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Abstract 

Importance: Primary biliary cholangitis (PBC) is a classical autoimmune disease, which is 

highly influenced by genetic determinants. Many genome-wide association studies (GWAS) have 

reported that numerous genetic loci were significantly associated with PBC susceptibility. However, 

the effects of genetic determinants on liver cells and its immune microenvironment for PBC remain 

unclear. 

Objective: To identify genetics-modulated functional liver cell subsets involved in the 

pathogenesis of PBC.  

Design, Setting, and Participants: In this present study, 13,239 European participants were 

collected from IEU open GWAS project on PBC. There were 1,124,241 qualified SNPs used for 

GWAS analysis. Expression quantitative trait loci (eQTL) data across 49 tissues were downloaded 

from the GTEx database. Two single cell RNA sequencing (scRNA-seq) profiles and two bulk-based 

RNA transcriptomes were downloaded from the GEO database. Data collection and analyses were 

performed from August 2020 to June 2021. 

Main outcomes and measures: We constructed a powerful computational framework to 

integrate GWAS summary statistics with scRNA-seq data to uncover genetics-modulated liver cell 

subpopulations. 

 Results: Based on our multi-omics integrative analysis, we found that 29 risk genes including 

ORMDL3, GSNK2B, and DDAH2 were significantly associated with PBC susceptibility. 
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Gene-property analysis revealed that four immune cell types, including Cst3+ dendritic cell, Chil3+ 

macrophage, Trbc2+ T cell, and Gzma+ T cell, were significantly enriched by PBC- risk genes. By 

combining GWAS summary statistics with scRNA-seq data, we found that cholangiocytes exhibited 

a notable enrichment by PBC-related genetic association signals (Permuted P < 0.05). The risk gene 

of ORMDL3 showed the highest expression proportion in cholangiocytes than other liver cells 

(22.38%). Compared with ORMDL3+ cholangiocytes, there were 71 significantly highly-expressed 

genes among ORMDL3- cholangiocytes (FDR < 0.05), such as inflammatory cytokine genes CXCL8, 

CCL3, IFI16, and IRF1. These highly-expressed genes were significantly enriched in numerous 

biological pathways and functional terms associated with autoimmune diseases (FDR < 0.05).  

 Conclusions and relevance: To the best of our knowledge, this is the first study to integrate 

genetic information with single cell sequencing data for parsing genetics-influenced liver cells for 

PBC risk. We identified that ORMDL3- cholangiocytes play important immune-modulatory roles in 

the etiology of PBC.  

 

Key points: 

Question: Are genetics factors influenced liver cell subpopulations and its immune 

microenvironment for PBC? 

Findings: In this comprehensive genomics study based on multi-omics data, genetic determinants 

were significantly enriched in cholangiocytes and immune cells including subsets of macrophage, 

dendritic cells, and T cells. ORMDL3- cholangiocytes have crucial immune-modulatory roles in 

developing PBC.  

Meaning: Findings suggest that integration of single cell sequencing data with GWAS summary 
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statistics contribute to pinpoint PBC-relevant cell types and risk genes.  

 

Introduction 

 Primary biliary cholangitis (PBC), which is formally known as primary biliary cirrhosis until 

2016 1, is a rare chronic cholestatic liver disease characterized by progressive autoimmune-mediated 

destruction of the small intrahepatic biliary epithelial cells 2,3. PBC patients suffering from chronic 

cholestasis can eventually lead to cirrhosis and hepatic failure without effective treatments 2. 

Although ursodeoxycholic acid has been used as the first-line therapeutic agent for PBC, there exist 

10% to 20% of PBC patients resistant to ursodeoxycholic acid and developing to advanced-stage 

liver disease 2. Previous studies 4 have reported that a combination of genetic and environmental risk 

factors have an important influence on the aetiology of PBC. Hence, understanding the genetic 

mechanisms of PBC is becoming a great interest, which may promote the development of 

individualized therapeutic strategy for PBC.  

Over the past decade, a growing number of genome-wide association studies (GWAS) and 

Immunochip studies based on East Asian and European populations have been performed to uncover 

the genetic susceptibility loci associated with PBC 4. To date, more than 40 genetic loci with 

numerous risk genes have been reported 5-10, such as SLC19A3/CCL20, IRF8/FOXF1, 

NFKB1/MANBA, and PDGFB/RPL3. Nevertheless, the GWAS approach has generally focused on 

examining the genetic associations of millions of single nucleotide polymorphisms (SNPs) and only 

a handful of SNPs with a genome-wide significance (P ≤ 5×10-8) are reported. There exist many 

common SNPs with small marginal effects were neglected 11,12. Moreover, the vast majority of 

reported SNPs were mapped within non-coding genomic regions12. It is plausible to infer that these 
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non-coding SNPs may modulate the expression levels of corresponding risk genes rather than change 

the functions of their proteins. Thus, combination of GWAS summary statistics and other different 

types of data that characterize tissue- and cell-type-specific activity, including expression 

quantitative trait loci 11, DNase I-hypersensitive sites (DHS) 13, and histone marks 14, contributes to 

highlight disease-related risk genes and cell types.  

With the advance of single cell sequencing techniques, researchers have an effective avenue to 

discover more refined and novel cell populations for complex diseases 15. An accruing and large 

number of single cell RNA sequencing (scRNA-seq) studies on autoimmune diseases, including 

rheumatoid arthritis 16, inflammatory bowel disease 17, and systemic lupus erythematosus 18, have 

been reported to parse the heterogeneity of cellular subpopulations at unprecedented resolution. In 

view of no scRNA-seq study was conducted for uncovering human liver cell types implicated in 

PBC, we constructed a computational framework to identify risk genes whose genetically 

expressions associated with PBC and pinpoint cell subpopulations implicated in the etiology of PBC. 

 

Methods 

Datasets 

1. Single-cell transcriptomes of PBC: We downloaded two independent single cell RNA sequencing 

profiles (Accession number: GSE93170 and GSE115469) from the GEO database. With regard to the 

dataset of GSE93170, there were clinically and pathologically diagnosed six healthy controls and six 

PBC patients enrolled with written informed consent. Peripheral CD4+T cells were used to extract 

total RNA. The Agilent microarray of SurePrint G3 human GE 8×60K microarray kit was leveraged 

to produce gene expression profiles according to manufacturer’s protocols. The GSE115469 dataset 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 24, 2021. ; https://doi.org/10.1101/2021.08.18.21262250doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.18.21262250
http://creativecommons.org/licenses/by-nc-nd/4.0/


contained five samples from primary liver patients, which were used for scRNA sequencing based on 

the 10× Genomics Chromium Single Cell Kits. A total of 8,444 parenchymal and non-parenchymal 

cells have obtained the transcriptional profiles based on the CellRanger analysis pipeline. The raw 

digital matrix of gene expression (namely UMI counts per gene per cell) was filtered, normalized and 

clustered. Cell was omitted if it has a very high (>0.5) mitochondrial genome transcript ratio or a 

very small library size (<1500). Using the standard Seurat package 19, there were 20 discrete 

clustered for the scRNA-seq dataset. Using well-known marker genes, these clusters were assigned 

into 13 distinct cell subpopulations, including portal endothelial cells, cholangiocytes, 

non-inflammatory macrophages, T cells, γδT cells, inflammatory monocytes/macrophages, natural 

killer (NK)-like cells, red blood cells (RBCs), sinusoidal endothelial cells, mature B cells, stellate 

cells, plasma cells, and hepatocytes.  

 

2. Bulk-based expression profiles of PBC: Furthermore, we also downloaded two independent 

bulk-based expression datasets based on liver tissue (Accession number: GSE159676) and blood 

(Accession number: GSE119600) from the Gene Expression Omnibus (GEO) database. The dataset 

of GSE159676 contained six healthy controls and three PBC cases based on fresh frozen liver tissue, 

which were obtained from explanted livers or diagnostic liver biopsies. The Affymetrix Human Gene 

1.0-st array was leveraged to produce bulk-based liver expression profiles with 17,046 probes. With 

respect to the dataset of GSE119600, there were 47 healthy controls and 90 PBC patients with whole 

blood samples. The Illumina HumanHT-12 V4.0 expression beadchip was leveraged to produce 

bulk-based blood transcriptomes with 47,230 probes.  
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3. GWAS summary statistics on PBC: We downloaded a GWAS summary dataset on PBC from the 

IEU open GWAS project (https://gwas.mrcieu.ac.uk/) 5. There were 2,764 PBC patients and 10,475 

healthy controls based on European ancestry in this dataset used for performing a meta-analysis of 

genome-wide association signals. This GWAS dataset was approved by the University Health 

Network Research Ethics Board, the Mayo Clinic Institutional Review Board, Etico Indipendente 

IRCCS Istituto Clinico Humanitas, UC Davis Institutional Review Board and the Oxford Research 

Ethics Committee 5. A standard quality control (QC) pipeline was applied to remove low-quality 

SNPs. The software package of MaCH 20 with the reference of HapMap3 CEU+TSI samples was 

implemented to perform a genome-wide imputation analysis. There were 1,124,241 SNPs with minor 

allele frequency > 0.005 and imputation quality score R2 > 0.5 included in follow-up analyses.  

 

Data Processing and Analysis 

1. Combination of GWAS summary statistics with scRNA-seq data for PBC: We leveraged a 

widely-used method of RolyRoly 21, which was designed to gain the effects of SNPs near 

protein-coding genes on cell types contributing to complex traits, to explore genetics-influenced liver 

cell types for PBC. The regression-based polygenic model was used in the RolyRoly to incorporate 

GWAS summary data with scRNA-seq data (i.e., GSE115469) for identifying PBC-associated liver 

cell subpopulations. Let )(ig  represents a given gene relevant to SNP i , })(:{ jigiS j ==  

represents a given set with multiple SNPs relevant to the gene j , and jSβ represents a 

PBC-GWAS-derived effect-size vector of jS  with a priori assumption that ),MVN(~ 2
j ||Iβ

jj SS σ0 . 
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where 0γ  represents an intercept term, ),...,2,1( Niji =α  represents a group of annotations, for 

example, cell-type-specific gene expressions, and iγ  is the annotation’s coefficient for jiα . To fit 

the observed and expected sum squared SNP effect sizes relevant to each gene, RolyPoly applies the 

method-of-moments estimators to estimate iγ  by the following formula: 

12222 ||)(Tr)ˆ( −

∈
+=∑ nSE ejSj

Si
i j

j

σσβ R
 

where jSR  represents the LD matrix of jS . The 1,000 Genome Project European Phase 3 panel 

22 was used to calculate the SNP-SNP LD information. The major histocompatibility complex (MHC) 

region was removed due to the highly extensive LD in this region. RolyPoly utilized the 1,000 

iterations of block bootstrap to assess standard errors for calculating t-statistic and corresponding P 

value. P value ≤ 0.05 was interpreted to be of significance.  

 

2. Systematical computational analyses: To prioritize candidate risk genes and functional categories 

for PBC, we also performed systematical bioinformatics analyses (see Supplemental Methods S1-S7 

for details). For using the converging effects of multiple SNPs in a given gene, we applied a 

multi-variant converging regression model to conduct a gene-level association analysis 23,24 of the 

GWAS summary statistics (Supplemental Methods S1). The disease- and GO-terms enrichment 

analyses were conducted to reveal the functions of these genetics-risk genes (Supplemental Methods 

S2). The Multidimensional scaling analysis was used to construct a functional module for identified 

pathways (Supplemental Methods S3) 11, and the GeneMANIA tool 25 was used to establish a 

protein-protein interaction network of these genetics-risk genes (Supplemental Methods S4). To 

highlight the functional risk genes whose expressions were significantly associated with PBC, we 

leveraged both S-PrediXcan26 and S-MultiXcan 27 to combine GWAS summary statistics on PBC 
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with GTEx eQTL data28 (Supplemental Methods S5). Furthermore, We referenced the method used 

in previous studies 11,24,29,30 to perform an in silico permutation analysis of 100,000 times of random 

selections (N Total) for validating the consistency of results from S-MultiXcan analysis with other 

results from three distinct analyses: MAGMA analysis, and S-PrediXcan on liver and blood 

(Supplemental Methods S6). We also performed a gene-property analysis using the FUMA tool 31 to 

integrate gene-level association signals from GWAS summary statistics on PBC with scRNA-seq 

data based on liver tissue from the Mouse Cell Atlas 32.  

 

Statistical analysis 

Differential gene expression (DGE) analyses between controls and PBC patients of three RNA 

expression datasets (i.e., GSE93170, GSE159676, and GSE119600) were examined by using the 

Student’s T-test. P value ≤ 0.05 was of significance. We also performed a co-expression pattern 

analysis in the dataset of GSE93170 for genetics-risk genes among PBC and healthy controls to 

evaluate whether the co-expression patterns were changed due to the disease status. The PLINK 

(v1.90) 33 was used to calculate the LD values among SNPs. The hypergeometric test was used to 

evaluate the significant enrichment for the disease- and GO-term enrichment analysis. The Jaccard 

distance algorithm 34 was used to assess the similarities among pathways.  

 

Results 

Workflow for the current genomics analysis 

 To explore the genetics-influenced cell types for PBC, we constructed a computational 

framework by integrating GWAS summary statistics, eQTL data, and single cell RNA sequencing 
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data. The whole procedure of this framework is shown in Figure 1. There were 8,444 parenchymal 

and non-parenchymal cells obtained from five samples’ transcriptome profiles in the GSE115469 

dataset, and we yielded 13 distinct human liver cell subpopulations (see Methods). We also collected 

a large-scale GWAS summary statistics on PBC (N = 13,239) for extracting useful genetic 

information and statistical values. Using a regression-based polygenic model 21, we combined the 

single cell transcriptomes with genetic association signals from the GWAS summary statistics for 

genetically mapping the single cell landscape of liver tissue implicated in PBC (Figure 1a, and 

Supplemental Table S1). Additionally, using the comprehensive bioinformatics analyses, including 

MAGMA gene-level association analysis, S-MultiXcan-based integrative analysis, 

S-PrediXcan-based integrative analysis, in silico permutation analysis, MDS analysis, network-based 

enrichment analysis, DEG analysis, drug-gene interaction analysis, pathway enrichment analysis, and 

functional annotation analysis, we highlighted novel genetics-risk genes associated with PBC 

susceptibility (Figure 1b). Finally, we used genetic association signals to determine the functional 

subsets of liver- and immune-based cell types relevant to PBC (Figure 1c).  

 

Identification of gene-level genetic associations for PBC 

 To identify the aggregated effects of SNPs in a given gene on PBC, we carried out a gene-level 

genetic association analysis and found that 563 genes were significantly associated with PBC (FDR 

≤ 0.05, Supplemental Figure S1 and Table S2). For example, the top-ranked genes of HLA-DPA1 (P 

= 2.69×10-24), IL12A (P = 6.63×10-22), HLA-DPB1 (P = 1.11×10-21), BTNL2 (P = 1.65×10-17), RXRB 

(P = 8.88×10-17), SLC39A7 (P = 8.83×10-17), HLA-DRB1 (P = 3.51×10-13), HLA-DQB1 (P = 

6.39×10-13), IRF5 (P = 7.18×10-11), IL12RB2 (P = 3.03×10-10), C6ORF10 (P = 5.58×10-10), HLA-DRA 
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(P = 5.58×10-10), and CLEC16A (P = 6.78×10-10). Among these significant genes, there were 64 

genes, including IL12A, HLA-DPB1, BTNL2, HLA-DRB1, HLA-DQB1, IRF5, and IL12RB2, reported 

to be associated with PBC documented in the GWAS catalog database 5-9.  

Furthermore, we conducted a genome-wide pathway enrichment analysis, and observed that 41 

biological pathways were significantly enriched (FDR ≤ 0.05, Supplemental Table S3). Interestingly, 

the top-ranked pathways were relevant to autoimmune diseases (Supplemental Figure S2a), including 

Th1 and Th2 cell differentiation (FDR = 3.27×10-13), allograft rejection (FDR = 5.18×10-7), 

inflammatory bowel disease (FDR = 1.82×10-6), type I diabetes mellitus (FDR = 5.27×10-6), and 

intestinal immune network for IgA production (FDR = 5.27×10-6). Based on the MDS analysis, these 

41 significant pathways were grouped into five clusters: Th1 and Th2 cell differentiation, allograft 

rejection, Th17 cell differentiation, cell adhesion molecules, and cytokine-cytokine receptor 

interactions (Supplemental Figure S2b). These results suggested that these identified genes have a 

more likelihood to be risk genes for PBC. 

 

Integrative analysis of GWAS summary statistics with eQTL data for PBC 

 To further highlight the functional genes whose expressions are associated with PBC, we 

leveraged the S-MultiXcan software 27 to meta-analyze tissue-specific associations across 49 GTEx 

tissues. There were 268 risk genes whose genetically-associated expression showing notable 

associations with PBC (FDR < 0.05, Figure 2 and Supplemental Table S4). For example, the 

top-ranked PBC-associated genes: HLA-DRB1 (P = 4.95×10-69), HLA-DQA1 (P = 1.03×10-43), 

HLA-DRB5 (P = 1.17×10-42), BTNL2 (P = 3.26×10-41), EGFL8 (P = 1.37×10-31), and IL12A (P = 

5.42×10-29). Among these significant genes, there were 52 risk genes, including HLA-DRB1, BTNL2, 
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HLA-DPB1, IL12A, HLA-DQB1, IRF5 and IL12RB2, having been documented in the GWAS Catalog 

database (Supplemental Table S4). There was a high consistency of results between MAGMA and 

S-MultiXcan analysis (232/268 = 86.6%, Supplemental Figure S3).  

We further validated these risk genes in two PBC-relevant tissues (i.e., liver and blood) using the 

S-PrediXcan method. 76 and 115 genes were demonstrated to be significantly associated with PBC 

in liver and blood tissue, respectively (FDR < 0.05, Supplemental Figure S4a-b and Supplemental 

Tables S5-S6). Notably, 139 genes identified from MAGMA and S-MultiXcan analysis were 

replicated by using the S-PrediXcan analysis based on liver and blood (Supplemental Figure S4c). 

Using the Pearson correlation analysis, we observed that significant genes from S-MultiXcan 

analysis showed remarkable correlations with that from MAGMA and S-PrediXcan analysis on liver 

and blood (r = 0.14~0.64, P < 0.05, Supplemental Figure S4d-f). Moreover, by performing three 

independent in silico permutation analyses (see Methods), we found that the number of observed 

overlapped genes between S-MultiXcan and MAGMA and S-PrediXcan were significantly higher 

than random events (Empirical P < 1×10-5, Supplemental Figures S4g-i and S5a-c). Overall, based on 

aforementioned integrative genomics analyses, we identified that there were 29 genes showing 

supportive evidence to involve in PBC susceptibility (Table 1). 

 

Functional analysis of these 29 PBC-associated risk genes 

 Through mining the PubMed literature and GWAS Catalog database, we found that 10 of 29 

identified risk genes have been reported to be associated with PBC in previous GWAS studies, and 

there were 19 novel genes, including GSNK2B, LY6G5B, DDAH2, and LY6G5C, newly identified 

(Supplemental Figure S6a). Among these novel identified genes, several have been demonstrated to 
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be associated with other autoimmune-related diseases, such as LY6G5B and DDAH2 exhibited 

significant associations with rheumatoid arthritis 35 and type 1 diabetes 36. Consistently, we 

performed a phenotype-based enrichment analysis, and found that these 29 risk genes were 

remarkably enriched in several phenotypes relevant to autoimmune diseases (Supplemental Figure 

S6b and Table S7), such as autoimmune disease (P = 8.47×10-8), type I diabetes mellitus (P = 

2.04×10-4), immune system diseases (P = 1.41×10-3), and juvenile rheumatoid arthritis (P = 

2.41×10-3). 

By conducting a PPI network enrichment analysis, we observed that these risk genes were 

significantly interacted with each other in a subnetwork (PPI enrichment P = 0.0016, Supplemental 

Figure S6c), suggesting that these identified genes may have collectively biological functions on 

PBC risk 34,37. Furthermore, we also performed a GO-term enrichment analysis according to three 

different categories (i.e., CC, MF, and BP), and found that several GO-terms were notably 

overrepresented (Supplemental Figures S6d, and S7-S9), such as interferon-gamma-mediated 

signaling pathway (P = 2.8×10-4) and neutrophil activation involved in immune response (P 

=7.3×10-4).  

Based on three independent expression profiles of liver (GSE159676), blood (GSE119600), and 

peripheral CD4+T cells (GSE93170), we conducted differential gene expression analysis for these 29 

risk genes between PBC and matched control group. We found that 22 of 29 genes (75.86%) showed 

significantly differential expressions among PBC patients compared with controls (Table 1, 

Supplemental Figures S10-S12). Based on the dataset of peripheral CD4+T cells, the co-expression 

patterns among these 29 genes were prominently altered according to the PBC status (Supplemental 

Figure S12a). These results further support these identified genes have functional effects on the 
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development of PBC.  

 

Drug-gene interaction analysis for 29 risk genes 

Based on the drug-gene interaction analysis, we identified that 20 of 29 genes (68.96%) were 

enriched in ten potential “druggable” gene categories, including enzyme, druggable genome, kinase, 

and clinically actionable (Supplemental Figure S6e and Supplemental Table S8). The gene of SOCS1 

was found to be targeted by insulin and aldesleukin (Supplemental Figure S13), of which both have 

been applied to treat autoimmune diseases, including systemic lupus erythematosus 38, type 1 

diabetes mellitus 39, and HIV 40. Additionally, TCF19 gene was targeted by nevirapine, NAAA was 

targeted by cyclopentyl palmitate, CARM1 was targeted by BIIB021 and eosin, and SH2B3 was 

targeted by ruxolitinib and candesartan. Previous studies 41 have demonstrated that the Janus kinase 

(JAK)-inhibitor ruxolitinib significantly influenced dendritic cell differentiation and function 

resulting in impaired T-cell activation, which could be used for the treatment of autoimmune diseases. 

These results provide a good drug repurposing resource to develop effective therapeutics for PBC. 

 

Identification of genetically-influenced liver cell subpopulations for PBC 

We performed a gene-property analysis based on mouse liver tissue with immune cells, and 

found that PBC-associated genes were enriched in several immune-related cell types (Figure 3a and 

Supplemental Table S9), including Cst3+ dendritic cell (P = 5.8×10-3), Trbc2+ T cell (P = 7.1×10-3), 

Chil3+ macrophage (P = 0.0167), and Gzma+ T cell (P = 0.0304), which were in line with the results 

in previous studies 42,43. To uncover genetics-regulatory cell subpopulations associated with PBC, we 

used a regression-based polygenic model to combine GWAS summary statistics on PBC with 
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scRNA-seq data with 13 distinct human liver cell types. We found that cholangiocytes showed a 

notable enrichment by PBC-relevant genetic association signals (Permuted P < 0.05, Figure 3b and 

Supplemental Table S10). These results are consistent with previous evidence that an 

immune-mediated injury of cholangiocytes contributes risk to PBC 44,45.  

Using the specificity algorithm in the MAGMA method 23, we noticed that the risk gene of 

ORMDL3 exhibited the highest expression in cholangiocytes than other cell types (Figure 3c and 

Supplemental Table S11). The majority of ORMDL3-expressing cells were cholangiocytes with a 

relative high percentage of 22.38%, reminiscing that ORMDL3 was demonstrated to be significantly 

associated with PBC in earlier studies 7,9,46. The top-ranked risk SNP associated with ORMDL3 is 

rs9303277 (P = 2.57×10-11, Figure 3d). This SNP showed significant cell-specific eQTL of ORMDL3 

among naïve B cell (P = 5.8×10-10), TFH+CD4+T cell (P = 3.8×10-9), CD56 dim CD16+ NK cells (P = 

4.4×10-9), TH1+ CD4+ T cells (P = 6.0×10-6), and memory TREG+ CD4+ T cells (P = 1.1×10-5), and 

exhibited notable cell-specific promoter-interacting eQTL of ORMDL3 among naïve B cell (P = 

4.2×10-13) and CD56 dim CD16+ NK cells (P =5.0×10-12) (Figure 3e and Supplemental Methods S8). 

Among these immune cell types, the CC genotype of rs9303277 shows prominent association with 

higher expression of ORMDL3 compared with other genotypes (Supplemental Figure S14a-k).  

Growing attentions have concentrated on the role of ORMDL3 in the development of 

inflammatory diseases, including PBC7,9,47. In view of the main goal of current study was to 

characterize genetics-modulated liver cell subpopulations for PBC, the majority of our subsequent 

analyses focused on revealing the effects of ORMDL3-mediated cholangiocytes.  

 

Characterization of biological functions of ORMDL3-mediated cholangiocytes 
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We compared the expression profiles of ORMDL3+ cholangiocytes with ORMDL3- 

cholangiocytes, and found that there were 77 significantly differential expressed genes (DEGs) with 

six up-regulated DEGs and 71 down-regulated DEGs among ORMDL3+ cholangiocytes (FDR < 0.05, 

Figure 4a and Supplemental Tables S13-S14). With regard to six up-regulated DEGs, two genes of 

GALNT1 and HERPUD2 have been reported to attenuate inflammatory responses 48,49. There were 

seven significant KEGG pathways overrepresented, and the most significant one is Herpes simplex 

virus 1 infection (FDR < 0.05, Figure 4c and Supplemental Table S15). Among these 71 

down-regulated DEGs, HLA-DRA has been shown to be associated with PBC in previous GWASs 7, 

and CXCL8, CCL3, CXCL1, TIMP1, SPP1, and IRF1 were inflammatory and cytokine genes, which 

have been reported to be linked with the chemotaxis of immune cells that efflux to the site of 

cytokine storms in response to ongoing tissue damage 50,51. IFI16 is reported to be an innate immune 

sensor for intracellular DNA 52.  

Pathway enrichment analysis revealed that there were 55 significant KEGG pathways enriched 

by these 71 down-regulated DEGs (FDR < 0.05, Figure 4b and Supplemental Table S14), such as, 

hematopoietic cell lineage, inflammatory bowel disease, rheumatoid arthritis, Th17 cell 

differentiation, cytokine-cytokine receptor interaction, and chemokine signaling pathway, of which 

several have been demonstrated to implicate in inflammatory-related diseases 11,53,54. To further 

explore the biological functions of these 71 down-regulated DEGs, we conducted GO-term 

enrichment analysis according to three categories of biological process (BP), cellular component 

(CC), and molecular function (MF). There were 19 BP-terms, 7 CC-terms, and 13 MF-terms 

showing notable enrichments, respectively (FDR < 0.05, Figure 4d-f and Supplemental Tables 

S16-S18). These functional terms were largely linked with immune-related functions, such as 
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granulocyte activation, neutrophil mediated immunity, S100 protein binding, and MHC class II 

protein complex binding. Moreover, these genes were prominently enriched in six disease-related 

terms, including liver cirrhosis, chemical and drug induced liver injury, acute coronary syndrome, 

acute kidney injury, neoplasm invasiveness, and chronic obstructive airway disease (FDR < 0.05, 

Supplemental Figure S15 and Table S19). These results suggest that ORMDL3- cholangiocytes have 

immune-modulatory effects on PBC risk.  

 

Discussion 

Using an integrative genomics approach based on multiple layers of evidence, we identified that 

the genetics-influenced expression of 29 risk genes were remarkably associated with PBC. Among 

them, 10 genes, including IRF55,6,8,9, SOCS15, SYNGR15,7, ORMDL37,9,46, MANBA5, IDUA 5, DGKQ 

5, FCRL3 55, NAAA 56, and SH2B3 5, have been documented to be associated with PBC. There were 

19 newly identified PBC-risk genes, such as GSNK2B, LY6G5B, DDAH2, C6orf48, and HLA-DMA. 

The novel risk gene of DDAH2, which encodes a dimethylarginine dimethylaminohydrolase, has 

been reported to be associated with the autoimmune diseases of rheumatoid arthritis 57 and type I 

diabetes 58. The HLA-DMA gene, which belongs to the major histocompatibility complex (MHC) 

class II alpha chain paralogues, has been widely reported to be associated with autoimmune diseases, 

including type I diabetes mellitus 59, rheumatoid arthritis 60, and systemic lupus erythematosus 61. 

The ORMDL3 gene, which has been associated with PBC susceptibility 7,9,46, is related to biological 

functions of innate immune system and metabolism. Moreover, ORMDL3 has also been extensively 

reported to be linked with other inflammatory diseases, including childhood asthma 62, inflammatory 

bowel diseases 53, rheumatoid arthritis 54, and Crohn’s disease 63. Functional enrichment analyses 
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uncovered that these risk genes were notably enriched in several biological processes or 

disease-terms that are relevant to autoimmune phenotypes 64,65. Together, these results suggest these 

identified genes are more likely to be genuine genes implicated in PBC risk. 

To examine the liver and its immune microenvironment for PBC, we performed the gene-property 

analysis and regression-based polygenic analysis based on human and mouse liver tissues with 

immune cells. Our gene-property analysis identified that four immune cell subpopulations, Cst3+ 

dendritic cell, Chil3+ macrophage, Trbc2+ T cell, and Gzma+ T cell, are significantly associated with 

PBC risk. Dendritic cells have been shown to be relevant to the pathogenesis of PBC 42,66. Earlier 

studies have demonstrated that an intense biliary inflammatory CD8+ and CD4+ T cell response has 

been used for characterizing PBC 67. Moreover, dendritic cells are critical for inducing 

antigen-specific T-cell tolerance and for activating the self-specific T cells, which have central roles 

in many aspects of the pathogenesis of autoimmune liver diseases 68. Macrophages are key 

components of the innate immune system, and have critical immuno-modulatory and tissue-repairing 

roles in reducing immune responses and enhancing tissue regeneration 69. Multiple lines of evidence 

70 have demonstrated that the infiltration of macrophages in diseased tissues is considered to be a 

hallmark of several autoimmune diseases, including PBC 43. Recently, Dorris et al. 71 reported that 

the PBC susceptibility gene C5orf30 modulates macrophage-mediated immune regulations. Overall, 

these results suggest that three main immune cells, dendritic cells, macrophages, and T cells, are 

vulnerable to be influenced by PBC-relevant genetic association signals.  

Moreover, our regression-based polygenic analysis suggested that cholangiocytes were 

significantly influenced by PBC-related genetic association signals. The non-parenchymal 

cholangiocytes have been reported to be injury in numerous human diseases termed as 
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cholangiopathies 72, including PBC 72,73. Recently, Banales and coworkers 72 have demonstrated that 

cholangiocytes play pivotal roles in innate and adaptive immune responses relevant to 

immune-mediated cholangiopathies. Erice et al. 74 reported that microRNA-506 induces PBC-like 

features in human cholangiocytes and promotes the activating processes of immune responses. We 

further found that ORMDL3+ cholangiocytes predisposed to attenuate the release of inflammatory 

factors, whereas ORMDL3- cholangiocytes, containing numerous highly-expressed inflammatory 

cytokine genes, tend to have genetics-mediated immune regulation for PBC risk. Many biological 

pathways or functional terms associated with autoimmune-related diseases have been significantly 

enriched, such as Th17 cell differentiation, cytokine-cytokine receptor interaction, and chemokine 

signaling pathway, inflammatory bowel diseases, and rheumatoid arthritis 11,53,54. Overall, these 

results suggest that down-expression of ORMDL3 has a vital role in the immune-mediated injury of 

cholangiocytes conferring high risk to PBC.  

There exist some limitations should be cautious. Although we leveraged integrated 

bioinformatics methods to highlight PBC-associated risk genes based on multiple omics data, there 

were many potential risk genes with suggestive evidence for PBC as shown in the supplemental 

tables needed to be further studied. Furthermore, due to the heterogeneity across different datasets 

used in the present investigation, we leveraged different statistical methods for multiple testing 

correction for each dataset, such as FDR < 0.05 for MAGMA-based gene association analysis and 

S-MultiXcan analysis, permuted P < 0.05 for genome-wide pathway enrichment analysis, Bonferroni 

corrected P < 0.05 for gene-property analysis, and empirical P value < 0.05 for in silico permutation 

analysis. In view of current integrative genomic analysis is only based on samples derived from 

European ancestries, more studies based on other ancestries should be performed to validate the 
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effects of these risk genes on PBC.  

In conclusion, current study provides multiple lines of evidence to support 29 genes including 19 

novel genes are remarkably associated with PBC susceptibility. To the best of our knowledge, this is 

the first study to parse genetics-influenced human liver cell subpopulations that contribute risk to 

PBC, and found that ORMDL3- cholangiocytes potentially play important immune-regulatory roles 

in the pathogenesis of PBC. Current study gives several highlighted genes and genetics-risk cell type 

for functional experimentations to reveal the genetic mechanisms of PBC.  

 

 

 

Figure Legends 

Figure 1. The workflow of current integrative genomics analysis. a) Integrating single cell 

RNA-sequencing data with GWAS summary statistics on PBC based on a regression-based 

polygenic model; b) Prioritization of PBC-risk genes by integrating GWAS summary data with 

GTEx eQTL data; c) Genetics-influenced liver cell subpopulations and its immune 

microenvironment for PBC.  

 

Figure 2. Circus plot showing the results of S-MultiXcan integrative genomics analysis. Note: A 

circular symbol in the outer ring represents a given gene. Color represents the statistical significance 

of the gene, where red color marks significant genes with FDR ≤ 1×10-8, orange color marks 

significant genes with FDR is between1×10-8 and 0.001, light blue indicates significant genes with 

FDR ranging from 0.001 to 0.05, and dark blue indicates non-significant genes with FDR > 0.05. 
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Figure 3. Combination of GWAS summary statistics on PBC with scRNA-seq data on human 

liver tissue. a) Results of MAGMA gene-property analysis based on the web-access tool of FUMA. 

Gray color means non-significant enrichment. Orange color stands for significant enrichment. b) Bar 

graph showing genetics-influenced liver cell subpopulations for PBC. Orange color represents 

PBC-relevant genetic association signals showing a significant enrichment in cholangiocytes. c) Dot 

plot showing the expression percentage of 29 PBC-risk genes for each cell type from human liver 

tissue. The color stands for the average expression of each gene in each cell type, and the size of 

circular symbol indicates the percentage of a given gene expressed in each cell type. d) Regional 

association plot for ORMDL3 gene of GWAS summary statistics using the LocusZoom software. The 

color bar illustrates SNPs’ LD information with rs9303277 as shown in the color legend. e) Immune 

cell-type specific eQTL and promoter-interacting eQTL (pieQTL) of ORMDL3 for rs9303277 using 

the DICE database.  

 

Figure 4. Differential gene expression analysis between ORMDL3+ and ORMDL3- 

cholangiocytes. a) Volcano plot showing the differentially expressed genes (DEGs) between 

ORMDL3+ cholangiocytes and ORMDL3- cholangiocytes. Green color represents 71 significantly 

down-regulated DEGs, and orange color represents 6 significantly up-regulated DEGs. b)-c) 

Pathway enrichment analyses of (b) 71 down-regulated DEGs and (c) 6 up-regulated DEGs based on 

the KEGG pathway resource. d)-f) GO enrichment analyses of 71 down-regulated DEGs according 

to three categories: (d) biological process, (e) cellular component, and (f) molecular function.  
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Table 1. Identification of 29 significant risk genes by using integrative genomics analysis based on GWAS summary statistics and eQTL 

data 

Gene 

name 

Z score P value 

(S-MultiXcan) 

FDR 

(S-MultiXcan) 

FDR 

(S-PrediXcan 

on liver) 

FDR 

(S-PrediXcan 

on blood) 

FDR (MAGMA 

analysis of 

GWAS) 

P value (Differential gene 

expression analysis) 

GWAS_Catalog 

database or 

PubMed database 

CSNK2B 1.40 7.17×10-19 8.41×10-16 3.22×10-11 2.24×10-6 1.67×10-11 4.96×10-4  (Blood), 2×10-2 

(CD14+T cell) 

Novel gene 

LY6G5B -7.92 2.43×10-16 1.93×10-13 5.52×10-11 1.54×10-10 1.19×10-11 Non-significant Novel gene 

DDAH2 -5.57 1.39×10-15 9.99×10-13 2.65×10-9 1.56×10-11 1.69×10-9 2.70×10-3 (CD14+T cell) Novel gene 

LY6G5C -7.82 2.40×10-15 1.62×10-12 8.64×10-13 9.05×10-12 1.41×10-11 2.80×10-2 (Blood) Novel gene 

IRF5 7.11 2.62×10-15 1.72×10-12 4.29×10-13 1.12×10-12 7.18×10-11 7.10×10-3 (Liver) Reported gene 

SOCS1 -3.26 9.33×10-13 4.16×10-10 5.25×10-10 7.34×10-10 1.06×10-8 3.50×10-2 (CD14+T cell) Reported gene 

SYNGR1 -1.30 2.83×10-9 8.88×10-7 7.97×10-4 1.30×10-7 4.13×10-2 1.40×10-2 (CD14+T cell) Reported gene 

C6orf48 -4.46 9.57×10-9 2.66×10-6 7.83×10-4 6.19×10-4 4.83×10-11 4.16×10-6 (Blood) Novel gene 
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HLA-DMA -3.99 8.87×10-8 1.90×10-5 1.27×10-3 9.16×10-4 1.62×10-8 2.10×10-3 (Liver) Novel gene 

SMC4 -1.34 1.00×10-7 2.10×10-5 9.38×10-5 2.25×10-6 2.07×10-4 4.80×10-4 (Blood) Novel gene 

TCF19 4.55 1.49×10-7 2.99×10-5 9.46×10-5 2.24×10-6 1.98×10-4 Non-significant Novel gene 

ORMDL3 -2.92 7.07×10-7 1.22×10-4 2.35×10-3 7.38×10-5 2.33×10-6 Non-significant Reported gene 

KPNA4 -1.22 1.07×10-6 1.82×10-4 2.10×10-2 3.58×10-3 4.67×10-4 3.40×10-3 (CD14+T cell) Novel gene 

MANBA -1.45 1.48×10-6 2.35×10-4 2.46×10-6 2.39×10-2 8.30×10-8 9.67×10-5 (Blood) Reported gene 

MFSD6 -0.32 1.61×10-6 2.51×10-4 2.55×10-2 4.57×10-2 2.06×10-3 3.60×10-2 (Liver) Novel gene 

MED1 -2.13 1.76×10-6 2.70×10-4 1.65×10-2 1.53×10-2 4.42×10-5 Non-significant Novel gene 

IDUA 3.95 2.37×10-6 3.47×10-4 3.94×10-2 3.87×10-2 8.95×10-4 8.10×10-3 (Blood) Reported gene 

DGKQ 3.24 3.86×10-6 5.37×10-4 4.90×10-4 3.36×10-4 2.35×10-4 8.34×10-7 (Blood) Reported gene 

FCRL3 -4.40 8.14×10-6 1.07×10-3 2.84×10-3 2.84×10-3 5.81×10-4 Non-significant Reported gene 

ZCRB1 3.22 9.34×10-6 1.20×10-3 4.83×10-3 5.02×10-3 1.52×10-3 5.90×10-3 (Liver); 2.8×10-3 

(CD14+T cell); 

Novel gene 
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AGAP5 -4.28 1.29×10-5 1.59×10-3 4.50×10-3 3.40×10-3 3.65×10-2 Non-significant Novel gene 

CARM1 -2.90 2.11×10-5 2.49×10-3 1.14×10-3 8.92×10-4 1.86×10-4 2.60×10-2 (Blood) Novel gene 

UBE2D3 -4.18 2.83×10-5 3.23×10-3 2.76×10-3 5.08×10-3 5.81×10-4 3.40×10-2 (Blood); 1.6×10-4 

(CD14+T cell) 

Novel gene 

NAAA 4.08 6.73×10-5 6.88×10-3 1.25×10-2 6.85×10-3 7.41×10-4 3.20×10-2 (Liver) Reported gene 

SH2B3 -1.69 1.20×10-4 1.17×10-2 2.35×10-2 1.87×10-2 2.44×10-3 1.40×10-2 (Blood) Reported gene 

CTSH 1.75 2.05×10-4 1.84×10-2 8.53×10-3 3.46×10-2 2.19×10-5 Non-significant Novel gene 

TTC34 3.56 2.82×10-4 2.39×10-2 5.86×10-3 5.02×10-3 4.98×10-3 9.80×10-3 (Blood) Novel gene 

METTL1 2.19 3.11×10-4 2.59×10-2 4.95×10-2 3.81×10-2 1.68×10-2 5.86×10-7 (Blood) Novel gene 

TSFM 3.45 3.14×10-4 2.61×10-2 4.87×10-2 3.87×10-2 1.54×10-2 2.80×10-4 (Blood); 1.5×10-3 

(CD14+T cell) 

Novel gene 

 

 

 

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted A

ugust 24, 2021. 
; 

https://doi.org/10.1101/2021.08.18.21262250
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2021.08.18.21262250
http://creativecommons.org/licenses/by-nc-nd/4.0/

