individual, household and village-levels in a region where schistosomiasis persistence has been 121 

demonstrated to exist in both humans and bovine populations.  122 

  123 
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Methods 124 

Village selection 125 

A longitudinal assessment of human and bovine infection was conducted in villages of Sichuan province 126 

in 2007, 2010 and 2016. Villages were located in the hilly regions of rural Sichuan and ranged from ~20-150 127 

households and a population of ~50-200 people. Village selection has been described previously (32). Briefly, to 128 

identify villages with evidence of S. japonicum reemergence, county surveillance records were reviewed from the 129 

year that transmission control was achieved in the county through March 2007. Out of eight Sichuan counties 130 

where schistosomiasis had been identified despite control efforts (33),  three were selected for inclusion based on 131 

surveillance record availability and the local control stations’ willingness and capacity to collaborate (32). 132 

However, due to a 7.9 magnitude earthquake in May 2008 that severely impacted one of the study counties (34), 133 

follow-up surveys were conducted in 36 villages in the two remaining counties in 2010. Based on infection rates, 7 134 

of the original 36 villages were surveyed again in 2016, in addition to 3 newly reemerging villages, giving a total of 135 

36 villages included in the analysis in 2007 and 2010, and 10 villages in 2016.  136 

Demographic, household and GPS surveys 137 

A village census was conducted in each collection year and all residents over the age of five were invited 138 

to participate in surveys and stool sample screenings for S. japonicum infection. In addition, attempts were made 139 

to survey all bovines in the village for S. japonicum infection. In the summers of 2007, 2010 and 2016, the head of 140 

each household was asked to complete a household survey that contained closed-ended questions related to 141 

socioeconomic status, domestic and farm animal ownership, sanitation and water access and agricultural 142 

practices. Bovine age, type and sex were collected at the time of the bovine infection surveys in 2007 and 2010 143 

(these data were not collected in 2016). Trained staff from the Sichuan Center for Disease Control and Prevention 144 

and the county Schistosomiasis Control Stations piloted and conducted all surveys in the local Sichuan dialect.  145 

Ethics statement 146 

This study was approved by the Sichuan Institutional Review Board, the University of California, Berkeley, 147 

Committee for the Protection of Human Subjects, and the Colorado Multiple Institutional Review Board. All 148 

participants provided written, informed consent. The collection of bovine samples we determined to be exempt 149 
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from review by the Animal Care and Use Committee at the University of California, Berkeley and the Institutional 150 

Animal Care and Use Committee at the University of Colorado Anschutz. 151 

Infection surveys 152 

 Infection surveys were conducted by attempting to test three stool samples on three consecutive days 153 

from eligible humans and all bovines in the village. Infection surveys were conducted in November and December 154 

of 2007 and 2010, and July 2016. Individual bovines were isolated in a pen or tied up until a stool was produced 155 

on three separate days (consecutive, when possible). All stool samples were transported to the central laboratory 156 

soon after collection to be examined using the miracidium hatching test, following standard protocols (35). To 157 

account for the short survival and rapid hatching of bovine miracidia, the bovine samples were examine for 158 

miracidia at one, three and five hours after preparation for at least two minutes each time, whereas human 159 

samples were assessed at two, five and eight hours after preparation. One sample from each human was also 160 

examined using the Kato Katz thick smear procedure in 2007 and 2010 (36). A bovine was considered positive for 161 

S. japonicum if any miracidium hatching test was positive. A human was considered positive for S. japonicum if 162 

any miracidium hatching test or the Kato-Katz test was positive.  163 

For each data collection period, the proportion of bovines in the village that were captured by infection 164 

surveys was assessed by comparing the total number of bovines reported in household surveys to the total 165 

number of bovines that participated in the infection survey in each village. Between 2007 and 2016, bovine 166 

infection status was assessed in 35/36 villages where residents reported owning bovines in 2007, 31/35 villages 167 

in 2010, and 8/8 villages in 2016. Details about participation and infection survey completeness are provided in 168 

S1 Table.  169 

Predictor selection and definitions 170 

The primary outcome of interest in this analysis was bovine S. japonicum infection in 2007, 2010 and 171 

2016. All candidate predictors were defined using either the household surveys or the human and bovine infection 172 

surveys and were divided into five categories: 1) biological/physical characteristics; 2) potential human sources of 173 

environmental schistosomes; 3) socio-economic indicators; 4) potential animal reservoirs/sources of infection; 5) 174 

agricultural risk factors. We included agriculture as its own category because bovines are frequently employed in 175 

agricultural work in China (13), and because different crop types and agricultural practices have their own 176 
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inherent exposure risks (e.g. planting wet crops like rice may increase the likelihood of contact with snail habitat 177 

and exposure to cercariae (37)). Variables identified as predictors with hypothesized similar mechanisms of 178 

transmission risk were aggregated where possible (e.g. wet vs. dry crops). Three crop type categories were 179 

created: winter crops, summer dry crops and summer wet crops (i.e. rice). Night soil use – that is, the collection of 180 

either treated or untreated human and/or animal waste for use as fertilizer – was also included as an agricultural 181 

risk factor and divided into three categories: night soil use on winter crops, dry summer crops and wet summer 182 

crops.   183 

There were minor variations in the household survey content and question formulation across the study 184 

period. Namely, some variables were not available in all the study years (e.g. pig ownership was not assessed in 185 

2007). Where possible, continuous/discrete predictors were included over binary measures of a predictor for the 186 

household-level predictors. For binary variables, we excluded variables from the analysis of a given collection 187 

year if they represented very rare (<10%) or very common conditions (>90%). For continuous variables, variables 188 

were excluded when >90% of the observations took a single value. For example, household dog and pig 189 

ownership were both excluded in 2016 because >90% of the households owned one or more dogs (a binary 190 

variable), while >90% did not own any pigs. A composite household asset score (0-9) was developed for use in 191 

this assessment, which included eight household assets assessed in all three collection years (washing machine, 192 

television, air conditioner, refrigerator, computer, car, motorcycle), as well as a binary measure indicating that the 193 

home was made from either concrete, wood or bricks (vs. adobe).  194 

Because prior work has demonstrated that group-level measures can serve as important predictors of 195 

schistosomiasis infection in humans (34), we also generated village-level candidate predictors from the household 196 

survey data. Village-level variables represent all households that participated in the household survey from a 197 

given village, even if they didn’t own bovines. Village-level variables were either the village-average value of 198 

continuous household measures, or for binary variables, the proportion of the village population reporting the 199 

condition. Notably, the village-level variables excluded all observations from the bovine’s own household, and 200 

instead used only the data from the other households in the village that participated in the household survey. This 201 

allowed for an assessment of how the surrounding village environment impacts individual bovine infection risk, 202 

independent of the home environment, whereas the household-level variables aim to unpack the influence of the 203 
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unique household environment on bovine infection status.  The aforementioned predictor definitions and exclusion 204 

criteria led to a total of 31 predictors of bovine infection, which are summarized in Table 1.  205 

 206 

Table 1. Summary of predictor variables included in the analysis. 207 

 208 

a Predictors were grouped into five categories relevant to bovine S. japonicum infection risk probability: 1) physical/biological 209 

characteristics (e.g. old-age); 2) potential human sources of environmental schistosomes (e.g. human S. japonicum infection 210 

prevalence in the bovine’s household); 3) socio-economic indicators (e.g. prevalence of improved sanitation systems in the 211 

surround village); 4) potential animal reservoirs/sources of infections (e.g. prevalence of dog ownership in the surrounding 212 

village); 5) agricultural risk factors (e.g. a household’s total rice crop area).  213 
b Because not all bovines produced three stool samples, and examination of a greater number of stool samples can increase 214 

the probability of detecting infection, the number of hatch tests used on a given bovine was also included as a predictor in our 215 

analyses. 216 
c Improved sanitation was defined as access to an improved toilet in the household, including a biogas digester or a three-217 

compartment toilet. 218 

  219 

Predictor list Scale of 
analysis  

Years 
available 

Variable 
type 

Predictor category a 

Bovine type Individual 2007, 2010 Binary Physical/biological 

Bovine sex Individual 2007, 2010 Binary Physical/biological 

Bovine age Individual 2007, 2010 Continuous Physical/biological 

Number of hatch tests b Individual All Discrete Physical/biological 

County of residence Household All Binary Physical/biological 

Number of infected human household members Household All Discrete Potential human sources 

Household has improved sanitation (y/n) c Household All Binary Socio-economic indicators 

Household asset score (0-9) Household All Discrete Socio-economic indicators 

Household cat ownership Household All Binary Animal reservoirs/sources 

Household dog ownership Household 2007, 2010 Binary Animal reservoirs/sources 

Household pig ownership Household 2010 Discrete Animal reservoirs/sources 

Household bovine ownership Household All Discrete Animal reservoirs/sources 

Household rice area Household All Continuous Agricultural risk factors 

Household dry summer crop area Household All Continuous Agricultural risk factors 

Household winter crop area Household All Continuous Agricultural risk factors 

Household night soil rice: # buckets Household All Discrete Agricultural risk factors 

Household night soil summer dry crop: # buckets Household All Discrete Agricultural risk factors 

Household night soil winter crop: # buckets Household All Discrete Agricultural risk factors 

Village prevalence of human infection Village All Continuous Potential human sources 

Village prevalence of improved sanitation Village All Continuous Socio-economic indicators 

Village mean asset score (0-9) Village All Continuous Socio-economic indicators 

Village prevalence of cat ownership Village All Continuous Animal reservoirs/sources 

Village prevalence of dog ownership Village All Continuous Animal reservoirs/sources 

Village mean number of pigs owned Village 2010, 2016 Continuous Animal reservoirs/sources 

Village mean number of bovines owned Village All Continuous Animal reservoirs/sources 

Village mean rice area Village All Continuous Agricultural risk factors 

Village mean dry summer crop area Village All Continuous Agricultural risk factors 

Village mean winter crop area Village All Continuous Agricultural risk factors 

Village night soil rice: mean # buckets Village All Continuous Agricultural risk factors 

Village night soil summer dry crop: mean # buckets Village All Continuous Agricultural risk factors 

Village night soil winter crop: mean # buckets Village All Continuous Agricultural risk factors 
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Analysis 220 

Across the collection years, 67 bovines with infection data were excluded from this analysis due to lack of 221 

household survey data (30/503 bovines in 2007; 36/233 bovines in 2010; and 1/72 in 2016). Infection prevalence 222 

was similar among the excluded bovines (11/67, 16.4%) as compared to those included in this analysis (111/741, 223 

15.0%). Among the remaining bovines included, household and village-level variables generally had low levels of 224 

missing data (all <20% missing). By contrast, the individual-level bovine data was recorded with less consistency: 225 

the variable with the most missing data was bovine sex in 2007 (21.6% missing). Missing values were imputed 226 

separately for each collection year for all variables with <25% missing using the rfImpute function from the 227 

“randomForest” package in R (38, 39).  228 

Spatial patterns of bovine infection prevalence were inspected using ESRI’s ArcGIS ArcMap software 229 

release 10.5.1 (40). Categorical versions of each of the individual, household and village-level candidate 230 

predictors were generated and compared between S. japonicum infected and uninfected bovines to investigate 231 

potential changes in predictor distribution patterns by infection status across the study period.  232 

To determine which of our candidate predictors serve as the best predictors of schistosomiasis 233 

transmission in 2007, 2010 and 2016, a random forests (RF) machine learning approach was used. For each 234 

collection year, 25% of the data was reserved for validation, while the remaining 75% was used for model 235 

construction. To address class imbalance in our outcome of interest (bovine S. japoncium prevalence of 13.3%, 236 

17.3%, and 19.7% in 2007, 2010 and 2016, respectively), over sampling of the minority class was conducted. For 237 

model tuning, 10-fold cross validation was performed using the Caret package in R to help select the optimal 238 

maximum node size and the number of variables to try at each branch. Once the optimal value of each of these 239 

parameters was determined, a final model was run using 5000 trees per forest (41).  240 

For each collection year, we conducted a total of ten rebalancing and model tuning iterations to assess 241 

the degree of stability in our variable importance rankings. The mean decrease in accuracy (MDA) value was 242 

used to rank the top ten predictors from each model on a scale of ten to one from most important (highest MDA) 243 

to least important (lowest MDA). These variable rankings were then summed across the 10 rebalancing iterations 244 

to give a 10-model summary score of variable importance, ranging from 100-1 and the ten highest scoring 245 

variables from the ten-model summary score were then reassigned a final ranking of 1-10. Next, using only those 246 

predictors ranked first through tenth within each collection year, we performed an additional ten iterations of the 247 
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aforementioned balancing and tuning process to create “lean” prediction model summary score of variable 248 

importance, thereby reducing excess noise in the variable ranking assessment caused by including a large 249 

number of candidate predictors. Because we hypothesized that the inclusion of human infection as a predictor of 250 

bovine infection would strongly influence the predictive capacity of our RF models due to a presumed association 251 

between bovine and human infection, we also conducted ten iterations of a sensitivity analysis for each collection 252 

year that excluded the human infection variables from the assessment. The ability of the full, lean and sensitivity 253 

RF models to predict infection status was then assessed using ROC area under the curve and accuracy. In the 254 

case of disagreement or a tie when comparing our chosen performance metrics, the sensitivity, kappa and 255 

specificity were subsequently compared to select the top performing model for each year.  256 

Each of the full model, lean model and sensitivity model summary scores were used to generate heat 257 

maps highlighting variable importance scores within each collection year, their change over time, and the 258 

frequency with which the different levels of analysis (individual, household or village) were each found to be 259 

among the top ten most important predictors. Simple logistic regression analyses were performed to assess the 260 

direction of association between the top predictors and bovine infection, dividing continuous variables into tertiles 261 

to assess for potential non-linear relationships. The direction of association was recorded for the top predictors 262 

within each collection year, using a p-value of <0.2 to indicate weak evidence of a between-group difference. In 263 

the case that no difference was indicated between tertile groups at the p<0.2 level, the predictors were further 264 

divided into quartiles and re-assessed. If still no evidence for a between group difference was identified using 265 

quartiles, this point was noted in the results. Density plots by infection status were also examined for a subset of 266 

predictors that were found to have a change in the direction of association across the collection years. Stata 15 267 

and R Studio 4.0 were used for all analyses (42, 43).  268 

 269 

Results 270 

 This analysis included bovines from 37 villages across the study period, with a total of 473 bovines from 271 

35 villages in 2007, 197 bovines from 31 villages in 2010, and 71 bovines from 8 villages in 2016. The overall 272 

bovine infection prevalence was 13.3%, 17.3% and 19.2% in 2007, 2010 and 2016, respectively.  Figure 1 shows 273 

a map of bovine infection distribution by village across two counties. 274 
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Figure 1. Village-level prevalence of schistosomiasis in bovines in 2007, 2010 and 2016. Unshaded squares 275 

indicate study villages where no bovines were tested. Service Layer Credits: National Geographic, ESRI, 276 

DeLorme, HERE, UNEP-WCMC, USGS, NASA, METI, NOAA, increment P Corp, and OpenStreetMap 277 

Contributors, Geofabrik GmbH, Copyright 2018. 278 

  279 

 280 

Bovine infection prevalence and individual-level characteristics 281 

Of the individual characteristics assessed in this analysis, none were consistently associated with 282 

infection status (Table 2).  For example, in 2007, water buffalo were less likely to be infected than cattle (8.1% in 283 

water buffalo, 14.2% in cattle), while in 2010, the prevalence of infection was ~17% in both groups.  Similarly, in 284 

2007 bovines over 5 years of age were three times more likely to be infected than younger bovines, but in 2010 285 

there wasn’t a clear pattern of infection by age. Notably, there were fewer water buffaloes than cattle in both 286 

assessment years (18.5% of all bovines were water buffalo in 2007; 15.5% in 2010), bovines were predominantly 287 

female (86.3% in 2007; 87.2% in 2010), and ranged widely in age from less than a year to 26 years old. 288 

  289 
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Table 2. Tabulation of individual-level predictors by bovine infection status. 290 
 291 

a No data (ND). Data was not collected on bovine sex, age or type in 2016. 292 
b Although age is broken into categories to facilitate a comparison of the distributions between 2007 and 2010, it was 293 

assessed as a continuous variable in our RF models.  294 

 295 

Bovine infection prevalence and household-level characteristics 296 

Bovine infection prevalence was highest among bovines in households where one or more humans were 297 

infected, and in households that did not own pigs (Table 3). Relationships between bovine infection and the rest 298 

of the household predictors were inconsistent across years. For example, access to improved sanitation and 299 

infection status by sanitation group shifted across our study period, rising from 22.8% of households reporting 300 

improved sanitation in 2007 and roughly equal infection prevalence in the two sanitation groups, to 52.1% with 301 

improved sanitation by 2016 and a higher probability of infection in the households with unimproved sanitation 302 

(23.5%) compared to the households with improved sanitation (16.2%). Across the study period, there was a 303 

steady increase in the prevalence of households reporting planting rice (69.1% in 2007; 71.5% in 2010; 81.7% in 304 

2016), other summer crops (77.2% in 2007; 98% in 2010; 100% in 2016) and winter crops (97.7% in 2007; 99% in 305 

2010; 100% in 2016). For rice crops in 2007 and 2010, the prevalence of bovine infection increased as the area of 306 

rice crop planted increased, whereas in 2016, this pattern did not hold. Other noteworthy changes in agricultural 307 

production across the study period includes a decrease in night soil use on rice and winter crops: the proportion of 308 

  2007 2010 2016 

  
N 
Positive 

Total 
tested 

% 
Positive 

N 
Positive 

Total 
tested 

% 
Positive 

N 
Positive 

Total 
tested     

% 
Positive 

              

Total 63 473 13.32% 34 197 17.26% 14 71 19.72% 

County             

1 15 191 7.85% 17 71 23.94% 3 21 14.29% 

2 48 282 17.02% 17 126 13.49% 11 50 22.00% 

Bovine sex             

Female 50 320 15.63% 29 163 17.79% ND a ND a  

Male 9 51 17.65% 4 24 16.67% ND a ND a  

Missing 4 102 3.92% 1 10 10.00%    

Bovine age b            

<2 3 43 6.98% 6 35 17.14% ND a ND a  

2 to 4 26 220 11.82% 9 59 15.25% ND a ND a  

5+ 28 137 20.44% 18 93 19.35% ND a ND a  

Missing 6 73 8.22% 1 10 10.00%    

Bovine type            

Water buffalo 7 86 8.14% 5 29 17.24% ND a ND a  

Cattle 54 380 14.21% 28 158 17.72% ND a ND a  

Missing 2 7 28.57% 1 10 10.00%    

Hatch tests (N)          

1 3 59 5.08% 0 29 0.00% 1 10 10.00% 

2 8 80 10.00% 6 41 14.63% 2 9 22.22% 

3 52 334 15.57% 28 127 22.05% 11 52 21.15% 
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households reporting any night soil use on rice crops dropped from 35.6% to 11.7% between 2007 and 2016, and 309 

for winter crops it dropped from 58.3% to 12.6%. By contrast, the proportion of night soil users for summer crops 310 

remained relatively constant across the study period (52.4% in 2007; 53.5% in 2010; 50.7% in 2016). 311 

 312 

Table 3. Household predictors by bovine infection status.  313 

  2007 2010 2016 

  
# 
Positive 

# 
tested 

% 
Positive 

# 
Positive 

# 
tested 

% 
Positive 

# 
Positive 

# 
tested 

% 
Positive 

# of infected 
humans in the 
household 

             

0 38 366 10.38% 19 154 12.34% 12 61 19.67% 

1+ 19 84 22.62% 13 29 44.83% 2 10 20.00% 

Missing 6 23 26.09% 2 14 14.29% 0 0 -- 

Household asset 
score (0-9) 

             

0 - 2 22 184 11.96% 4 24 16.67% 2 10 20.00% 

2 - 3 31 211 14.69% 15 89 16.85% 3 14 21.43% 

4+ 10 78 12.82% 15 84 17.86% 9 47 19.15% 

Improved 
sanitation  

             

No 47 365 12.88% 27 129 20.93% 8 34 23.53% 

Yes 16 108 14.81% 7 68 10.29% 6 37 16.22% 

           
Household  owns 
dogs a  

No 6 67 8.96% 3 29 10.34% 2 7 28.57% 

Yes 57 404 14.11% 31 168 18.45% 12 64 a 18.75% 

Missing 0 2 0.00% 0 0 -- 0 0 -- 
 
Household  owns 
cats 

             

No 17 155 10.97% 12 69 17.39% 5 23 21.74% 

Yes 46 312 14.74% 22 128 17.19% 9 48 18.75% 

 Missing 0 6 0.00% 0 0 -- 0 0 -- 

# Pigs owned by 
household a, b 

             

0 ND b ND b  27 116 23.28% 14 64 a 21.88% 

1+ ND b ND b  7 81 8.64% 0 7 0.00% 

           

# Other bovines 
owned by 
household 

             

0 49 334 14.67% 20 126 15.87% 8 38 21.05% 

1+ 14 139 10.07% 14 71 19.72% 6 33 18.18% 

Total rice crop 
area (mu) 

             

0 16 146 10.96% 5 56 8.93% 5 13 38.46% 

<2 24 195 12.31% 16 84 19.05% 4 31 12.90% 

2+ 23 132 17.42% 13 57 22.81% 5 27 18.52% 
 
 
Total dry summer 
crop area (mu) 

             

0 8 108 7.41% 0 4 0.00% 0 0 -- 

<3 39 242 16.12% 18 99 18.18% 2 26 7.69% 

3+ 16 123 13.01% 16 94 17.02% 12 45 26.67% 
 
 
Total winter crop 
area (mu) 

             

<2 14 142 9.86% 9 52 17.31% 7 29 24.14% 

2-3 33 223 14.80% 18 97 18.56% 7 29 24.14% 

4+ 16 108 14.81% 7 48 14.58% 0 13 0.00% 
 
 
# buckets night 
soil on rice  

             

0 40 304 13.16% 29 168 17.26% 8 53 15.09% 

1+ 22 168 13.10% 5 29 17.24% 1 7 14.29% 

Missing 1 1 100.0% 0 0 -- 5 11 45.45% 
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# buckets night 
soil on dry 
summer crops 

             

0 31 248 12.50% 24 105 22.86% 6 36 16.67% 

1-25 6 53 11.32% 5 32 15.63% 5 22 22.73% 

>25 26 172 15.12% 5 60 8.33% 3 13 23.08% 

# buckets night 
soil household 
winter crops 

             

0 27 197 13.71% 31 137 22.63% 9 62 14.52% 

1-26 5 79 6.33% 0 16 0.00% 1 3 33.33% 

>26 31 197 15.74% 3 44 6.82% 4 6 66.67% 

 314 

a Variables with >90% of observations taking on a single value were excluded from the RF assessment. This exclusion criteria 315 

applied twice in 2016: >90% of the included households reported owning at least one dog, and >90% of households owned 316 

zero pigs.  317 
b ND. Data was not collected on pig ownership in 2007. 318 

 319 

Bovine infection prevalence and village-level characteristics 320 

Bovine infection prevalence was highest in villages with high levels of bovine ownership (Table 4). For the 321 

remaining village-level predictors however, the infection patterns were inconsistent. For example, bovine infection 322 

prevalence was highest in 2007 and 2010 for bovines residing in villages where a high percentage of the human 323 

population was infected, whereas in 2016, that pattern did not hold. In 2007, infection prevalence incrementally 324 

decreases as the percent of households in the village that own dogs increases, but infection prevalence was 325 

higher among bovines residing in villages with higher dog ownership in 2010 and 2016. Similarly, in 2007, the 326 

prevalence of bovine infection is highest in villages where more night soil is used on rice crops, dry summer crops 327 

and winter crops, but in 2010, bovine infection prevalence decreases as the surrounding village’s night soil use 328 

increases. Notably, the average amount of night soil being applied to crops dropped across the study period for all 329 

crop types.  330 

 331 

Table 4. Village-level predictors by bovine infection status. 332 

 2007 2010 2016 

  
# 

Positive 
# 

tested 
% 

Positive 
# 

Positive 
# 

tested 
% 

Positive 
# 

Positive 
# 

tested 
% 

Positive 
Human infection 
prevalence (%) 

0-2.53% 14 147 9.52% 0 76 0.00% 4 27 14.81% 

2.54- 11.11% 13 158 8.23% 11 57 19.30% 8 29 27.59% 

≥11.12% 36 168 21.43% 23 64 35.94% 2 15 13.33% 
           

Mean household 
asset score (0-9) 

<2 39 225 17.33% 0 0 0.00% 0 0 0.00% 

2-3 24 248 9.68 26 143 18.18% 2 23 8.70% 

≥4 0 0 0.00% 8 54 14.81% 12 48 25.00% 
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% households with 
an improved toilet 

<10% 14 180 7.78% 3 24 12.50% 0 0 0.00% 

10-50% 38 215 17.67% 29 133 21.80% 6 24 25.00% 

≥50% 11 78 14.10% 2 40 5.00% 8 47 17.02% 
           
% of households 
that own at least 
one dog 

<70% 17 98 17.35% 2 51 3.92% 7 50 14.00% 

70-85% 34 217 15.67% 18 94 19.15% 7 21 33.33% 

≥85% 12 158 7.59% 14 52 26.92% 0 0 0.00% 
           
% of households 
that own at least 
one cat 

<45% 12 109 11.01% 12 71 16.90% 4 36 11.11% 

45-60% 21 124 16.94% 14 73 19.18% 5 13 38.46% 

≥60% 30 240 12.50% 8 53 15.09% 5 22 22.73% 
           
Mean number of 
pigs owned  

0 ND a ND a  1 21 4.76% 11 20 55.00% 

0.01 - 1 ND a ND a  26 119 21.85% 1 45 2.22% 

≥ 1 ND a ND a  7 57 12.28% 2 6 33.33% 
           
Mean number of 
bovines owned 

< 0.5 5 116 4.31% 4 59 6.78% 10 57 17.54% 

0.5 – 1 40 300 13.33% 19 99 19.19% 4 14 28.57% 

≥ 1 18 57 31.58% 11 39 28.21% 0 0 0.00% 
           
Mean area of rice 
planted (mu) 

<0.75 14 143 9.79% 9 90 10.00% 7 18 38.89% 

0.75-1.5 19 183 10.38% 12 48 25.00% 5 41 12.20% 

≥1.5 30 147 20.41% 13 59 22.03% 2 12 16.67% 
           
Mean area of dry 
summer crops 
planted (mu) 

<1 11 184 5.98% 1 14 7.14% 0 3 0.00% 

1 -2.5 44 195 22.56% 23 110 20.91% 2 26 7.69% 

≥2.5 8 94 8.51% 10 73 13.70% 12 42 28.57% 
           
Mean area of winter 
crops plants (mu) 

<2 21 149 14.09% 17 77 22.08% 12 53 22.64% 

2-2.75 18 178 10.11% 11 66 16.67% 0 2 0.00% 

≥2.75 24 146 16.44% 6 54 11.11% 2 16 12.50% 
           
Mean # buckets of 
night soil used on 
rice crops 

<1 3 58 5.17% 29 146 19.86% 8 41 19.51% 

1-9.9 21 153 13.73% 4 38 10.53% 6 27 22.22% 

≥10 39 262 14.89% 1 13 7.69% 0 3 0.00% 
           
Mean # buckets of 
night soil used on 
dry summer crops 

<10 13 190 6.84% 24 99 24.24% 1 15 6.67% 

10-30 18 109 16.51% 7 47 14.89% 13 47 27.66% 

≥30 32 174 18.39% 3 51 5.88% 0 9 0.00% 
           
Mean # buckets of 
night soil used on 
winter crops 

<10 1 26 3.85% 24 121 19.83% 14 71 100.0% 

10-30 19 218 8.72% 7 41 17.07% 0 0 -- 

≥30 43 229 18.78% 3 35 8.57% 0 0 -- 

 333 
a ND. Data was not collected on pig ownership in 2007. 334 

 335 

  336 
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Predictors of bovine infection  337 

 The full models, lean models and sensitivity models within a given collection year all resulted in relatively 338 

stable rankings, while more variability in predictor rankings is seen when comparing across collection years 339 

(Figure 2). Within each model type for a given year, the ten iterations of re-balancing and tuning led to some 340 

variation in the MDA scores across the top ten predictors, with the top five more consistent in their high rankings. 341 

This is particularly prominent in the 2007 and 2010 models, whereas 2016 showed more variation overall. With 342 

few exceptions (4/60 model iterations), variables that scored in the top five within any of the ten iterations of either 343 

the full or sensitivity models were among the top ten predictors using the 10-model summary scores.  344 

Agricultural variables were most frequently ranked in the top ten across all years. Specifically, the 345 

household area of winter crops planted, the mean area of rice planted in the surrounding village, and the mean 346 

amount of night soil applied to dry summer crops in the surrounding village were all ranked in the top ten for all 347 

collection years and the full, lean and sensitivity analyses. Additionally, the total household area of summer crops 348 

planted, the village mean area of winter crops and the mean number of bovines owned by the surrounding village 349 

were also all among the top ten predictors in at least one of the three model types used for 2007, 2010 and 2016. 350 

Of those predictors that ranked in the top ten in at least one collection year, four were scaled to the village-level, 351 

and two were assessed at the household-level. Because the full list of predictors changed slightly across the 352 

collection years, a supplemental analysis was conducted in which only predictors that were available in all three 353 

collection years were included in the RF models. This analysis demonstrated that 1) intra-year rankings and extra-354 

year patterns did not change substantially, and 2) agricultural variables remained the most prominent predictor 355 

category when comparing across the entire study period. See S1 Figure for details of the supplemental analysis.  356 

 357 

Figure 2. Variable importance rankings and direction of association for candidate predictors of bovine S. 358 

japonicum infection in 2007, 2010 and 2016. Variable importance rankings are based on a composite of mean 359 

decrease in accuracy scores for 10 random forest (RF) models for each model type (full, lean and sensitivity) and 360 

collection year. The direction of association was determined through logistic regression, using tertile categories 361 

for continuous variables to assess evidence for non-linearity. A p-value of <0.2 was used to indicate evidence of a 362 

between-group difference, and, when a between group difference was found, the direction of association is 363 

indicated. See S2 Table for detailed logistic regression results. 364 
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 365 

  366 

Predictor categories 2007 2010 2016 

 Full Lean Sens. Full Lean Sens. Full Lean Sens. 

Physical/biological characteristics          

Bovine type       ND ND ND 

Bovine sex       ND ND ND 

Bovine age 3 ↑ 1 ↑ 2 ↑    ND ND ND 

Number of hatch tests    2 ↑ 2 ↑ 1 ↑    

County of residence          

Potential human sources of schistosomes          

Human infection prevalence in the village 5 ↑ 3 ↑ Excl. 1 ↑ 1↑ Excl.   Excl. 

Number of infected human household members   Excl. 6 ↑ 7 ↑ Excl.   Excl. 

Socio-economic indicators          

Village prevalence of improved sanitation      9  Ո    

Household has improved sanitation (y/n)          

Village mean asset score (0-9)   10 ↓    8 ↑ 5 ↑ 8 ↑ 

Household asset score (0-9)      10  Ø    

Potential animal reservoirs/sources of infection          

Village prevalence of cat ownership       9* ↑ 10↑ 10 ↑ 

Household cat ownership          

Village prevalence of dog ownership       9* ↑ 9 ↑  

Household dog ownership       Excl. Excl. Excl. 

Village mean number of pigs owned ND ND ND    3 ↓ 7 ↓ 4 ↓ 

Household pig ownership ND ND ND 7 ↓ 8 ↓ 6 ↓ Excl. Excl. Excl. 

Village mean number of bovines owned 8 ↑ 8 ↑ 6 ↑   8 ↑ 2 ↑ 1 ↑ 1 ↑ 

Household bovine ownership          

Agricultural risk factors          

Village mean rice area 6 ↑ 5 ↑ 3 ↑ 5 ↑ 5 ↑ 3* ↑ 5 ↓ 8 ↓ 5 ↓ 

Household rice area    8 ↑ 10↑ 7 ↑    

Village mean dry summer crop area 2 ↑ 7 ↑ 4 ↑    6 ↑ 6 ↑ 7 ↑ 

Household dry summer crop area 4 ↑ 6 ↑ 5 ↑ 4 ↓ 4 ↓ 3* ↓   9 ↑ 

Village mean winter crop area  1 ↑ 2 ↑ 1 ↑ 10↓ 6 ↓  1 ↓ 2 ↓ 2 ↓ 

Household winter crop area 7 ↑ 4 ↑ 7 ↑ 9  Ø 9  Ø 5  Ø 7 ↓ 4 ↓ 6 ↓ 

Village night soil rice: mean # buckets           

Household night soil rice: # buckets          

Village night soil summer dry crop: mean # buckets  9 ↑ 10↑ 8 ↑ 3 ↓ 3 ↓ 2 ↓ 4 ↑ 3 ↑ 3 ↑ 

HH night soil summer dry crop: # buckets          

Village night soil winter crop: mean # buckets  10* U 9 U 9 U       

Household night soil winter crop: # buckets 10* U         

 

Symbol key: 

↑ Positive association 

↓ Negative association  

Ո Non-linear association (Rise-Fall) 

U Non-linear association (Fall-Rise) 

ND Data not collected 

Excl. Variable excluded from model 

*  Tied for importance rank 
Ø No evidence for a significant between -

group difference found 

 

 

Color key: Variable importance rankings (1st-10th) by scale 

Individual 1st – 2nd  3rd – 4th  5th – 6th  7th – 8th  9th – 10th  

Household 1st – 2nd  3rd – 4th  5th – 6th  7th – 8th  9th – 10th  

Village 1st – 2nd  3rd – 4th  5th – 6th  7th – 8th  9th – 10th  

 

 = Not ranked 1-10 for the given model/year 
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Despite the inter-year agreement for several of the agricultural variables’ high importance rankings, the 367 

direction of association between the top agricultural predictors and bovine infection was not consistent across the 368 

three collection years. For example, the logistic regression assessments suggest that the direction of association 369 

with bovine infection flips from positive to negative for village rice crop area (2007 & 2010 = ↑; 2016 = ↓), and 370 

winter crop area (2007 = ↑; 2010 & 2016 = ↓), while for household summer crop area and village night soil use on 371 

summer crops, the direction of association flips from positive to negative to positive (2007 = ↑; 2010 = ↓; 2016 = 372 

↑).  Notably, in 2007 increases in all the key agricultural predictors were associated with an increase in bovine 373 

infection risk, apart from night soil use on winter crops.  By contrast, in 2010 and 2016 our models indicate a 374 

mixture of positive and negative associations across the key agricultural predictors, and in one instance 375 

(household winter crop area in 2010), no evidence of a relationship was found. 376 

As mentioned above, the proportion of households planting rice, dry summer crops and winter crops, and 377 

the proportion of households reporting night soil use on rice and winter crops (but not dry summer crops) all 378 

shifted over the study period. Figure 3 depicts these shifting patterns over time, illustrating changes in the 379 

distribution of different agricultural practices by bovine infection status between 2007 and 2016. Despite the 380 

previously noted rise in the prevalence of households farming rice, dry summer crops and winter crops over the 381 

study period, panels A-C of Figure 3 show that only dry summer crop farming saw a notable increase in the total 382 

and mean area of crop being planted by households and villages between 2007 and 2016. On the other hand, a 383 

general decrease in the overall range and mean number of buckets of night soil being applied to rice, winter crops 384 

and, to a lesser extent, dry summer crops, can be observed when comparing between 2007 and 2016 (Figure 3, 385 

panels D-F).    386 

 387 

  388 
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Figure 3. Changes in agricultural practices and the relationship between bovine infection and agricultural 389 

predictors over time. For each of the agricultural predictors included in this analysis, boxplots are used to 390 

represent the distribution of uninfected (blue), infected (red), for household-level (left) and village-level variables 391 

(right) in 2007, 2010 and 2016.  392 
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S. japonicum negative bovines 

 
S. japonicum positive bovines 

 393 

In addition to the agricultural variables, there are also some other notable predictors that stand out in one 394 

or more collection year. Village bovine ownership is among the top ten predictors in at least one RF analysis from 395 

each year, all of which indicate that an increase in bovine ownership in the surrounding village corresponds with 396 

an increase in bovine infection risk. Human infection prevalence in the surrounding village was among the top five 397 

predictors of bovine infection in 2007 and 2010, and the number of infected humans within the household was 398 

among the top ten predictors in 2010. For both the household and village human infection predictors, an increase 399 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 22, 2021. ; https://doi.org/10.1101/2021.08.20.21262368doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.20.21262368
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

in human infections was associated with an increase in bovine infections. When the human infection predictors 400 

were removed for the sensitivity analysis, the rankings of the remaining predictors did not shift substantially in any 401 

collection year. Of the physical/biological characteristics assessed, bovine age was among the top predictors in 402 

2007, with the logistic regression results suggesting that a bovine’s infection risk increased with age. In all of the 403 

2010 analyses, the number of hatch tests was an important predictor of bovine infection, a feature not shared by 404 

the 2007 and 2016 analyses. This may be related to the relatively high proportion of bovines that had less than 405 

three hatch test results in 2010 (35.5%), as compared to 2007 (29.4%) and 2016 (26.8%).  406 

Of the three different analyses performed (full, lean and sensitivity) for each collection year, the full 407 

models (i.e. those that included the full list of predictors available in a given year) tended to perform the best, as is 408 

highlighted in Table 5. Overall our models had high accuracy values, with the top performing models producing a 409 

maximum accuracy of 0.864 (95% CI: 0.79 – 0.92) in 2007, 0.816 (95% CI: 0.68 – 0.91) in 2010, and 1.0 (0.81 – 410 

1.0), in 2016. However, due to class imbalance in our reserved test datasets (see the no information rate (NIR) in 411 

Table 5), the Kappa value is a useful performance metric for our models, as this takes class imbalance into 412 

account. According to the benchmarks laid out by Landis and Koch (1977), the Kappa statistics from our 2007 413 

analyses suggest a “Fair” level of agreement (0.21 – 0.40) between our best RF models and the true known 414 

values in 2007. For 2010, the highest Kappa statistic came from the full predictor analysis, with a Kappa of 0.463, 415 

indicating a “Moderate” level of agreement (0.41 – 0.60) between the prediction model and the reserved test 416 

dataset (44). In 2016, both the full and sensitivity models achieved perfect prediction (Kappa = 1) for the test 417 

dataset in at least one of the ten model iterations, whereas the Kappa statistic for the top performing lean model 418 

was 0.853, or “Almost Perfect”, according to Landis & Koch (44).  419 

 420 

  421 
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Table 5. Comparison of model performance metrics for the top performing model from the full, lean and 422 

sensitivity analyses in 2007, 2010 and 2016. The top performing model was defined as the one with the highest 423 

accuracy for each analysis type (full, lean & sensitivity) and collection year (2007, 2010, 2016). In the case of a tie 424 

for the highest accuracy value, the sensitivity, kappa and specificity were subsequently compared to select the top 425 

performing model for each analysis type and year. 426 

 427 

α Due to the high degree of imbalance between the outcome classes across the study period, the Kappa values is a useful 428 

metric for our models, as it helps to correct bias that results when rewarding the prediction of the majority class. The 429 

benchmark values outlined by Landis & Koch (1977) are useful here for determining the relative strength of the predictive 430 

models: <0.00 = Poor; 0.00 – 0.20= Slight; 0.21 – 0.40 = Fair; 0.41 – 0.60 = Moderate; 0.61 – 0.81 = Substantial; 0.81 – 1.0 = 431 

Almost Perfect.  432 

 433 

While there was some variation in model performance across the ten iterations of RF models for each 434 

analysis year, overall the models were relatively stable. For the ten iterations of full analyses conducted for each 435 

collection year, the AUC ranged from 0.724 – 0.75 in 2007, 0.816 – 0.819 in 2010, and 0.982 – 1.0 in 2016. 436 

Figure 5 illustrates the ROC curve and corresponding best and worst AUC for each of the ten RF models of the 437 

full predictor list analyses.  438 

 439 

Figure 5. Receiver operator curves for each of the ten full RF model iterations conducted for 2007, 2010 440 

(A) The ten RF models ROC curves for 2007 are shown in the top panel. The AUC in the 2007 full models ranged 441 

from 0.724 – 0.75. (B) The ten RF models ROC curves for 2010 are shown in the middle panel. The AUC in the 442 

2010 full models ranged from 0.816 – 0.869. (C) The ten RF models ROC curves for 2016 are shown in the 443 

bottom panel. The AUC in the 2016 full models ranged from 0.982 – 1.0. 444 

Performance 
metrics 

 
2007 Models 

 

 
2010 Models 

 
2016 Models 

 Full   Lean  Sens.  Full   Lean  Sens.  Full   Lean  Sens.  

Accuracy 0.864 0.864 0.856 0.816 0.816 0.816 1 0.944 1 

95% CI 0.79 - 0.92 0.79 - 0.92 0.78 - 0.91 0.68 - 0.91 0.68 - 0.91 0.68 - 0.91 0.81 - 1 0.73 - 1 0.81 - 1 

No info rate (NIR) 0.864 0.864 0.864 0.837 0.837 0.837 0.778 0.778 0.778 

p-value (Acc > NIR) 0.566 0.566 0.667 0.729 0.779 0.729 0.011 0.067 0.011 

Kappa α 0.313 0.313 0.246 0.463 0.360 0.416 1 0.853 1 

Sensitivity 0.313 0.313 0.25 0.75 0.5 0.505 1 1 1 

Specificity 0.951 0.951 0.951 0.829 0.878 0.625 1 0.929 1 

Pos pred Value 0.5 0.5 0.444 0.462 0.444 0.854 1 0.8 1 

Neg Pred Value 0.898 0.898 0.890 0.944 0.9 0.455 1 1 1 
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Discussion 447 

 Of the five categories that were assessed as potential predictors of bovine infection in this study 448 

(physical/biological characteristics, human infection-related, socio-economic, potential animal reservoirs and 449 

agricultural factors), agricultural factors were important predictors of bovine S. japonicum infection in all collection 450 

years. Night soil use on summer crops, the village-level area of rice crops, and both the household and village-451 

level areas of summer and winter crops were each ranked among the top five predictors for one or more 452 

collection years in our RF models. Interestingly, for 2007, all of the ranked agricultural variables except one were 453 

associated with an increase in bovine infection risk in our logistic regression assessments, whereas in 2010 and 454 

2016, these agricultural factors were found to be variably positively and negatively associated with infection risk. 455 

This finding may be related to changing norms and interventions that have taken hold in recent years as a result 456 

of increasing awareness of the potential risks posed by both bovines as a reservoir of schistosomiasis, and 457 

specific agricultural practices. For example, across our study period, we saw a steady increase in the prevalence 458 

of households planting rice (69.1% in 2007; 71.5% in 2010; 81.7% in 2016), and a simultaneous decrease in the 459 

prevalence of households applying any night soil to their rice crops (35.6% in 2007, 14.7% in 2010; 11.7% in 460 

2016). These shifting norms in rice production and night soil use likely resulted in a decrease in the overall 461 

concentration of night soil on rice crops within our study villages, which in turn, may help to explain why the 462 

village-level rice crop area shifts from having a positive association with bovine infection in 2007 and 2010, to a 463 

negative association by 2016.  464 

Assessments conducted in China early in the new millennium repeatedly highlighted bovines as a key 465 

source of environmental contamination and as the main animal reservoir of S. japonicum in the country (9, 28, 466 

45). Beginning in 2004, a new government-led approach to eliminating schistosomiasis transmission in China was 467 

adopted, which – in conjunction with infrastructure improvements in rural areas and several new schistosomiasis 468 

elimination interventions – featured replacing bovines with machinery in agricultural production (46). Thus, the 469 

negative associations that were found intermittently between bovine infection and some of our agricultural 470 

variables in 2010 and 2016 may be linked to the added precautions that were being adopted when bovines were 471 

being used for agriculture, or because bovines were being reallocated for other purposes (e.g. beef production) as 472 

machinery became the norm for large crop areas or those deemed high risk (e.g. wet rice crops). Increasing 473 
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recognition of the potential risks posed by night soil use during our study period (32) may have also contributed to 474 

some decreases in environmental contamination as a result of decreases in night soil applications and/or the 475 

more careful treatment of night soil prior to field applications. Indeed, a downward trend in the range of reported 476 

night soil use (total and mean number of buckets) on crops can be observed in Figure 4 (parts D-F), though 477 

notably, we do not see any substantial shift in the overall proportion of households that reported any night soil use 478 

on summer crops over the years (52.4% in 2007; 53.5% in 2010; 50.7% in 2016) (Table 3). The continued 479 

prominence of applying some amount of night soil to summer crops, paired with the steady increase in the total 480 

area of summer crops being planted by villagers over the study period (see Figure 4, part B) may help to explain 481 

why night soil use on summer crops returns to being positively association with bovine infection status in 2016.  482 

Bovine ownership in the surrounding village was in the top ten predictors of RF models and bovine 483 

density in a village was positively associated with bovine infection in our regression models in all collection years. 484 

These findings align well with the existing literature that points to bovines as the most important reservoir of S. 485 

japonicum infection in China (9, 45), and suggests that being in close proximity to higher densities of bovine hosts 486 

may correspond with increasing infection risk, as has been found for other bovine pathogens (47, 48). However, it 487 

is worth noting that household-level bovine ownership was not among the top predictors in any of our RF models, 488 

highlighting that the larger-scale lens (i.e. village-level analysis scale) may be particularly important to future 489 

investigations and control strategies. Likewise, recent informal interviews with locals from our study sites have 490 

revealed that bovines are infrequently kept near the home, as allowing bovines to graze (and defecate) freely is 491 

an economical and efficient way of raising bovines, further illustrating that the household scale may not always be 492 

broad enough to capture larger scale trends. Instead, villagers opt to bring their bovines to the mountains to graze 493 

during the day, which subsequently presents more opportunities for contact between bovines from different 494 

households, and may ultimately result in more widespread environmental contamination (e.g. bovine feces 495 

washed into nearby irrigation ditches after precipitation).  496 

In the developmental stages of this analysis, we hypothesized that human infection prevalence and the 497 

number of infected people in the household would be among the top predictors of bovine infection status, given 498 

the known link between human schistosomiasis and bovine reservoirs (e.g. 45). It was therefore somewhat 499 

surprising to find that household-level human infection was only ranked as important from RF models in 2007, and 500 

village human infection prevalence was only ranked as important in 2007 and 2010. One potential explanation for 501 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 22, 2021. ; https://doi.org/10.1101/2021.08.20.21262368doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.20.21262368
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

the apparent drop in the importance of human infection status as a predictor of bovine infection could be related 502 

to the aforementioned bovine-removal phenomenon, in which bovines are increasingly being removed from the 503 

village area and brought to alternative mountain locations for grazing, resulting in less frequent contact between 504 

bovines and humans, but more opportunities for contact with other bovines. In fact, the drop in the important 505 

rankings of human infection status in 2016 coincides with a jump in the variable importance rankings for village-506 

level bovine ownership (6th – 8th in 2007 and 2010; 1st -2nd in 2016), providing further support of the theory that 507 

bovines may be becoming increasing important reservoirs of continued schistosomiasis infection. On the other 508 

hand, an altogether different explanation for the differences in the 2016 rankings compared to 2007 and 2010 is 509 

that the 2016 data collection simple didn’t have a large enough sample size to allow for the detection of a true 510 

relationship between relatively rare events.  511 

As such, one limitation of this assessment was the relatively small sample sizes, particularly in 2016 512 

(N=71), though to a lesser extent, 2010 (N=197) and 2007 (N=473), given the correspondingly large number of 513 

predictors that were included in the full predictor models (N=29, N=31, N=26, in 2007, 2010 and 2016 514 

respectively). While RF models are generally acknowledged as being able to handle assessments of high 515 

dimensional data even with relatively small sample sizes (49), it remains that small samples sizes can still give 516 

rise to the aforementioned issue of non-detection of rare events. Another limitation to this assessment is that RF 517 

models tends to favor continuous predictors over categorical measures, as they allow for a wider range of 518 

potential split points for classifying observations. For this reason, it is not particularly surprising that age was the 519 

only predictor from the individual/physical characteristics predictor group that was ranked among the top ten 520 

predictors, as the remaining individual characteristics were binary measures. Another notable limitation of the 521 

variable importance rankings used in RF models is that they become less reliable when predictors are highly 522 

correlated with one another (50). This may be particularly important to the rankings ascribed to the agricultural 523 

variables, as correlation between the area of the different crop types planted and the amount of night soil used on 524 

each crop tended to be high across all collection years, with the highest predictor correlations found in the 2016 525 

collection year (See S2 – S4 Figures for correlation matrices). This is notable, as a higher degree of instability in 526 

the variable importance rankings was also found for 2016 as compared to 2010 or 2007, suggesting predictor 527 

correlation may be responsible. We therefore recommend that the variable rankings presented from this analyses 528 

be interpreted more holistically (e.g. agricultural variables are strong predictors of bovine infection), and advise 529 
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caution when comparing unique variable ranking values against one another (e.g. rice crop area is less important 530 

than winter crop area). 531 

Our main interests in this assessment were to 1) identify the best predictors of bovine S. japonicum 532 

infection within rural farming communities in Sichuan China, and 2) to ascertain whether there are broader trends 533 

in bovine infection distribution across individual, household or village-levels scales or over time. Our RF 534 

assessments have highlighted several key patterns that were repeated across multiple collection years and 535 

multiple iterations of three different models. Agricultural factors and high levels of bovine ownership at the village-536 

level were repeatedly found to be among the top predictors of bovine S. japonicum infection, highlighting the 537 

potential utility of presumptively treating bovines belonging to villages with particularly high levels of bovine 538 

ownership, or those who engage in high-risk agricultural practices such as planting rice. Additionally, village-level 539 

predictors tended to be better predictors of bovine infection than household-level predictors, suggesting that 540 

interventions may need to take a multipronged approach to address broader ecological sources of ongoing 541 

transmission.  542 

 543 
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Supporting Information 676 
 677 
S1 Table. Completeness of bovine infection and household surveys.  Some differences between the number 678 

of bovines reported by households and the number of bovines tested may have arisen due to the lag time 679 

between the household surveys, which were completed in June/July in 2007 and 2010 and the infection surveys, 680 

which were conducted in November and December in 2007 and 2010. Both the household surveys and infection 681 

surveys were conducted during June/July of 2016. 682 

 

 
2007 

 

 
2010 

 

 
2016 

 

N 
Total 
possible % N 

Total 
possible % N 

Total 
possible % 

Number of villages where 1+ 
household reported owning 
bovines 36 36 100% 35 36 97.2% 8 10 80% 

Number of villages where 1+ 
bovine tested 35 36 97.2% 31 35 88.6% 8 8 100% 

Number of villages where:           

≥80% of bovines tested  18 35 51.4% 13 31 41.9% 4 8 50% 

40 – 80 % tested 14 35 40.0% 14 31 45.2% 4 8 50% 

<40% tested 3 35 8.6% 4 31 12.9% 0 8 0% 

Total number of bovines owned, 
as reported on household 
surveys 675 -- -- 371 -- -- 95 -- -- 

Total number of bovines tested 503 675 74.5% 233 371 62.8% 72 95 58.6% 
Hatch tests          

1 68 503 13.5% 34 233 14.6% 10 72 8.6% 
2 91 503 18.1% 49 233 21.0% 9 72 20.7% 
3 344 503 68.4% 150 233 64.4% 53 72 73.6% 

Total number of bovines with 
household survey data 473 503 94.0% 197 233 84.5% 71 72 98.6% 

 683 

 684 

 685 

 686 

 687 

 688 

 689 
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S2 Table. Simple logistic regression analyses to determine the direction of association between bovine 690 

infection status and each predictor, by collection year. Tertiles (and sometimes quartiles) by year were used 691 

in simple logistic regression analyses to help investigate potential non-linearity. Results highlighted in gray 692 

indicate that the predictor was one of the top ten predictors in one or more RF analyses for a given collection 693 

year.  694 

 2007 2010 2016 
 Tertile Point 

estimate 
SE P-value Tertile Point 

estimat
e 

SE P-value Tertile Point 
estimate 

SE P-
value 

Individual 
characteristics 
 

            

Bovine age             
 ≤ 3 ref   ≤ 3 Ref       
 3.1 - 5 0.58 0.34 0.094* 3.1 - 6 0.10 0.46 0.824     
 ≥ 5.1 0.92 0.36 0.011* ≥ 6.1 0.01 0.47 0.988     

# of hatch tests             
 1 Ref   1 p.f.p. p.f.p p.f.p.* 1 Ref   
 2 0.73 0.70 0.297 2 Ref   2 0.94 1.32 0.476 
 3 1.24 0.61 0.043 3 0.50 0.49 0.308 3 0.88 1.11 0.426 

Human sources             

Human infection: 
household count 

            
0 Ref   0 Ref   0 Ref   
1+ 0.93 0.31 0.003 1+ 1.75 0.45 <0.001* 1+ 0.02 0.85 0.981 

Human infection: 
village prevalence 

            
≤ 2.6% Ref   0% p.f.p. p.f.p p.f.p.* ≤ 2.53% Ref   
2.7 - 11.9% -0.24 0.40 0.558 0.1 – 10.8% Ref   2.54 – 4.49% 0.99 0.71 0.164 
≥ 12% 1.06 0.33 0.001* ≥ 10.9% 1.11 0.43 0.010* ≥ 4.5% -0.10 0.82 0.907 

Socio-economic  
 

            

Vil: Imp. sanitation ≤ 7.2% Ref   ≤ 25% Ref   ≤ 48% Ref   
 7.3 – 23.9% 1.29 0.35 <0.001 26 – 42% 0.87 0.43 0.046* 49 – 53% p.f.p. p.f.p p.f.p. 
 ≥ 24% 0.36 0.41 0.379 ≥ 43% -0.99 0.62 0.112* ≥ 54% 0.61 0.65 0.346 

Vil. asset score 
(0-9) 

            
≤ 1.654 Ref   ≤ 2.77 Ref   ≤ 4.03 Ref   
1.655 – 2.5 -1.09 0.35 0.002* 2.78 – 3.79 0.38 0.44 0.384 4.04 - 4.59 1.40 0.86 0.104* 
≥ 2.51 -1.15 0.34 <0.001* ≥ 3.8 -0.30 0.50 0.549 ≥ 4.6 1.23 0.90 0.170* 

HH asset score 
(0-9) 

            
    ≤ 2 Ref       
≤ 1 Ref   3 0.32 0.51 0.531 ≤ 3 Ref   
2 - 3 0.24 0.30 0.427 4 0.04 0.59 0.951 4 -1.06 0.89 0.234 
≥ 4 0.08 0.41 0.845 ≥ 5 0.41 0.53 0.440 ≥ 5 0.51 0.68 0.453 

Animal reservoir 
 

            

Vil.: cat ownership ≤ 47.9% Ref   ≤ 44.9% Ref   ≤ 43.9% Ref   
 48 – 64.9% -0.61 0.37 0.095 45 – 55.9% 0.94 0.47 0.044 44 – 58.9% 2.81 1.11 0.012* 
 ≥ 65% 0.31 0.31 0.324 ≥ 56% 0.13 0.53 0.813 ≥ 59% 2.07 1.14 0.069* 
             

Vil.: dog 
ownership 

≤ 75% Ref   ≤ 71.9% Ref   ≤ 64% Ref   
76 - 85.2% -0.43 0.31 0.166 72 - 80% 2.40 0.77 0.002 64.1 – 74.9% 0.24 0.82 0.769 
≥ 85.2% -0.95 0.36 0.009 ≥ 81% 2.38 0.77 0.002 ≥ 75% 1.25 0.77 0.104* 

             
HH: pigs owned     0 Ref       

     1 -0.42 0.67 0.534     
     >1 -1.50 0.56 0.008*     
             

Vil. mean pigs 
owned 

    ≤ 0.49 Ref   ≤ 0.14 Ref.   
    .5 – 0.84 0.34 0.43 0.436 0.21 – 0.43 -2.05 1.09 0.060* 
    ≥ 0.85 -0.38 0.52 0.470 ≥ 0.44 -1.30 0.83 0.119* 

             
Vil.:  mean 

bovines owned 
≤ 0.65 Ref   ≤ 0.55 Ref   ≤ 0.30 Ref   
0.66 – 0.89 1.19 0.38 0.002* 0.56 – 0.74 -0.10 0.51 0.839 0.30 – 0.44 0.63 0.96 0.513 

 ≥ 0.89 1.16 0.40 0.003* ≥ 0.75 0.77 0.45 0.086* ≥ 0.441 2.24 0.86 0.009* 
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 695 
*In the case that the tertiles did not show evidence of any moderate difference (p<0.2) between one or more groups, quartiles 696 

were tried. When still no difference was found between groups, this was noted in results Table 4. 697 

p.f.p = perfect failure predicted. 698 

 699 

 700 

 701 

 702 

 703 
 704 

Agriculture 
 

            

Vil. mean rice 
area 

            

 ≤ 0.84 Ref   ≤ 0.61 Ref   ≤ 0.95 Ref   
 0.84 – 1.47 -0.33 0.37 0.380 0.62 – 1.29 2.33 0.77 0.003* 0.96 – 1.34 -0.97 0.70 0.166* 
 ≥ 1.47 0.55 0.32 0.081* ≥ 1.30 2.35 0.77 0.002* ≥ 1.35 -1.61 0.86 0.061* 

HH rice area             
 ≤ 0.5 Ref   ≤ 0.5 Ref   ≤ 1.2 Ref   
 0.6 – 1.5 0.36 0.35 0.301 0.6 – 1.5 0.57 0.49 0.253 1.2 – 2.3 -0.49 0.67 0.463 
 ≥ 1.6 0.54 0.34 0.114 ≥ 1.6 0.76 0.48 0.116* ≥ 2.4 -1.25 0.87 0.149 

Vil sum. crop area             
 ≤ 0.73 Ref   ≤ 2.03 Ref   ≤ 2.412 Ref   
 0.74 – 1.96 1.51 0.39 <0.001* 2.03– 2.76 0.02 0.44 0.966 2.413 – 2.98 0.88 0.92 0.336 
 ≥ 1.97 0.90 0.42 0.031* ≥ 2.77 -0.52 0.49 0.285 ≥ 2.99 1.81 0.86 0.034* 

HH sum. crop 
area 

            

 ≤ 1 Ref   ≤ 2.2 Ref   ≤ 2.8 Ref   
 1.1 – 2.2 0.69 0.34 0.041* 2.3 – 3.8 -0.09 0.43 0.830 2.81 – 4.1 1.70 0.86 0.046* 
 ≥ 2.3 0.40 0.33 0.230 ≥ 3.9 -0.69 0.50 0.167* ≥ 4.2 0.84 0.92 0.362 

Vil. win. crop 
area*  

            

 ≤ 1.869 Ref           
 1.87 – 2.55 0.01 0.40 0.981 ≤ 1.869 Ref   ≤ 1.58 Ref   
 2.56 – 2.81 0.01 0.40 0.981 1.87  – 2.58 -0.50 0.45 0.269 1.59 – 1.89 -0.86 0.70 0.219 
 ≥2.82 0.48 0.37 0.193* ≥ 2.59 -0.60 0.46 0.193* ≥ 1.9 -1.55 0.86 0.071* 

HH win. crop 
area* 

            

 1.79 Ref   ≤ 1.9 Ref   ≤ 1.2 Ref   
 1.8 –2.5 -0.03 0.41 0.944 2 – 2.8 -0.07 0.53 0.895 1.3 – 2.1 -0.62 0.81 0.442 
 2.6 – 3.7 0.54 0.38 0.152* 2.9 – 3.7 0.36 0.51 0.617 2.2 – 3.2 -0.76 0.80 0.340 
 ≥ 3.8 0.32 0.39 0.413 ≥ 3.8 -0.23 0.54 0.678 ≥ 3.3 -1.17 0.90 0.193* 

Vil. night soil sum.              
 ≤ 7.3 Ref   ≤ 6.39 Ref   ≤ 11.2 Ref   
 7.4 – 37 1.18 0.38 0.002* 6.4 – 14.4 -0.12 0.41 0.766 11.3 – 27.9 2.48 1.11 0.025* 
 ≥ 38 1.06 0.38 0.005* ≥ 14.5 -1.80 0.66 0.006* ≥ 28 1.95 1.14 0.087* 

Vil. night soil 
winter  

            

 ≤ 23.6 Ref   ≤ 2.589 Ref   ≤ 2.9 Ref   
 23.7 – 42.6 -0.69 0.44 0.120* 2.59 – 11.2 -0.82 0.44 0.066 3 – 4.2 0.41 0.87 0.642 
 ≥ 42.7 1.04 0.32 0.001* ≥ 11.3 -1.39 0.54 0.010 ≥ 4.3 1.79 0.76 0.019 

HH night soil 
winter*  

            
0 0.90 0.56 0.105*         

 1-20 Ref            
 21 – 59 1.11 0.59 0.060* 0 Ref   0 Ref   
 ≥ 60 0.96 0.58 0.097* >0 -1.71 0.63 0.006 >0 2.00 0.76 0.009 
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S1 Figure. Supplemental analysis assessing changes over time. Two additional RF model iterations were run 705 

for each collection year that only included those predictors that were available in all three of the collection years. 706 

The top ten predictors for these two iterations were given a score of 1-10, and the summed scores were used to 707 

determine the variable ranking 1st – 10th for each collection year, as well as a final variable ranking “all year score” 708 

that summed the rankings across all six iterations (two per collection year) conducted. 709 

 710 
 2007 2010 2016 All year score 
Physical characteristics     

Number of hatch tests  2  9 
County of residence     

Infection     
Human infection: household count  9   

Human infection: village prevalence 5 1  4* 
Socio-economic indicators     

Village prevalence of improved sanitation   10  
Household has improved sanitation (y/n)     

Village mean asset score (0-9) 10  4 10 
Household asset score (0-9)     

Animal ownership     
Village prevalence of cat ownership   9  

Household cat ownership     
Village prevalence of dog ownership   6  

Household bovine ownership     
Village prevalence of bovine ownership 8  1* 8 

Agriculture     
Village mean rice area 6 5 7* 6 

Household rice area  6   
Village mean dry summer crop area 2 10 7* 7 

Household dry summer crop area 4 4  4* 
Village mean winter crop area  1 8 3 2 

Household winter crop area 3 7 5 3 
Village night soil rice: mean # buckets      

Household night soil rice: # buckets     
Village night soil summer dry crop: mean # buckets  7 3 1* 1 

Household night soil summer dry crop: # buckets     
Village night soil winter crop: mean # buckets      

Household night soil winter crop: # buckets 9    

 
 

* = Tied for importance rank 
 = Not ranked 1-10 for the given 

model/year 
  

Color key: Variable importance rankings (1st-10th) by scale 
Individual 1st – 2nd  3rd – 4th  5th – 6th  7th – 8th  9th – 10th  

Household 1st – 2nd  3rd – 4th  5th – 6th  7th – 8th  9th – 10th  
Village 1st – 2nd  3rd – 4th  5th – 6th  7th – 8th  9th – 10th  

711 
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S2 Figure. Correlation matrix for 2007 predictors. A correlation matrix for predictors included in the 2007 RF models is provided to highlight those 712 

predictors whose relative variable ranking positions may be less reliable due to correlation with other influential predictors. Only predictors with a 713 

correlation coefficient of < -0.499 or > 0.499 are included. The 2007 correlation matrix demonstrates that there are some strongly correlated predictors, 714 

particularly in the agricultural predictor category, that may be impacting their relative importance rankings.  715 

 716 

 Count
y 

Hatch 
tests 

HH 
asset 

HH rice 
crop area 

HH sum. 
crop area  

HH win. 
crop 
area 

HH NS 
sum. 
crop 

Vil. 
asset 

Vil cat 
own 

Vil. 
bov. 
own 

Vil hum. 
Inf. prev. 

Vil 
rice 
area 

Vil. sum. 
crop area 

Vil. win. 
crop 
area 

Vil. NS 
sum. 
crop 

Vil. NS 
win. 
crop 

Vil NS 
Rice 
crop 

County  
 

1.0                  

Hatch tests 
 

0.553 1.0                

HH asset 
 

  1.0               

HH rice area 
 

   1.0              

HH sum. crop 
area 

0.578    1.0             

HH win. crop 
area 

    0.559 1.0            

HH NS sum. 
Crop 

    0.594  1.0           

Vil Asset 
 

-0.728  0.576  -0.501   1.0          

Vil Cat Own 
 

       -0.565 1.0         

Vil Bov. Own        -0.520  1.0        
Vil Hum. Inf. 
Prev. 

          1.0       

Vil rice area 
 

-0.664   0.691 -0.575   0.544    1.0      

Vil sum. crop 
area 

0.799    -0.699   -0.632    -
0.696 

1.0     

Wil win. crop 
area 

            0.648 1.0    

Vil NS sum. 
crop 

0.674    0.644   -0.626    -
0.599 

0.814 0.712 1.0   

Vil NS win. 
Crop 

            0.547   1.0  

Vil NS rice crop           0.598      1.0 

 
Color Key: 
 

Moderate positive correlation 0.50 – 0.599 Moderate negative correlation -0.599– -0.50 
Strong positive correlation 0.60 – 0.799 Strong negative correlation -0.799 – -0.60 
Very strong positive correlation ≥ 0.80 Very strong negative correlation ≤ -0.80 
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S3 Figure. Correlation matrix for 2010 predictors. A correlation matrix for predictors included in the 2010 RF models is provided to highlight those 717 

predictors whose relative variable ranking positions may be less reliable due to correlation with other influential predictors. Only predictors with a 718 

correlation coefficient of < -0.499 or > 0.499 are included. The 2010 correlation matrix demonstrates that there are just a few strongly correlated predictors 719 

in the agricultural predictor category. As well as the socio-economic indicator category that may be impacting relative importance rankings. 720 

 721 
 722 

 723 

 724 

 725 

 726 

 727 

 728 

 729 

 730 

 731 

 732 

 733 

 734 

 735 

 736 

 737 

 738 

 739 

 740 

 741 

 742 

 743 

 744 

 745 

 County HH rice 
crop area 

HH sum. 
crop area  

HH win. 
crop area 

HH NS 
sum. 
crop 

HH NS 
win. 
crop  

Vil. 
asset 

Vil 
cat 
own 

Vil. 
bov. 
own 

Vil 
pigs 

Vil rice 
area 

Vil. sum. 
crop area 

Vil. win. 
crop area 

Vil. NS 
sum. 
crop 

Vil. NS 
win. 
crop 

County  
 

1.0                

HH rice area 
 

 1.0              

HH sum. crop 
area 

  1.0             

HH win. crop 
area 

  0.575 1.0            

HH NS sum. 
Crop 

    1.0           

HH NS win. 
Crop 

    0.565 1.0          

Vil Asset 
 

-0.771      1.0         

Vil Cat Own 
 

0.589      -
0.533 

1.0        

Vil Bov. Own 0.556      -
0.525 

 1.0       

Vil pigs          1.0      

Vil rice area 
 

 0.553         1.0     

Vil sum. crop 
area 

0.576      -
0.569 

0.53
5 

   1.0    

Vil win. crop 
area 

       0.78
9 

 0.515  0.675 1.0   

Vil NS sum. 
crop 

           0578  1.0  

Vil NS win. 
crop 

     0.509        0.878 1.0 

 
Color Key: 
 

Moderate positive correlation 0.50 – 0.599 Moderate negative correlation -0.599– -0.50 
Strong positive correlation 0.60 – 0.799 Strong negative correlation -0.799 – -0.60 
Very strong positive correlation ≥ 0.80 Very strong negative correlation ≤ -0.80 
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S4 Figure. Correlation matrix for 2016 predictors. A correlation matrix for predictors included in the 2016 RF models is provided to highlight those 746 

predictors whose relative variable ranking positions may be less reliable due to correlation with other influential predictors. Only predictors with a 747 

correlation coefficient of      < -0.499 or > 0.499 are included. The 2016 correlation matrix demonstrates that there are several strongly correlated 748 

predictors across the different predictor categories that may be impacting relative importance rankings for the 2016 RF models. 749 

 Count
y 

Hatch 
tests 

HH 
hum. 
inf. 
prev 

HH 
rice 
crop 
area 

HH win. 
crop 
area 

HH NS 
sum. 
crop 

HH NS 
rice 
crop  

Vil hum 
inf prev 

Vil. 
asset 

Vil 
toilet 
imp 

Vil. 
dog 
own 

Vil 
cat 
own 

Vil 
pigs 
own 

Vil 
rice 
crop 
area 

Vil. 
sum. 
crop 
area 

Vil. win. 
crop 
area 

Vil. NS 
sum. 
crop 

Vil. NS 
win. 
crop 

Vil. 
NS 
rice 
crop 

County  
 

1.0                    

Hatch 
tests 

0.615 1.0                  

HH hum. 
Inf. 

-0.625  1.0                 

HH rice 
area 

   1.0                

HH win. 
crop area 

   0.806 1.0               

HH NS 
sum. crop 

     1.0              

HH NS 
rice crop 

     0.834 1.0             

Vil. hum. 
inf prev. 

-0.839 -0.641 0.661     1.0            

Vil asset 
 

        1.0           

Vil toilet 
Imp. 

         1.0          

Vil. dog 
own 

          1.0         

Vil cat 
Own 

          0.800 1.0        

Vil pigs -0.502  0.611     0.838 -0.563    1.0       

Vil rice 
area 

       0.669 -0.635   0.522 0.858 1.0      

Vil sum. 
crop area 

       0.501 -0.612   0.721 0.801 0.678 1.0     

Vil win. 
crop area 

       0.590 -0.653   0.640 0.820 0.955 0.774 1.0    

Vil NS 
sum. crop 

         -0.645       1.0   

Vil NS 
win. crop 

0.649       -0.546  -0.814       0.578 1.0  

Vil. NS 
rice crop 

                0.581  1.0 
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 750 

Color Key: 
 

Moderate positive correlation 0.50 – 0.599 Moderate negative correlation -0.599– -0.50 
Strong positive correlation 0.60 – 0.799 Strong negative correlation -0.799 – -0.60 
Very strong positive correlation ≥ 0.80 Very strong negative correlation ≤ -0.80 
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