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Abstract 
 
Introduction  

Interventions to curb the spread of SARS-CoV-2 during the 2020-21 influenza season essentially 

eliminated influenza during that season. Given waning antibody titers over time, future residual 

population immunity against influenza will be reduced.  The implication for the subsequent 

2021-22 influenza season is unknown. 

Methods 

We used an agent-based model of influenza implemented in the FRED (Framework for 

Reconstructing Epidemiological Dynamics) simulation platform to estimate cases and 

hospitalization over two succeeding influenza seasons.  The model uses a synthetic population to 

represent an actual population, and individual interactions in workplaces, school, households and 

neighborhoods. The impact of reduced residual immunity was estimated as a consequence of 

increased protective measures (e.g., social distancing and school closure) in the first season.  The 

impact was contrasted by the level of similarity (cross-immunity) between influenza strains over 

the seasons. 

Results 

When the second season strains were dissimilar to the first season (have a low level of cross 

immunity), a low first season has limited impact on second season cases. When a high level of 
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cross-immunity exists between strains in the 2 seasons, the first season has a much greater 

impact on the second season. In both cases this is modified by the transmissibility of strains in 

the 2 seasons. In the context of the 2021-22 season, the worst case scenario is a highly 

transmissible strain causing increased cases and hospitalizations over average influenza seasons, 

with a possible significant increase in cases in some scenarios. The most likely overall scenario 

for 2021-22 is a more modest increase in flu cases over an average season. 

Discussion 

Given the light 2020-21 season, we found that a large, compensatory second season might occur 

in 2021-22, depending on cross-immunity from past infection and transmissibility of strains.  

Furthermore, we found that enhanced vaccine coverage could reduce this high, compensatory 

season. Young children may be especially at risk in 2021-22 since very young children were 

unlikely to have had any exposure to infection and most immunity in that age group would be 

from vaccination, which wanes quickly.  
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Introduction 
 

SARS-CoV-2 was declared a pandemic by the World Health Organization (WHO) on 

March 11, 2020. Cases were identified in the US in early 2020, resulting in widespread 

interventions to reduce spread of the virus, including school closure and measures to decrease 

social interactions. These interventions impacted not only COVID-19 transmission but also 

transmission of other diseases that spread by the same mechanisms. Little influenza activity was 

seen in the northern hemisphere during the fall and winter of 2020-21. In Finland, a decreased 

incidence of respiratory infections was noted when SARS-CoV-2 restrictions were instituted in 

March 2020[1]. Northern California reported decreased influenza activity once Sars-CoV-2 

interventions were enacted[2]. Limited influenza transmission was detected during the summer 

influenza season in the southern hemisphere[3].  Influenza activity was similarly limited in 

Canada[4] and in Europe, where the WHO European Region saw a 99.8% reduction in detection 

of influenza by sentinel surveillance over weeks 40/2020 and 8/2021 relative to the same period 

in the 6 prior seasons[5]. Little influenza activity was detected by the Centers for Disease 

Control and Prevention (CDC) in the US during the 2020-21 influenza season[6].  

Prior year vaccination is believed to provide little protection to subsequent year 

influenza, but natural infection appears to provide measurable immunity for several seasons, 

particularly if the circulating strains are close antigenic matches[7, 8]. However, the limited 

number of influenza cases in the US in 2020-21 has raised concerns about the possibility of a 

higher burden of influenza illness in the 2021-22 season due to reduced immunity from prior 

year natural infection, even if a trend to higher acceptance of influenza vaccination continues. An 

additional complication is the difficulty in choosing strains for the 2021-22 vaccine because a 

limited number of surveillance samples were available. Members of the population under the age 
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of 2 may be at increased risk after a season with limited influenza since they likely have never 

been exposed to natural infection and therefore may be at higher risk. 

Agent-based modeling can be used to perform highly detailed investigations of possible 

disease scenarios. The FRED (Framework for Reconstructing Epidemiologic Dynamics) 

simulation platform[9] is an agent-based modeling platform that was developed in response to 

the 2009 influenza pandemic and has been used extensively for modeling influenza as well as 

other infectious and non-infectious conditions [10-13]. To explore the impact of limited 

influenza activity on subsequent year influenza burden, we used FRED to model 2 season 

influenza scenarios under a variety of assumptions on the impact of natural infection on second 

year immunity and a variable degree of antigenic relatedness of first and second year circulating 

strains. We performed simulations to estimate the impact of increased vaccination and the 

specific impact on the youngest age group in the population. 

 
Methods 
 

FRED is an agent-based modeling platform that facilitates modeling of diverse 

conditions. The FRED simulation platform has been described in detail previously[9]. Briefly, 

FRED uses census-based synthetic populations whose members have demographics that are 

statistically equivalent to real populations at the county level. Agents have explicit geographic 

household locations, and their household makeup is statistically similar in demographics and 

income to real populations. Agents interact daily in locations including their household, 

neighborhood, school and workplace, as appropriate. Infectious conditions spread through the 

population due to these interactions. Populations are available for all counties of the US and 

simulations can be performed on aggregations of counties or subpopulations down to the census 

block group level. 
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Influenza Model 
 

The FRED influenza model is a modification of a basic SEIR model containing the 

following states: Susceptible; Exposed; Pre-symptomatic; Infected symptomatic; Infected 

asymptomatic; Hospitalized; Recovered; and Died (Figure 1).  

Simulations were performed on Allegheny County, a medium sized county in the 

southwest of Pennsylvania, with a population of ~1.2 million. It contains both urban and 

suburban areas. Due to its size, Allegheny County is a convenient population for modeling 

influenza. Simulations start on September 15, 2020. Agents are initialized to the Susceptible state 

and wait for infection. Outbreaks are started by introducing cases into susceptible agents. In this 

model 20 new cases are injected on Nov 15 of both simulation years. Further infection is result 

of probabilistic interaction with infectious agents. Exposed agents become pre-symptomatic 

(75%) or asymptomatic (25%). Susceptible agents in any state can be infected. This model 

includes an infectious pre-symptomatic state of length 1 day, with agents in that state being half 

as infectious as agents in the infected symptomatic state. Pre-symptomatic agents move to the 

symptomatic infected state. Symptomatic infected agents remain in that state for a number of 

days drawn from a lognormal distribution with median 4 and dispersion1.5. This model also 

includes an infectious asymptomatic state with infectivity half that of symptomatic agents. 

Agents remain in that state for a number of days drawn from a lognormal distribution with 

median 5 and dispersion 1.5. Asymptomatic infected agents are half as infectious as agents in the 

infected symptomatic state. Symptomatic agents may move to the Hospitalized state at age-

structured rates obtained from CDC data [14]. Agents in the Hospitalized state die at age-

appropriate rates. Asymptomatic infected, symptomatic infected and Hospitalized agents who do 

not die move to the Recovered state. Recovered agents have susceptibility to the infecting 
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influenza strain set to zero; this susceptibility increases at a rate of 3% per month. Cross-

immunity to a second season strain is implemented by reducing susceptibility to second strain in 

agents infected in the first season. 

Influenza utilizes a stay-at-home behavior module. Symptomatic agents stay at home and 

so do not interact in their neighborhood, workplace, or school, with a probability of 50%. 

Vaccination Model Details 
 

Agents are immunized by age group as per CDC data using the following rates: age 0.5-

17, probability 0.504; age 18-49 probability 0.342; age 50-64 probability 0.468; age>=65 

probability 0.687[15]. In the model, vaccination reduces susceptibility to influenza by 40% 

(vaccination efficacy in CDC studies ranges between 10-60%)[16, 17]. 

Strain specific vaccination occurs in October of the simulation year and immunity wanes 

after vaccination at 7% per month[7]. 

Transmissibility Parameter in FRED 
 

FRED does not specify an explicit value for the basic reproduction number (R0) or 

effective reproduction number (R) for a simulated infection. In FRED, an infectious condition 

has a transmissibility parameter and an infectious period that are characteristic of the simulated 

disease, and these are set as part of the disease model. The population used for the simulation 

will have characteristics, such as demographic and geographic makeup and contact patterns, 

which are drawn from the census-based synthetic populations used for the simulation. The 

transmissibility, infectious period and population characteristics combine to generate an R or R0 

in a given simulation. R or R0 are therefore not an input to the model but rather are outputs 

produced by the interaction of a disease model and a specific population. The disease model is 

typically calibrated to produce an R or R0 that is realistic for a modeled disease. We used 2 
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values for the transmissibility input parameter for simulations, to represent 2 levels of influenza 

transmissibility (0.6 and 0.8). A transmissibility parameter of 0.6 produces an initial reproduction 

number of 1.01(SD 0.23) in a model including vaccination. A transmissibility parameter of 0.8 

produces an initial reproduction number of 1.39 (SD 0.30) in the same model. The mean 

influenza reproduction number is estimated to be 1.3 (range 0.9-2.1)[18]. 

COVID-19 Protections Model 

We used protections developed for a COVID-19 model to investigate impact on 

influenza. In FRED all schools can be closed on specified dates. In the model, all schools were 

closed on March 15, 2020, and reopened on April 15, 2021. After reopening, schools operated on 

a regular summer closure schedule. When schools are closed, agents do not interact in school or 

classroom, including agents assigned as teachers. In the model, social distancing is accomplished 

by selecting agents to isolate in their homes, thereby removing neighborhood, school and 

workplace interactions for those agents. Social distancing was set at 60% of the population as 

indicated by mobility data collected during the COVID-19 pandemic. In 2 year simulations using 

the COVID-19 protections model, it was applied only in first season. 

Increased Influenza Vaccination due to COVID-19 vaccination spill-over 

To estimate the impact of increased vaccination, selected simulations were run with 10% 

and 20% increased vaccination levels. Influenza vaccination levels as reported by the CDC from 

2010 to 2020 have increased by levels in the 10-20% range[19]. 

Impact on age 0-4 

Selected simulations were run with the addition of actuarial maternity and mortality 

models to add agents by birth to the population during the simulation. The model allowed 

prediction of cases and hospitalizations for agents age 0-4 during the simulations.  
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Results 
 
Base Model Results 

Without vaccination the low transmission scenario (reproduction number 1.01) produced 

an attack rate of 12.7% and the high transmission scenario (reproduction number 1.39) produced 

an attack rate of 30.3%. Vaccination according to the coverage rates reported by the CDC 

reduced the attack rate of the low transmission scenario to 4.4% and the high transmission 

scenario attack rate to 23.3%. 

Impact of School Closure and Social Distancing on Influenza Model 

To check the model’s integrity, we simulated 2 seasons with identical strains with 100% 

antigenic similarity and 3% waning of immunity per month. In this scenario, residual first season 

immunity prevented any influenza outbreak in second season.  This integrity check was passed. 

In a second integrity check, when schools were closed and social distancing at 60% was 

added to the model, the first-year season was completely prevented and the second season 

produced case counts similar to the first season, showing complete removal of the residual 

immunity effect.  

In more realistic situations, when varying levels of social distancing but no school closure 

were applied in the model, increased levels of social distancing in season 1 caused decreased 

season 1 influenza cases, resulting in increased season 2 cases (Figure 2). This has significance 

for public health.  In this scenario, 40% social distancing was sufficient to prevent any first 

season cases. In the 2020-21 influenza season, Allegheny County surveillance reported 328 lab 

confirmed influenza cases compared to 13,889 in 2019-20[20]. In the model, 40% social 

distancing produced a median of 965 cases during that season (724 symptomatic cases). Since 
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the surveillance count would underestimate total cases, due to under ascertainment, the numbers 

are roughly comparable between the model results and cases identified by surveillance. 

In some scenarios, season 2 became highly stochastic, such that if the mean of multiple 

simulations was plotted, the typical curve became distorted because second year outbreaks were 

not synchronous even though started at the same date. 

Impact of strain transmissibility and cross-immunity on second season influenza cases 

In a 2 strain, 2 season model, second season influenza cases and hospitalizations 

prevented by first year infections varied by the transmissibility of the first and second year 

strains and by the similarity (cross-immunity) between those strains (Table 1). Decreases in cases 

and hospitalizations produce similar but not identical results. When both season strains had lower 

transmissibility, the impact of first season on second season was less pronounced, presumably 

because the total cases in the first season were lower, with maximum reduction in second season 

cases of 75.87% and reduction in hospitalizations of 75.76% (Figure 3A). A lower 

transmissibility strain in the first season had much lower impact on second season cases when 

the second season strain was more transmissible, only causing a 55.33% reduction in cases and 

57.37% reduction in hospitalizations with complete cross-immunity (Figure 3B). When the first 

season strain had a greater transmissibility than the second season strain, almost all cases and 

hospitalizations were prevented by even 40% cross-immunity (Figure 3C). When the first season 

strain was more transmissible, cases and hospitalizations in the second season were eliminated 

for strains with the same higher transmissibility when cross-immunity was 60% or greater 

(Figure 3D).  

Impact of Increased Vaccination 
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Increasing vaccination rates above those reported by the CDC by 10% and 20% 

decreased the number of cases and hospitalizations during a single season. Increased vaccination 

rates had a greater impact on simulations with a lower transmissibility strain (10% increase in 

vaccination caused a 35.7% decrease in cases and 45.5% decrease in hospitalizations; 20% 

increase in vaccination caused a 39.7% decrease in cases and 49.7% decrease in 

hospitalizations). For simulations with a more transmissible strain, increased vaccination resulted 

in a much more modest effect (10% increase in vaccination caused a 4.4% decrease in cases and 

6.5% decrease in hospitalizations; 20% increase in vaccination caused a 7.1% decrease in cases 

and 10.8% decrease in hospitalizations). In the low transmissibility scenario, increased 

vaccination rates may have greater impact due to vaccination levels approaching what would be 

expected to achieve herd immunity due to low reproduction number in that model. 

Impact of Increased Vaccination Coverage on Infants and Young Children 

The age group 0-4 makes up 5.17% of the simulation population and accounts for ~6% of 

cases in the simulation (6.0 to 6.5% of cases). Increasing vaccination coverage by 10% decreased 

cases in this age group by 35.7% in the lower transmissibility scenario but only 3.9% in a higher 

transmissibility scenario (Figure 4). A 20% increase in vaccination coverage resulted in 40.4% 

fewer cases for a lower transmissibility strain but only 6.4% fewer for a more transmissible 

strain. Hospitalizations decreased by similar amounts (Table 1; for low transmissibility scenario, 

37.1% decrease with 10% coverage increase and 39.1% with 20% increase; for high 

transmissibility scenario 3.7% decrease with 10% coverage increase and 6.7% with 20% 

increase). 

Implication for second season influenza 
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A possible range of increase in second season cases from low first season rates can be 

estimated from the modeled second season impact of varied case rates in the first season. This 

impact in our model is influenced by the transmissibility of strains in the first and second seasons 

and by antigenic similarity of the two strains. Likely ranges for highly antigenically related 

strains might be to have 60-80% cross-immunity and less related strains might provide 10-30% 

cross-immunity. It has been estimated that >80% cross-immunity with a prior outbreak strain is 

sufficient to prevent transmission of a later strain[21, 22].  The model suggests that in a high 

transmission scenario (strain ~R0 1.39) ~99% of cases and hospitalizations would be prevented in 

a second season if strains were closely related (Table 1). This level of residual immunity would 

prevent a strain from circulating. When first and second season strains are less related in a higher 

transmission scenario, the increase in expected cases would be ~7-30% increase in infections due 

to lower immunity. In a low transmission scenario (strain ~R0 1.01) with closely related strains 

>65% of cases would be prevented while less related strains would reduce cases by ~10-30%.  

Discussion 
 

We found that a light first season (such as 2020-21) could result in a large, compensatory 

second season (such as might occur in 2021-22). This increase could be as large as a doubling of 

cases, although this is an unlikely scenario. Furthermore, we found that enhanced vaccine 

coverage could reduce but not eliminate this high, compensatory season.  

Influenza strains are highly variable, with genetic drift antigens contributing to 

emergence of new variants that escape immunity and enable yearly seasonal outbreaks despite 

population immunity and vaccination. The yearly burden of symptomatic influenza A estimated 

by the CDC varied by over 4-fold in the past 20 years[23]. Years in which the subtype of the 

predominant circulating strain changed were not consistently correlated with increases in 
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infection [24]. This underscores the complex nature of influenza immunity and the difficulty in 

predicting future seasonal outbreaks. 

The northern hemisphere 2020-21 season was an anomaly, lacking the usual seasonal 

outbreak. This was likely due to COVID-19 interventions, such as masking, school closure, 

remote work and other social distancing interventions. While lack of an influenza outbreak in 

that season was beneficial in that health care systems were already strained by the COVID-19 

pandemic, there is concern that the lack of a 2020-21 influenza season will cause a more severe 

influenza season in 2021-2022, due to lack of residual immunity resulting from prior season 

infection. While vaccination is an effective tool to prevent influenza, vaccination rates are 

typically sub-optimal, and vaccination does not appear to confer long lasting immunity.  In 

response, we modeled this situation. 

To help in understanding the impact of an influenza season with very low cases on cases 

and hospitalizations in the succeeding season, we used an agent-based model of influenza with 

varying levels of cross-immunity between seasonal strains. We applied school closure and 

decreased social interactions to agents in the simulation to mimic the interventions enacted to 

combat COVID-19. In our model, these interventions resulted in a nearly complete elimination 

of influenza when the interventions were in place. When a limited influenza season was followed 

by a second influenza season, cases rebounded to a level expected with no population immunity. 

We modeled 2 levels of transmissibility of strains and varying levels of cross-immunity 

between strains, to account for situations in which the highly related and less related strains 

circulate in successive seasons. In our results, with a low level of cross-immunity, corresponding 

to poor match between strains, a low first season has limited impact on second season cases. This 

situation might be considered comparable to an H3N2 predominant season after an H1N1 season. 
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If there is a good antigenic match between seasons and, therefore, a high level of cross-

immunity, the model predicts a large impact on second season cases from first season infections. 

We modeled the cross-immunity resulting from antigenic similarity between first and second 

season cases from 0 to 100%. It is unlikely that identical strains would predominate in 2 

successive seasons (100% cross-immunity scenario); this much immunity would prevent a strain 

from becoming dominant. Even strains from different subtypes are believed to share some 

conserved epitopes, so the 0% cross-immunity scenario is also unlikely[25]. 

Strains with higher levels of transmissibility cause more cases and therefore have a larger 

impact on second season cases. When the first season has a less transmissible strain, even high 

levels of cross-immunity prevent fewer cases in the second season. A more transmissible strain 

in the first season can almost completely prevent cases by a closely antigenically related but less 

transmissible strain in the second season.  

We investigated the effect of increasing vaccination rates by 10 or 20%. This increase 

could help offset the reduced population immunity resulting from the lack of influenza in 2020-

21. This could be particularly important for young children, who may be especially at risk in 

2021-22. Very few very young children had influenza in 2020-21 so essentially all immunity in 

that age group would be from vaccination, which wanes relatively quickly. 

Several factors suggest that, while an increase in cases may be expected after a very low 

first season, the increase in second season cases will not reach what would be expected for a 

pandemic strain. The most prevalent influenza subtype often switches from one season to next, 

for example H1N1 predominated in the 2013-14 season while H3N2 predominated in the 2 

preceding seasons and these influenza subtype switches, in which cross-immunity would be 

expected to be limited, do not always cause increased intensity[26]. Immunity due to infection is 
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believed to wane over 3-8 years for H1N1 and 3-5 for H3N2[8] so substantial immunity can be 

expected to remain from prior seasons. Additionally, residual immunity from exposure to 

infection early in life is believed to confer life-time immunity to the infecting strain, possibly 

including some immunity to conserved epitopes[27].  

Strengths and Limitations 

FRED is a well-established platform for one season of influenza that we have expanded 

to a multi-year platform; this was the first publication of that endeavor.  The 2021-22 influenza 

season may be unique in that it lacks any significant 2020-21 impact of residual disease 

immunity.  We have examined it for face validity using influenza infectious disease experts, 

explored the impact of various parameters and averaged multiple simulations.  However, all 

models are attempts to predict reality, which cannot be known until the season has passed. 

Conclusions 

Given the light 2020-21 season, we found that a large, compensatory second season 

might occur in 2021-22, depending on cross-immunity from past infection and transmissibility of 

strains.  Furthermore, we found that enhanced vaccine coverage could reduce this high, 

compensatory season. Achieving high vaccination levels in very young may be particularly 

important in 2021-22, due to lack of immunity from prior infection in that age group. 
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Table 1. Percent decrease in influenza cases and hospitalizations compared to baseline by percent 
cross-immunity between first and second season influenza strains. 

 low/low1 low/high high/low high/high 
10 12.94 (14.46) 1.68(2.20) 42.51(44.79) 6.45(8.02) 
20 24.07 (24.99) 2.97(3.70) 74.78(75.78) 17.39(20.46) 
30 32.71(32.81) 4.91(5.57) 90.78(91.26) 30.67(35.41) 
40 42.62 (43.22) 8.60(10.15) 96.74(96.63) 45.80(51.14) 
50 55.65 (55.15) 14.43(16.70) 98.85(98.67) 76.65(80.20) 
60 64.55(64.78) 21.19(23.92) 99.15(99.01) 96.21(96.69) 
70 69.06 (68.90) 30.14(33.34) 99.22(99.10) 98.84(98.79) 
80 71.43 (71.28) 38.84(41.92) 99.23(99.13) 98.97(98.90) 
90 74.56 (74.48) 45.61(48.08) 99.24(99.13) 98.99(98.92) 
100 75.87 (75.76) 55.33(57.37) 99.21(99.13) 98.98(98.94) 

1 Transmissibility first season / transmissibility second season as defined in Methods 
2 Cases (Hospitalizations) 
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Figure 1. Influenza model diagram. 
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Figure 2. Influenza model incidence curves. Increased levels of social distancing (but no school 
closure) resulted in decreased first season cases and increased second season cases. Social distancing 
at 40% prevents seasonal influenza outbreak. Social distancing at 20% and 30% produces highly 
stochastic second season outbreaks 
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Figure 3. Influence of cross-immunity between first and second season strains on the impact of first season 
influenza cases on second season influenza cases. X-axis, % cross-immunity between first- and second-year 
strains; Y-axis, mean second season cases per 100,000. Shaded area represents +/- one standard deviation from 
mean. 
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Figure 4. Change in total infections per 100,000 children age 0-4 with increase in vaccination coverage rate. Base vaccination 
from reported rates. Coverage rates were increased by 10% and by 20%. 
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