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Summary

The CLARITY trial (Controlled evaLuation of Angiotensin Receptor Blockers for COVID-19 res-
pIraTorY Disease) investigates the effectiveness of angiotensin receptor blockers in addition to
standard care compared to placebo (in Indian sites) with standard care in reducing the duration
and severity of lung failure in patients with COVID-19. The CLARITY trial is a multi-centre,
randomised controlled Bayesian adaptive trial with regular planned analyses where pre-specified
decision rules will be assessed to determine whether the trial should be stopped due to sufficient
evidence of treatment effectiveness or futility. Here we describe the statistical analysis plan for the
trial, and define the pre-specified decision rules, including those that could lead to the trial being
halted. The primary outcome is clinical status on a 7-point ordinal scale adapted from the WHO
Clinical Progression scale assessed at Day 14. The primary analysis will follow the intention-
to-treat principle. A Bayesian adaptive trial design was selected because there is considerable
uncertainty about the extent of potential benefit of this treatment.

Trial registration: ClinicalTrials.gov, NCT04394117. Registered on 19 May 2020.

https://clinicaltrials.gov/ct2/show/NCT04394117

Clinical Trial Registry of India: CTRI/2020/07/026831

Version and revisions: Version 1.0. No revisions.

Keywords: Adaptive sample size; Angiotensin Receptor Blockers; Bayesian design; Clinical trial;
Coronavirus; Protocol; Statistical analysis plan.

1 Introduction

The virus responsible for COVID-19, SARS-CoV-2, binds to angiotensin-converting enzyme 2
(ACE2) [14, 16]; a key regulator of the renin-angiotensin system (RAS) that is expressed on
the surface of host cells. This binding may result in the downregulation of ACE2, leading to
dysregulation of the RAS towards a pro-inflammatory, pro-fibrotic state [27, 24]. Another RAS
protein, the angiotensin II type 1 receptor (AT1R), may play a role in COVID-19 pathophysiology
by facilitating ACE2 receptor-mediated endocytosis [4] or by causing local RAS over-activation.
Angiotensin Receptor Blockers (ARBs) are widely available medications originally developed as
blood pressure-lowering agents that may help prevent cardiac events and the progression of kidney
disease. By preventing angiotensin II from binding to AT1R, it is hypothesised that ARBs may
reduce the inflammatory effects of SARS-CoV-2 infection. ARBs have been in clinical use for over
30 years and are extensively used in the treatment of chronic conditions involving a dysregulated
RAS. ARBs are known to protect against lung injury in animal studies, including injury from
viruses like the SARS-CoV-1 virus [15]. Whether similar protection is observed in humans is
unknown.

The CLARITY trial is a two-arm, multi-centre, comparative effectiveness Phase III randomised
controlled Bayesian adaptive trial, conducted in India and Australia. It is designed to evaluate
whether ARBs reduce the severity of COVID-19 among high-risk patients. The investigational
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arm of the study is ARB delivered with standard of care. In India, the control arm is placebo plus
standard care and participants are blinded. In Australia, the control arm is standard care and
neither participants nor clinicians are blinded.

At the time of writing, participants are being recruited at clinical sites in India and Australia and
the first planned analysis is imminent. In both countries, participants are recruited from sites
providing inpatient care. In addition, in Australia, participants are recruited from sites that are
managing community-based patients in monitored settings.

The trial design addresses the safety and feasibility challenges of running a clinical trial during
a pandemic. To address a priori uncertainty about the extent of potential benefit, an adaptive
sample size design has been selected that allows the trial to continue until pre-specified levels of
evidence of effectiveness or futility are met. The approach reduces the risk of an indeterminate
outcome and ensures the trial does not continue recruiting participants beyond the point where
conclusive evidence of benefit is found. This means that results can be expeditiously reported and
adopted into clinical practice. Such an approach is particularly appealing during a pandemic. In
light of the well-established profile of ARBs, infection control risks, and the potential demands on
health services, the burden on clinical staff is reduced through a number of measures including
the collection of data largely limited to information contained in the health record. Trial specific
in-person encounters are also avoided and phone consent employed to reduce opportunities for
infection transmission.

The CLARITY trial statistical analysis plan (SAP) was developed following the Guidelines for the
Content of Statistical Analysis Plans in Clinical Trials [8] and includes pre-specified decision rules
for continuing or stopping the trial based on effectiveness or futility. None of the authors have
been unblinded nor observed any data other than aggregated baseline characteristics. The final
study report will follow the Consolidated Standards of Reporting Trials guidelines for reporting
on randomised controlled adaptive trials [5, 22, 29]. The study protocol has been accepted for
publication [13].

2 Study Design

2.1 Overview

CLARITY is a two-arm Bayesian adaptive randomised controlled trial with the sole adaptation
relating to sample size. Frequent planned analyses will be performed to evaluate whether a treat-
ment benefit exists up to a maximum sample size of 2200. Pre-specified decision rules are defined
that allow the trial to be stopped at planned analyses if there is sufficient evidence of treatment
effectiveness or futility.

The pre-defined decision rules for early stopping are:

1. Stop for effectiveness - if the predictive probability of trial success at the current sample size
exceeds a threshold of 0.95

2. Stop for futility - if the predictive probability of trial success at the maximum sample size is
below a threshold of 0.02

The first planned analysis will be triggered 14 days after enrollment of the 700th trial participant
and conducted as close to that as is practical given logistical constraints. If neither the effectiveness
nor futility decision rule requirements are met, successive planned analyses will be conducted 14
days after every additional 300 participants are enrolled. However, if a trial decision rule is met
and the decision subsequently recommended by the Data Safety Monitoring Board (DSMB), then
all enrolled participants will be followed up to 28 days after enrollment and the final analyses will
be undertaken and reported on primary and secondary outcomes.
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2.2 Intervention

In India, the ARB used is telmisartan and is supplied as 40mg tablets. In Australia, supply chain
interruptions prevented the sourcing of placebo for these hygroscopic medications at the commence-
ment of the trial. The trial was therefore commenced open-label in Australia, with the intention of
sourcing placebo as the trial progressed, an intention which was subsequently abandoned with the
abatement of cases in Australia and subsequent low recruitment rates. Trial Principal Investigators
in Australia are permitted to select an ARB from the local hospital formulary.

The ARB or placebo is taken according to the treating clinician prescription for 28 days. Guidance
is provided on the initial dose, dose titration and associated monitoring. Final decisions on ARB
dosing and management are determined by treating clinicians in line with their familiarity with
these medications. Participants are followed daily between Day 0 and Day 28, and at Day 90,
primarily through information recorded in the medical record supplemented by phone calls.

Standard care is at the discretion of the treating team, who are encouraged to manage participants
according to local best practice throughout the course of the study. Agents used for treatment of
COVID-19 are determined by local practice and will be recorded.

2.3 Randomisation

Participants are randomised (1:1) to the investigational arm (ARB plus standard care) or control.
As already noted, in India, the control arm is placebo plus standard care, and, in Australia,
the control arm is standard care. Participants are randomised within 10 days after a confirmed
SARS-CoV-2 diagnosis. The randomisation procedure uses permuted blocks with sizes of 4 and 6
(with equal probability). This was generated in SAS for the whole trial by Dr Qiang Li, a senior
biostatistician at The George Institute for Global Health. The randomisation was stratified by
country, and in Australia by hospital and community-based settings. The randomisation list and
seed are held in a Redcap database and on restricted access folders that are only accessible by
Qiang Li and unblinded database administrators.

2.4 Trial population

A flow diagram of the trial and participant progression is presented in Figure 1. Participants
enrolled in the trial are those aged ≥18 years with a recent diagnosis of SARS-CoV-2 infection
(<10 days prior to randomisation). Additional eligibility criteria identify participants who are at
high risk of severe disease, including requirement for hospital admission due to COVID-19 or, for
those who are managed in the community and have at least one of the following risk factors: aged
≥60 years, body mass index ≥30kg/m2, diagnosis of diabetes (HbA1c ≥7% and/or use of glucose-
lowering medication), history of cardiovascular disease∗, history of chronic respiratory disease∗ or
current treatment with immunosuppressive therapy (∗as defined by the treating clinician). Addi-
tional inclusion and exclusion criteria are defined in the trial protocol [13].

The number of participants who are screened, randomised (% of screened), who complete 28 days of
the trial (% of randomised) and who complete follow-up (% of 28 days completed) will be reported.
The number of participants who meet the eligibility criteria but are not enrolled and the reasons
for non-enrollment will be reported, where available. For missing data, it will be reported if no
data have been collected from a participant for > 7 consecutive days between Day 0 and Day 28,
the number of withdrawals (% of randomised) and those lost to follow-up (% of randomised).
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Figure 1: Trial overview and participant schedule [13]

2.5 Primary analysis population

The primary analysis population will include all participants who were randomised, and have
passed the primary outcome of 14 days after randomisation with their primary outcome status
either known or known to be missing. This analysis set will follow the intention-to-treat principle
in that all randomised participants will be included and analysed according to the treatment to
which they were initially allocated, irrespective of any deviations from this or any other protocol
deviations. This analysis population will inform the primary estimand. Any missing data for the
primary outcome will be reported. The occurrence of missingness will also be explored to identify
any potential patterns. In the decision procedures, missing values will be handled via Bayesian
imputation [28, 18].

2.6 Primary, secondary and exploratory outcomes

The primary outcome for this trial is a 7-point ordinal scale of clinical health status (formed by
adapting the WHO Clinical Progression score [33]) assessed on Day 14. Each level in the scale is
scored as shown in Table 1.

Score Status % Day 14 % Day 28
1 Not hospitalised, no limitations on activities 0 2.3
2 Not hospitalised, some limitation on activities 31 78
3 Hospitalised, not requiring supplemental oxygen 34 1.1
4 Hospitalised, requiring supplemental oxygen 15.5 2.8
5 Hospitalised, requiring non-invasive mechanical ventilation

or high flow nasal cannula therapy
4.8 1.6

6 Hospitalised, requiring invasive mechanical ventilation ±
additional organ support

4.0 1.6

7 Death 10.7 12.6

Table 1: 7-point ordinal scale of clinical health status [33]

Table 1 also shows the percentage of participants expected to be in each state at Days 14 and 28
under standard care (empirical estimate, based on a small convenience sample of accessible study
results available at the time of writing). The secondary and exploratory outcomes are listed in
Table 2.
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Outcome Additional information
Secondary:
7-point ordinal scale score As at Day 28
All cause mortality As at Day 28

As at Day 90
Admission to ICU Time to admission between Day 0 and 28

Time to admission between Day 0 and 90
Number of ICU free days between Day 0 and 90

Respiratory failure Time to non-invasive or invasive mechanical ventila-
tion between Day 0 and 28
Number of ventilator-free days between Day 0 and 28

Kidney failure Time to requirement for dialysis between Day 0 and
28
Number of dialysis free days between Day 0 and 28

Hospitalisation (length of stay) Number of hospitalisation days between Day 0 and 28
Number of hospitalisation days between Day 0 and 90

Acute Kidney Injury (AKI)∗ Time to AKI between Day 0 and 28
Hypotension requiring vasopressors Time to hypotension requiring vasopressors between

Day 0 and 28
Exploratory:
Hyperkalemia Time to hyperkalemia between Day 0 and 28 (any

episode of serum potassium > 6.0mmol/L)
Oxygen requirement Oxygen support free days between Day 0 and 28

Table 2: Secondary and exploratory outcomes for the CLARITY trial. ∗AKI is defined as any
documentation of the following: increase in serum creatinine by ≥ 0.3 mg/dl (≥ 26.5 µmol/l)
within 48 hours; increase in serum creatinine to ≥1.5 times baseline, which is known or presumed
to have occurred within the prior 7 days; or urine volume <0.5 ml/kg/h for 6 hours [1].

ARBs have been extensively researched and used widely in standard practice for around thirty
years, forming a significantly robust safety profile. The trial endpoints capture the commonly
known safety events associated with ARBs. No additional safety reporting of adverse events or
serious adverse events is required given the well-understood safety profile of these agents.

2.7 Data management

The Data Management Plan for CLARITY has been developed according to the standard operating
procedures of the NHMRC Clinical Trials Centre at the University of Sydney, and the Trial Master
File is held centrally by the Clinical Trials Centre. All such documentation are currently not
publicly available.

3 Statistical analysis framework

All outcomes will be analysed within a Bayesian framework based on joint posterior distributions.
Sampling from the posterior distribution will use Markov chain Monte Carlo (MCMC) methods
[21, 12, 11], and where necessary, model choice will be determined via an appropriate information
criterion [31]. Convergence of MCMC chains will be assessed via trace plots and the Gelman-Rubin
diagnostic [9], and goodness-of-fit will be assessed via posterior predictive checks. All computation
will be performed within the R-package which will interface with STAN [3] or equivalent should
the need arise.

Across all analyses, weakly informative prior information calibrated by prior predictive checks
will be used such that trial conclusions will be predominately data-driven. For all parameters
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of interest, posterior means will be reported along with 95% credible intervals and the posterior
probability that the parameter is greater or less than 0.

3.1 Descriptive summaries

3.1.1 Baseline characteristics

Baseline characteristics will be summarised for each treatment arm and overall. Discrete variables
will be summarised by frequencies and percentages. Percentages will be calculated according to the
number of participants for whom data are available. Where values are missing, the denominator
(which will be less than the number of participants assigned to the treatment group under consid-
eration) will be stated. Continuous variables will be summarised by use of standard measures of
central tendency and dispersion using mean and standard deviation and/or median and first and
third quartiles. Free text entries for fields collecting both categorical and free text information (e.g.
ethnicity) will be assessed and assigned to a category if appropriate. No testing will be performed
for differences in baseline characteristics between treatment arms as per CONSORT principles.

Table 3 shows the baseline characteristics that will be summarised.
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Demographics
Sex
Age
Ethnicity

Medical History
COVID-19 history and Management Intended for hospital or for community management
Co-morbidities Chronic Kidney Disease

Hypertension
Diabetes
Cardiovascular disease (including heart failure, ischemic heart disease,
acute myocardial infarction, congenital heart disease, stroke, peripheral
vascular disease)
Cancer in last 5 years (not including basal cell carcinoma and squamous
cell carcinoma)
Chronic respiratory illness
Severe Liver Disease (Child-Pugh-Turcotte score 10-15 or biliary ob-
struction)
Other relevant medical conditions
Pregnancy status (pregnant or breastfeeding)

Medications Renin-Angiotensin-Aldosterone System (RAAS) inhibitor (including
ACEi, ARB, Aldosterone antagonist, Angiotensin Receptor-Neprilysin
Inhibitor, Aliskiren)
Non-RAAS inhibitor Blood Pressure (BP) lowering agent
Glucose lowering medication
Steroids
Steroid inhalers/nasal spray
COVID-19 specific therapies
Other immunosuppressants
Other inhalers
Vasopressor
Proton-pump inhibitor (e.g. omeprazole, esomeprazole, pantoprazole)
Aspirin
Lipid lowering agent (e.g. statins, fibrates)
Antimicrobials
Other

Smoking status Current, previous, non-smoker
Physical Examination

Blood pressure (mmHg)
Height (cm)
Weight (kg)
Body mass index (kg/m2)

Laboratory Measures
Serum creatinine (mg/dL)
Estimated Glomerular Filtration Rate (mL/min/1.73 m2)
White Cell Count (x109/L)
Neutrophils and Lymphocytes (x109/L)
D-Dimer (mg/L FEU or mg/L DDU)
C-Reactive Protein (mg/L or nmol/L)
Creatine Kinase (U/L)

Table 3: Baseline characteristics

3.1.2 Delivered treatment

Medication adherence will be reported by each treatment arm as adherence days (median, first and
third quartiles, minimum and maximum), number of days of follow-up (median) and percentage of
days medication was administered (mean ± SD) for those who complete follow-up and those who
do not. We will also report the mean average dose of treatment for participants randomised to
ARB plus standard care, the use of other COVID-19 directed care, other hypertensives and use of
oxygen.

3.2 Analysis of primary outcome

The primary outcome for this trial is a 7-point ordinal scale of clinical outcomes (Table 1), assessed
on Day 14 and will be modelled using proportional odds cumulative logistic regression [20]. Under
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such a proportional odds model, the treatment effect (along with the parameters associated with
other variables) are common among the response categories.

The model is specified as follows. Let Yi ∈ {1, . . . ,K} denote a random variable for the outcome
for the ith participant where the ordering is natural and K = 7. A proportional odds model can
be constructed based on the categorisation of a latent continuous variable Y ∗. Ordered cut-points
c ∈ RK−1 are defined such that ck < ck+1 for k ∈ {1, . . . ,K − 2} then for k ∈ {1, . . . ,K}:

πik = P (Yi = k|ηi, c) =


1− logit−1(ηi − c1) if k = 1

logit−1(ηi − ck−1)− logit−1(ηi − ck) if 1 < k < K

logit−1(ηi − cK−1) if k = K

,

where Yi ∼MN(n = 1, (πi1, . . . , πi7)) and ‘MN ’ denotes the multinomial distribution. The linear
predictor ηi = βxi +

∑P
p=1 w

T
ipγp comprises a parameter β that charaterises the treatment effect,

with xi = 1 for ARB treatment group membership and xi = 0 otherwise and a vector of parameters
γ for modelling variation in the response associated with baseline variables defined in wT

i . Note
that this implementation will be such that exp(β) < 1 results in a reduction in the probability of
death.

The model is parameterised with the cuts ck derived from a simplex with a Dirichlet prior and
concentration of 1. All fixed effect terms will use weakly informative normal priors centred on
zero with a standard deviation of σβ = 10. If issues with convergence or sampling arise, variations
to these priors are permissible at the discretion of the analyst, however, all model variations and
their justification will be reported to the DSMB and will be disclosed in all internal and external
publications.

The motivation to adjust the model for baseline covariates stems from the understanding that
mortality rates associated with COVID-19 infection vary by age, sex, ethnicity and the presence of
some comorbid diseases [19, 34, 25]. Specifically, the case mortality rate is estimated as being very
low (0.06% or less) in age groups under 50, 0.5% in 50-59 year olds, 2.9% in 60-69 year olds before
steeply rising to 40% in those aged 90 and over [19]. Additionally, disease severity appears to
be worse in males, in those with pre-existing comorbidities, such as hypertension, diabetes, heart
failure, chronic kidney disease, and chronic respiratory illness [34], and in the presence of obesity
[25].

Variable Definition
Age < 60 years, 60 years and older. It is required at least one third of the study

population is in each category. If that condition is not met, the categories
will be revised to < 50 years and 50 years and older.

Sex Female or Other, Male
Co-morbid disease No co-morbid disease

Presence of any of: diabetes (HbA1c ≥7% and/or the consumption
of glucose lowering medication), history of cardiovascular disease, history
of chronic respiratory illness, current treatment with immunosuppression
or BMI≥30kg/m2 at baseline, compared with none of these factors.
Hypertension

Oxygen requirement Modified WHO Score of 3 or less at randomisation
Modified WHO Score of 4, 5 or 6 at randomisation.

Table 4: Prognostic baseline characteristics/pre-specified subgroups for analyses of the primary,
secondary and exploratory outcomes.

Since age, sex, co-morbid disease and oxygen requirement are the most supported, baseline values
for these variables will be included in the linear predictor as fixed effects with levels as summarised
in Table 4. Incorporating these terms in the model allows us to account for potential baseline
imbalance, obtain a stratified estimate of the response and can increase power. All decisions arising
from successive planned analyses will be based on the adjusted model, however, both unadjusted
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and adjusted results will be reported.

3.2.1 Sensitivity to assumptions

Sensitivity analyses for the primary outcome will be undertaken to determine how the results of
the analysis may change depending upon particular modelling assumptions. For this trial, this will
include:

• choice of priors

• relaxing the proportional odds assumption

Additionally, a subset of data will be modelled constrained to participants who were randomised
to receive either an ARB or a placebo (i.e. those participants randomised in India). Technically,
this is a subgroup analysis, but is included here because the results from this subset of the data
represent an important consideration for interpreting the results for the primary outcome.

Weakly informative priors have been pragmatically chosen to regularise estimates and minimise
problems with posterior sampling. The sensitivity analysis will evaluate the impact of uninforma-
tive, skeptical and enthusiastic priors [2], keeping in mind the comments of [10] on the influence of
the likelihood on interpreting the contribution of the prior.

Relaxing the proportional odds assumption accommodates category specific effects. For example,
an intervention could be potentially useful for healthier participants, but harmful to participants
that are already very sick. The cumulative ordinal model is not well suited for this purpose
(category specific effects in this model can lead to negative probabilities of having some scores),
so an alternative modelling strategy is required. One approach is to collapse the response into
several binary comparisons, fit separate logistic regression models (response scores 1 versus 2-7,
1-2 versus 3-7 etc) and qualitatively compare the odds ratios obtained from these models to the
more parsimonious proportional odds model. However, this becomes unwieldy for a large number
of response categories. Therefore, the sensitivity analysis will be undertaken using an adjacent
category model with category-specific effects to gain insight into heterogeneity in the treatment
effect. Metrics for relative goodness-of-fit will be obtained via leave-one-out cross validation.

The category specific effects model will only be evaluated at the final analysis, but the potential
for violations in the proportional odds assumption will be monitored heuristically at each planned
analysis.

3.3 Analysis of secondary and exploratory outcomes

The analysis of all secondary and exploratory outcomes detailed in Table 2 will be model-based
within a Bayesian inference framework. An outline of the modelling approach for each of the
different data types are given below. Unless directed by the DSMB, the analysis of all secondary
and exploratory outcomes will only be conducted as part of the final analysis.

3.3.1 Binary outcome

The following outcome is represented as a binary random variable, and will be summarised by
number of and proportion of outcomes within each category. The relative odds of the outcome will
be modelled by treatment assignment using standard logistic regression.
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• (All-cause) mortality at Day 28 (participants discharged prior to Day 28 will be considered
alive unless noted otherwise)

For logistic regression, the parameter associated with the treatment term in the model reflects the
change in the log-odds of the event relative to the log-odds of the event in the reference group
holding all other terms constant.

3.3.2 Ordinal outcomes

The following outcomes can be represented as ordinal scales. Each will be summarised by the
proportion in each category, and modelled using the same approach described for the primary
outcome. Specifically, the relative odds of the outcome will be modelled by treatment assignment
using proportional odds logistic regression.

• 7-point ordinal scale score at Day 28 (primary is at Day 14)

• Number of ventilator-free days between Day 0 and 28

• Number of oxygen support free days between Day 0 and 28

• Number of dialysis-free days between Day 0 and 28

• Number of ICU-free days between Day 0 and 90

For the latter four outcomes, the occurrence of death will be coded such that it is the worst possible
outcome, with the remaining possible outcomes being coded via the natural ordering.

The interpretation of the parameter associated with treatment term in the proportional odds
cumulative ordinal model is very similar to that of a logistic regression. For the ordinal model, one
can conceptualise the event as successive splits of the scores demarcating success. So, for example,
one might consider realising 1 or more ventilator-free days (VFDs) versus 0 or worse. Equivalently,
one can consider realising 2 or more VFDs versus 1 or worse and so on. The parameter estimate
associated with treatment simply characterises the change in the log-odds of the event (as defined
above) on ARB relative to the log-odds of the event on placebo, holding all other terms constant.
The proportional odds assumption holds that the transitions between each of the splits are equally
impacted by the treatment, i.e. there are no category-specific effects.

3.3.3 Time-to-event outcomes

The following outcomes are considered in terms of the time until the occurrence of an event, all
of which occur in the presence of a competing risk. For example, time to admission to ICU is
blocked should the patient die prior to being admitted to ICU. The goal is to characterise the rate
or intensity of events by treatment assignment.

• Time to discharge alive from hospital between Day 0 and 28

• Time to discharge alive from hospital between Day 0 and 90

• Time to admission to ICU between Day 0 and 28

• Time to admission to ICU between Day 0 and 90

• Time to non-invasive or invasive mechanical ventilation between Day 0 and 28

• Time to requirement for dialysis between Day 0 and 28
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• Time to AKI between Day 0 and 28

• Time to hypotension requiring vasopressors between Day 0 and 28

• Time to hyperkalemia between Day 0 to 28

With the exception of time to discharge (where time to discharge is the event of interest) each
of these events exist in the presence of the competing risk of death and/or discharge. Standard
approaches for evaluating competing risk include models that focus on the cause-specific hazard
and/or the subdistributional hazard [26, 7]. The former is preferred where interest is in the rate of
occurrence rather than the risk and is generally recommended for evaluating direct causal effects.
Therefore, we will adopt a piecewise exponential model for the cause-specific hazards (reporting
results from all event types). The linear predictor will be of a similar form as described in Section
3.2; the exponential of which will estimate the multiplicative shift away from the baseline marginal
hazard function.

The cause-specific hazard is the instantaneous risk of failure from a specific cause given that no
failure from any cause has happened. Interpretation of the parameter estimate associated with
treatment effect will be in terms of the effect on the cause-specific hazard of the event under con-
sideration. Finally, in a competing risk setting, the cumulative incidence function (a generalisation
of one minus the survival to the competing risk setting) cannot be estimated naively using one
minus the Kaplan-Meier estimator. Therefore, any visualisation of the survival and cumulative
incidence will account for this.

3.4 Subgroup analyses

Rather than split the data into strata and proceed with independent analyses, subgroup analyses
will be undertaken by extending the linear predictor in the specified models to account for treatment
by group interactions. The pre-specified subgroups include age, sex, co-morbid disease and oxygen
requirement at baseline as detailed earlier in Table 4.

Shrinkage through prior specification will be used as a method for mitigating issues associated with
multiplicity. Additionally, only first-order interactions will be considered, which implicitly assumes
all higher order interactions are set to zero. Specifically, for the subgroup treatment effects, a
revised linear predictor will be introduced from the earlier specification in Section 2.6:

ηi = βxi +
P∑
p=1

wT
ipγp + δ1,sex[i]xi + δ2,age[i]xi + δ3,cmb[i]xi + δ4,O2[i]xi

where each δg parameter corresponds to a vector of parameters associated with each subgroup
of interest with δg ∼ Normal(0, σδ) and σδ ∼ Exponential(1) such that the interaction terms are
estimated under the assumption of a common variance [6]. The abbreviations "cmb" and "O2"
correspond to "comorbidity" and "oxygen requirement", respectively.

From the above model, each covariate can be considered separately and standardised treatment
effects obtained in each subgroup as weighted averages. For example, to obtain a standardised
treatment effect for males, compute

βM = β + δ1,sex[M] + νage=1 × δ2,age[1] + νage=2 × δ2,age[2]+

νcmb=1 × δ3,cmb[1] + νcmb=2 × δ3,cmb[2] + νcmb=3 × δ3,cmb[3]+

νO2=1 × δ3,O2[1] + νO2=2 × δ3,O2[2]
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where βM denotes the log odds-ratio for the treatment effect in males, νage=1 denotes the observed
relative frequency of males in the first age category, νage=2 denotes the observed relative frequency
of males in the second age category and the other ν weights are defined similarly.

3.5 Missing data

Among other possibilities, missing data are to be anticipated due to loss to follow-up and competing
priorities on institutional resources to complete follow-up.

Under the missing completely at random (MCAR) and missing at random (MAR) assumptions,
there will be loss of precision due to the missingness, but there is no bias in the parameter estimates
when appropriate statistical methods are used. However, under missing not at random (MNAR)
the probability of missingness depends on the (unobserved) missing values. When missingness is
due to MNAR, there is both a loss in precision and bias, and therefore sensitivity analyses are
required. MAR is commonly assumed, although MNAR is arguably more applicable for most
settings. In the CLARITY trial, there is potential for MNAR because differential loss to follow-up
could be observed across treatment groups, however this is believed to be unlikely.

Patterns of missingness for the outcome and covariates will be reported by time and group. When
applicable, missing outcome data will be imputed using the standard posterior predictive ap-
proaches within Bayesian inference [28]. The posterior distribution for imputation will be based
on the analysis of all available data. Missing covariate information may also be imputed, and this
will be based on, where possible, other available data (e.g. missing region or site).

If concerns arise regarding missingness (or a sensitivity analysis is requested by the DSMB), then
single value imputation may be used implementing a best-worst-case and worst-best-case sensitivity
analyses to evaluate the potential range of impact of missing values.

3.6 Exploratory analyses

Temporal treatment effect heterogeneity

As there is potential for changes in standard of care and variation in the circulating virus strains,
we will explore temporal heterogeneity in the treatment effect for the primary outcome. To do so,
indicator variables will be created that categorise trial epochs. These indicator variables will then
be included (as described in Section 3.2) as main effects and as terms that interact with treatment.
Choice of the time step will be pragmatically selected based on obtaining reasonably sized groups
for the purposes of estimation.

Disease progression modelling

Given the potential for participants to manifest complex disease progression, state-space modelling
will be undertaken to characterise transition probabilities and sojourn times.

3.7 Planned analyses

The first planned analysis will be conducted as soon as practicable after the 700th enrolled par-
ticipant has been followed for 14 days. This was decided by exploring the sampling distribution
of the treatment effect parameter for a variety of different scenarios (Section 4) including different
odds ratios, and a desire to have a relatively stable estimate, see Figure 2. From the results, the
first planned analysis at 14 days after 700 participants were enrolled was a reasonable compromise.
After this, the planned analyses will occur 14 days after every 300 additional participants have
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been enrolled. The decision also considers practical constraints such as needing enough time to
complete the analyses and having these reviewed by the DSMB before the next planned analyses.

Figure 2: Distribution of the posterior mean of β based on 1000 simulated data sets for a given
number of enrolments and odds ratios of (a) 1.00, (b) 0.95, (c) 0.87 and (d) 0.80.

The planned analyses will model the primary outcome (Section 3.2) for which both the unadjusted
(i.e. model only includes treatment status) and adjusted posterior treatment effects will be reported
to the DSMB. Decision rules will be evaluated based on the results from the adjusted primary
analysis.

Subgroup analyses (Section 3.4) will only be undertaken at the final analysis as these are essentially
exploratory in nature and need to be interpreted with great care.

Based on the results from the primary analysis, supplemented by external knowledge, recommen-
dations will be made to the Trial Steering Committee by the DSMB to either halt or continue
recruiting into the trial.

3.8 Decision rules

Pre-specified decision rules will be evaluated at each planned analysis, and the trial can be stopped
based on the results of these analyses. This implies that the trial sample size is a random variable
with an upper bound of 2200, dictated by the available resources. For this trial, two decision
rules were adopted. These were to assess treatment effectiveness, and to determine if it is futile to
continue the trial. Both of these decision rules are based on the primary outcome as described in
Section 3.2 accounting for differences between treatments arms and baseline characteristics only.
In the following section, each decision rule is defined, including the methods by which each will be
evaluated.
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3.8.1 Effectiveness

At each planned analysis, the predictive probability of treatment arm effectiveness compared to
placebo or standard care alone (Australia only has standard care) will be assessed. To do so, one
may consider that there are two types of participants in the interim data; (1) participants who
have been enrolled and had their Day 14 outcome ascertained; and (2) participants who have been
enrolled but have not yet had their Day 14 outcome ascertained. The expectation of the probability
that the posterior probability β < 0 is greater than the pre-specified level of evidence (∆ = 0.975)
will be evaluated, which is nominally consistent with a standard one-sided frequentist type-I error
of 0.025. The expectation is taken over the data from participants who have been enrolled but
have not responded and is assessed against a decision threshold, δe set at 0.95. Specifically, the
expectation is defined:

E[I(P (β < 0|y, Z, x, w) > ∆)] =
∑
z∈Z
I(P (β < 0|y, z, x, w) > ∆)p(z|y, x, w),

where I() is an indicator function which equals one if the event is true and zero otherwise, y
denotes data on the primary outcome for the participants who have been enrolled and had their
Day 14 outcome ascertained, x and w denote treatment allocations and baseline characteristics
(respectively) for all participants enrolled, and Z ∈ Z is the random variable associated with z
which denotes supposed future data for the participants who have been enrolled but not yet had
their Day 14 outcome ascertained.

Evaluating the above expectation is unwieldy, so simulation will be used to form an estimate. The
approach for this is outlined in Algorithm 1 where the data y, the treatment allocations x, baseline
characteristics w and the prior on the parameters p(β, c) are initialised. For large B, a sample from
the posterior distribution of the parameters is obtained based on data from participants who have
been enrolled and have had their Day 14 outcome ascertained. For those participants who have not
yet had their Day 14 outcome ascertained, their treatment allocation and baseline characteristics
are known but their outcome is not, so their outcome is simulated (line 4). This forms a (partly
simulated) data set for all participants enrolled in the trial from which a posterior distribution can
be found.

Algorithm 1 Estimation of decision rule for treatment effectiveness
1: Initialise y, x, w, p(β, c)
2: Let t = length(y), T = length(x)
3: for b = 1 : B do
4: βb, cb ∼ p(β, c|y, x1:t, w1:t), zb ∼ p(y|βb, cb, xt+1:T , wt+1:T )
5: θ, κ ∼ p(β, c|y, zb, x, w)
6: Λb = I(P (θ < 0) > ∆)
7: end for
8: δe = 1

B

∑B
b=1 Λb

9: if δe > 0.95 then
10: Make a recommendation to the DSMB to stop trial
11: end if

To sample from this posterior distribution, MCMC could be used. However, given this step needs
to be performed a large number of times (within a single simulation of a trial and across different
trial settings), using MCMC here becomes computationally infeasible. Accordingly, a fast approach
to form an approximation of the posterior distribution is needed. Consequently, the Laplace
approximation [17] will be adopted, as has been used previously for a similar purpose [23, 30]. Based
on this posterior, an indicator function is evaluated to determine whether treatment effectiveness
would be concluded at the pre-specified level of evidence (∆ = 0.975), if the outcomes from all
enrolled participants were ascertained (line 6).

After repeating this procedure a large number of times, the probability the trial is expected to be
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successful is approximated (line 8). If this is larger than a nominal value of δe = 0.95, then the
trial will stop for expected treatment effectiveness.

3.8.2 Futility

The purpose of the futility decision rule is to determine whether it would be futile to continue the
trial based on the apparent likelihood of concluding effectiveness. To evaluate this, we consider the
probability of concluding treatment effectiveness if the trial were to continue until the maximum
sample size of N = 2200. At each planned analysis there will be three types of participants: (1)
participants who have been enrolled and had their Day 14 outcome ascertained; (2) participants
who have been enrolled but have not had their Day 14 outcome ascertained; and (3) participants
who have not yet enrolled and therefore could not have had their Day 14 outcome ascertained.

As in the effectiveness decision rule, there will be uncertainty about the responses for a number of
participants. Given this, we consider the expectation of an indicator of success over the distribution
of these unknowns. Specifically, the expectation is defined:

E[I(P (β < 0|y, Z, x, V, w, U) > ∆)] =
∑
v∈V

∑
u∈U

∑
z∈Z
I(P (β < 0|y, z, x, v, w, u) > ∆)p(z|y, x, v, w, u)p(u)p(v),

where V , U and Z are the random variables associated with v which denotes supposed future
treatment allocations, u which denotes future baseline characteristics of participants and z which
denotes supposed future outcome data, respectively. The distribution of V denoted as p(v), will
be based on the 1:1 randomisation and the distribution of U denoted as p(u), will be estimated
non-parameterically via re-sampling w (independently and with replacement).

Algorithm 2 Estimation of decision rule for futility
1: Initialise y, x, w, p(β, c)
2: Let t = length(y), T = length(x) and N = maximum sample size
3: for b = 1 : B do
4: βb, cb ∼ p(β, c|y, x1:t, w1:t)
5: vb ∼ p(v), ub ∼ p(u), zb ∼ p(y|βb, cb, xt+1:T , v

b, wt+1:T , u
b)

6: θ, κ ∼ p(β, c|y, zb, x, vb, w, ub)
7: Λb = I(P (θ < 0) > ∆)
8: end for
9: δ = 1

B

∑B
b=1 Λb

10: if δ < δf then
11: Make a recommendation to the DSMB to stop trial
12: end if

Simulation is again used to form an estimate, and the approach for this is outlined in Algorithm
2 where y, x, w and p(β, c) are initialised. For large B, a sample from the posterior distribution
for the parameters based on data from participants who have responded is drawn (line 4). The
remaining trial data is then simulated (line 5). For this, some treatment allocations and baseline
characteristics are known and some are not. For those that are not known, these are simulated
from p(v) and p(u) as noted above. Data for the remainder of the trial (up to the maximum sample
size of N = 2200) are then simulated (again in line 5) and a sample from the posterior distribution
of the parameters based on this partly simulated data set is then obtained (line 6). Based on this
posterior, an indicator function is evaluated to determine whether treatment effectiveness would
be concluded at the pre-specified level of evidence (∆ = 0.975), if the outcomes from all enrolled
participants were ascertained (line 7).

After repeating this procedure a large number of times, the probability the trial will conclude
that the intervention is effective is approximated (line 9). If this is less than a pre-specified value
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δf = 0.02 (suggesting that concluding treatment effectiveness after N enrolments is very unlikely),
then it will be concluded that it is futile to continue with the trial.

4 Specification of tuning parameters for decision rules

The specification of the two decision rules adopted in this trial requires pre-specifying the values
of ∆, δe and δf . To do so, the statistical power and type-I error of the trial were explored through
simulation, aiming to find appropriate values for these parameters. To run such a simulation study,
a number of assumptions needed to be made. For the simulations for this trial, the following was
assumed:

• The data observed in the trial will follow a proportional odds logistic regression model where
any average difference in outcomes can only be explained by differences in their assigned
treatments;

• The data observed from each participant in the trial will be independent. That is, each par-
ticipant yields a single observation from the 7-point ordinal scale, and these are independent
between participants;

• Five values for the treatment effect were explored. These relate to odds ratio values (i.e.
exp(β)) of 1.0, 0.95, 0.87, 0.8 and 0.67;

• Accrual rate of participants into the trial will be either 120, 100 or 80 per month. That is,
three potential scenarios which can be defined as ‘best’, ‘expected’ and ‘worst’ (respectively)
from the trial perspective;

• The probability of observing each category of the 7-point ordinal scale for a participant within
the placebo plus standard care group is as shown in Table 5. Here, three potential scenarios
(‘best’, ‘expected’ and ‘worst’ from the patient perspective) have been defined;

• Planned analyses will not start until 14 days after 700 participants have enrolled into the
trial. After this, planned analyses will occur 14 days after an additional 300 participants
have been enrolled in the study.

Categories Best Expected Worst
Not hospitalised, no limitations on activities 16.0 0.1 0.1
Not hospitalised, some limitation on activities 28.6 31.0 19.4
Hospitalised, not requiring supplemental oxygen 32.0 34.0 30.0
Hospitalised, requiring supplemental oxygen 13.0 15.5 20.0
Hospitalised, requiring non-invasive mechanical ventilation or high
flow nasal cannula therapy

2.4 4.7 7.0

Hospitalised, requiring invasive mechanical ventilation ± additional
organ support

2.0 4.0 5.5

Death 6.0 10.7 18.0

Table 5: Expected distribution (as percentages) of 7-point ordinal scale at Day 14 for
placebo/Standard of care group where ‘best’, ‘expected’ and ‘worst’ case is from the patient’s
perspective.

Based on these assumptions, 500 trials were simulated for every combination of different scenarios as
outlined above. That is, trials were simulated with five different odds ratios, three different accrual
rates and three different expected outcomes in the control group. This means for each odds ratio
there are nine different scenarios, and it is of interest to determine the chance of stopping due to
declaring effectiveness or futility across these settings, and also how variable trial outcomes are
across these different scenarios. To evaluate expected effectiveness and futility, data were simulated
500 times (i.e. B = 500 in Algorithms 1 and 2).
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After extensive exploration, it was determined that ∆ = 0.975, δe = 0.95 and δf = 0.02 yielded
acceptable results across a variety of scenarios. Figure 3 provides a summary where (a) shows the
probability of concluding treatment success at the end of the trial, (b) shows the probability of
stopping the trial early due to futility, and (c) shows the average sample size where this average is
taken across all 500 trials regardless of whether it was stopped early or no conclusion was drawn.

Figure 3: Estimated probability of the trial stopping for (a) Success, (b) Futility, and (c) average
sample sizes based on a variety of different assumptions about the odds ratio, recruitment rate and
data that will be observed.

We note that for each odds ratio, there are nine scenarios, so each plot actually shows nine points
for a given odds ratio. Some of these points are difficult to see because there is very little variability
in outcomes across the nine scenarios. This is reassuring as it means the outcomes of the proposed
design appear robust to foreseen variations in accrual rate and expected outcomes within the
control group. As would be expected, there is substantial variability between different assumed
odds ratios. In particular, when the assumed odds ratio is 0.8 and below, the power of the trial
to determine that the intervention is effective remains above 80%. When the assumed odds ratio
is 0.87, the power reduces to around 60%, and there is very little power when the assumed odds
ratio is 0.95. When there is no benefit on treatment, the type-I error remains around 5%.

The average sample size shows that the maximum average is less than 1,650 and this occurred when
the assumed odds ratio was 0.87. This decreases as the assumed odds ratio decreases because the
effectiveness decision rule is, on average, met earlier. As the assumed odds ratio increases, the
average sample size also decreases because the futility rule is stopping those simulations early.
Given the uncertainty of the clinical importance of a benefit associated with an odds ratio of
0.95, this appears reasonable. For comparison, the required sample size was also computed for a
variety of odds ratios and levels of statistical power based on a standard randomised controlled
trial where there are two treatment arms and the outcome is ordinal. For this, the analytic solution
for sample size as given by [32] was used. These results are shown in Table 6, demonstrating that
larger sample sizes are needed to achieve equivalent statistical power to the adaptive trial. For
example, to achieve a power of 60% for an odds ratio of 0.87, 2,391 participants need to be enrolled.
This is compared to an average of 1,650 in a trial with an adaptive sample size. This highlights
one of the potential benefits of adopting an adaptive sample size approach.

Overall the rules and design of this trial appear to achieve reasonable operating characteristics
for moderate to large odds ratios across a variety of scenarios that might be observed. It should
be noted that a variety of additional scenarios were also considered in terms of different values
for δe and δf . Across all of these scenarios, the values proposed here appear to yield more de-
sirable operating characteristics, given the trial settings and the assumptions made. In addition,
alternative primary outcomes such as the 7-point ordinal scale ascertained on Day 28, a binary out-
come being some combination of the 7-point ordinal scale ascertained on Day 14 and Day 28, and
time-to-ventilation/death were also explored to determine whether a reduced sample size could be
considered for this trial. However, no significant improvement in efficiency was observed. Details
of this for the time-to-event outcome are given in the appendix.
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Odds ratio
0.95 0.91 0.87 0.83 0.8 0.77 0.74 0.71

0.50 14732 3861 1796 1055 705 510 390 310
0.55 17069 4473 2081 1223 817 591 452 359
0.60 19620 5142 2391 1406 938 679 519 413

Power 0.65 22443 5882 2736 1608 1073 777 594 472
0.70 25623 6715 3123 1835 1225 887 678 539
0.75 29292 7676 3570 2098 1401 1013 775 616
0.80 33665 8822 4103 2411 1610 1165 890 708
0.85 39147 10259 4771 2804 1872 1354 1035 824
0.90 46631 12220 5683 3340 2230 1613 1233 981

Table 6: Required sample size for a standard, two-arm, randomised controlled trial for different
odds ratios and levels of statistical power.

5 Discussion

The CLARITY trial investigates the effectiveness of ARBs with standard care compared to placebo
(if provided) with standard care to reduce the duration and severity of COVID-19 in severe par-
ticipants.

The first patient was enrolled on 18th August, 2020. Currently there are 14 and 7 active sites
in India and Australia, respectively. Recruitment has been predominately from India reflecting
the relative caseload during the period the trial has been active. Due to uncertainty about the
effectiveness of ARBs for COVID-19 and the urgent need to find effective treatments for COVID-19
patients, the trial was designed with an adaptive sample size. The decision rules were constructed
to maintain desirable levels of statistical power and type-I error properties, while maintaining
a relatively small average sample size, particularly when compared to a traditional randomised
controlled trial. Other primary outcomes were explored (including a binary and a time-to-event
outcome), however negligible gain in efficiency was observed.

In terms of the decision rules, the trial can be stopped due to sufficient evidence of effectiveness
or futility. It is worth noting that an additional decision rule related to harm was also explored.
That is, a rule that would stop the trial if there was sufficient evidence that the treatment plus
standard care arm was performing worse than the placebo plus standard care arm (or less than a
minimum important clinical difference). However, little to no benefit in terms of the trial operating
characteristics was observed when this decision rule was included. This appeared to be because
whenever this rule was triggered, the futility rule was also being triggered. Thus, it was concluded
that this additional decision rule was not required.

Trial status

The trial commenced recruitment on 18th August, 2020 and the first planned analysis is now
imminent.

6 Supplementary information

6.1 List of abbreviations

ARBs: Angiotensin Receptor Blockers; AT1R: Angiotensin II type 1 receptor; BERN: Bernoulli;
CONSORT: Consolidated Standards of Reporting Trials; CLARITY: Controlled evaLuation of An-
giotensin Receptor Blockers for COVID-19 respIraTorY Disease; COVID-19: Coronavirus disease
2019; DSMB: Data Safety Monitoring Board; ICU: Intensive care unit; MAR: Missing at random;
MCAR: Missing completely at random; MCMC: Markov chain Monte Carlo; MNAR: Missing not
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at random; RAAS: Renin-Angiotensin-Aldosterone System; RAS: Renin-angiotensin system; SAP:
Statistical analysis plan; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; SD:
Standard deviation; VFDs: Ventilator-free days

6.2 Ethics approval and consent to participate

The CLARITY trial is approved by the Sydney Local Health District Ethics Review Committee
(Royal Prince Alfred Hospital Zone; Code: EC0113) in Australia (X20-0118 & 2020/ETH00742)
and The George Institute for Global Health Ethics Committee in India (14/2020). Patients who
meet the eligibility criteria will be approached to obtain informed consent for enrollment.

6.3 Consent for publication

Not applicable.

6.4 Availability of data and materials

The data that support the findings of this study are available on request from author MJar. The
data are not publicly available due to them containing information that could compromise research
participant privacy/consent.
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Appendix: Time-to-event outcome

To explore whether an alternative outcome might yield a reduced sample size, a simulation study
was conducted for the primary outcome of time-to-ventilation/death. Prior information on this
outcome was sourced from the Recovery trial (ClinicalTrials.gov, NCT04381936) which yielded
an empirical hazard function as shown in Figure 4. As can be seen, there is essentially a fairly
constant decline over a 28 day period. However, there are some deviations from this trend. For
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example, there is a second ‘hump’ in week 2 possibly associated with cytokine storm in a subset of
patients (may be 30% of those hospitalised). This might explain this small hump however, it may
also be artefactual. In addition, in regards to the first ‘hump’, mechanistically, it is plausible that
in order to be enrolled in the trial there could be a small ‘healthy volunteer’ type selection bias
whereby anyone whose death is imminent is not randomised (hence the slight increase in hazard
over the first few days). Overall, it was thought that these deviations were not large enough to
materially affect the simulations when compared to a monotonically declining hazard, so this is
what was considered in the simulation study.

Figure 4: Empirical hazard function for patients with COVID-19 based on data from the Recovery
trial (ClinicalTrials.gov, NCT04381936).

The empirical hazard function derived based on the results shown in Figure 4 is shown in Figure
5a. For comparison, a hazard function under the exponential distribution (i.e. constant hazard)
and a Weibull distribution (i.e. monotonically decreasing) were also considered. These are shown
in Figure 5b and c. If proportional hazards are assumed (between the placebo plus standard care
and treatment plus standard care groups) then the hazard for the invention group can be defined
via a proportionality parameter (ψ). This proportionality parameter reflects the treatment effect
i.e. logψ = β. All three hazard functions for treatment plus standard care group are also shown
in Figure 5 with ψ = 0.87.

Figure 5: Proposed hazard functions for simulation study.

Once the hazard function is defined, then all functions needed to simulate time-to-event data (e.g.
cumulative hazard, Survivor function, etc) can be derived. The approach for estimating power
given a particular sample size is outlined in Algorithm 3, and is a standard simulation estimation
approach. As can be seen, the hazard function (which may involve additional parameters φ), ψ
and the sample size N are initially defined. Then, for a large number of iterations, treatment
allocations are simulated and data are then simulated based on a probability density function
and these allocations (line 3). A survival model is then re-fit to the data (line 4). Here, two
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types of survival models are fitted; a semi-parametric version where the baseline hazard is left
undefined, and a Weibull proportional hazards model. The appeal of the semi-parametric model
is that the baseline hazard is quite flexible, and should be able to capture the empirically defined
hazard. The appeal of the Weibull model is that assuming a parametric hazard should yield gains
in power, however the hazard may not be flexible enough to capture the assumed form of the
empirical hazard. Both models were fit using maximum likelihood techniques. Based on the fitted
model, a 95% confidence interval for log φ was found, and an indicator for whether this interval
includes 0 was evaluated. Once this process was repeated a large number of times, the power was
approximated by evaluating the proportion of times the 95% confidence interval for log φ did not
include 0.

Algorithm 3 Approach for estimating power for a given sample size with time-to-event outcome
1: Initialise h(t, φ) for SoC group, ψ and N = sample size
2: for b = 1 : B do
3: xb ∼ BERN(0.5), yb ∼ p(y|ψ, xb)
4: Fit survival model and estimate β = logψ
5: δb = I(0 /∈ Ψ|ψl ≤ Ψ ≤ ψu)
6: end for
7: δ = 1

B

∑B
b=1 δ

b

Figure 6: Approximate power for given sample sizes for φ = 0.87 and the (a) Empirical hazard
function, (b) Exponential hazard function λ = 1/26, and (c) Weibull hazard function γ = 0.8, λ =
1/26 when the semi-parametric (−) and Weibull (− −) regression models were refit to the simulated
data.

Approximate power for given sample sizes are shown in Figure 6 for the three hazard functions,
φ = 0.87 and where the simulated data were refit under the semi-parametric and Weibull regression
models. As can be seen, there is little difference in power estimates between the semi-parametric
and Weibull models. However, when data were generated based on the empirical hazard, the max-
imum likelihood estimates for the Weibull regression model often failed to converge. Accordingly,
only results for the semi-parametric model are shown for this case. Across all cases, it can be
seen that a large number of participants need to be enrolled to achieve at least 60% or 80% power
(particularly in the empirical and Weibull hazard function case). Given this, it was concluded that
it was not worth pursuing a full Bayesian adaptive sample size implementation to explore required

23

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 22, 2021. ; https://doi.org/10.1101/2021.08.17.21262196doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.17.21262196
http://creativecommons.org/licenses/by/4.0/


sample sizes across a variety of different settings.
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