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Abstract: (up to 250 words) 

Background: Mendelian randomization (MR) uses genetic variants as instrumental variables to 

investigate the causal effect of a risk factor on an outcome. A collider is a variable influenced by 

two or more other variables. Naive calculation of MR estimates in strata of the population defined 

by a variable affected by the risk factor can result in collider bias.  

Methods: We propose an approach that allows MR estimation in strata of the population while 

avoiding collider bias. This approach constructs a new variable, the residual collider, as the 

residual from regression of the collider on the genetic instrument, and then calculates causal 

estimates in strata defined by quantiles of the residual collider. Estimates stratified on the residual 

collider will typically have an equivalent interpretation to estimates stratified on the collider, but 

they are not subject to collider bias. We apply the approach in several simulation scenarios 

considering different characteristics of the collider variable and strengths of the instrument. We 

then apply the proposed approach to investigate the causal effect of smoking on bladder cancer 

in strata of the population defined by bodyweight.  

Results: The new approach generated unbiased estimates in all the simulation settings. In the 

applied example, we observed a trend in the stratum-specific MR estimates at different 

bodyweight levels that suggested stronger effects of smoking on bladder cancer among 

individuals with lower bodyweight.  

Conclusions: The proposed approach can be used to perform MR studying heterogeneity among 

subgroups of the population while avoiding collider bias.  
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Introduction 

Mendelian randomization (MR) is the use of genetic variants as instrumental variables to 

assess the causal relationship between a risk factor and an outcome [1,2]. A valid 

instrumental variable (IV), or genetic instrument, must meet the following assumptions 

[3]: IV1, the instrument is associated with the risk factor; IV2, the instrument cannot 

affect the outcome directly, only potentially indirectly via the risk factor; and IV3, the 

instrument is not associated with any measured or unmeasured confounders (Figure 1A). 

If these assumptions are satisfied, an association of the instrument with the outcome is 

indicative of a causal effect of the risk factor on the outcome [1,4]. However, if either the 

IV2 or IV3 assumption are not satisfied, then the instrument could be associated with the 

outcome in the absence of a causal effect of the risk factor. However, only the IV1 

assumption can be verified based on measured data [5].  

Collider bias can occur when conditioning on a collider, defined as a variable that is a 

common effect of two or more variables [6,7]. The presence of collider can be recognized 

in a causal diagram when there are two arrows pointing at the same variable; the node at 

which the arrowheads “collide” together is a collider. For example, in the standard MR 

diagram, the risk factor is a collider as it is affected by both the instrument and the 

confounders. Moreover, any variable that is a causal descendent of collider is also affected 

by the same variables and so is itself a collider; hence in MR any variable influenced by 

the risk factor is a collider (Figure 1B). Even if the variables influencing a collider are 

independent, they will typically become dependent when conditioning on the collider. 

Hence conditioning on a variable affected by the risk factor will typically generate a 

conditional association between the instrument and the confounders, violating the IV3 

assumption, and biasing Mendelian randomization estimates of the risk factor on the 

outcome.  

Selection bias is a form of collider bias that occurs when selection of individuals into a 

dataset is dependent on a collider. For example, when disease progression is considered 

as an outcome, only patients who have already developed the disease would be recruited 

into the study [6]. If risk of developing the disease is influenced by the risk factor, then it 

is a collider when considering disease progression as the outcome, and selection of the 

study sample would result in collider bias. Several papers related to selection bias in the 

context of IV analysis and MR have been already published [8–10].  
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Collider bias could also occur when stratifying the population based on a collider. As an 

example, we consider investigating the causal effect of the risk factor on the outcome for 

individuals with specific levels of a stratifying variable. Stratification is important for 

identifying whether there are subgroups of the population for which causal effects of the 

risk factor are different, and so the outcome would be affected more strongly by an 

intervention on the risk factor. However, if the stratifying variable is a collider, an 

association between the instrument and the outcome in strata of the population could arise 

due to collider bias, invalidating the results. In particular, collider bias could affect some 

estimates more than others, leading to heterogeneity in the stratum-specific causal 

estimates even if the true causal effect is the same across strata. 

The aim of this paper is to present an MR approach that obtains estimates in strata of the 

population that do not suffer from collider bias. The structure of this paper is as follows: 

first, we demonstrate the bias that arises from conditioning on a collider; second, we 

propose an approach to calculate MR estimates in strata of the population and evaluate 

heterogeneity between estimates in the different strata; third, we illustrate this new 

technique in simulation studies and an applied example using the UK Biobank resource; 

and finally, we discuss the interpretation of estimates and limitations of the approach.  
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Methods  

Illustration of collider bias 

The simplest MR method to estimate the causal effect of a risk factor X on outcome Y 

with a genetic instrument G is the ratio method [2]. With a single instrument, a continuous 

risk factor and outcome, and under assumptions of linearity and no effect modification, 

the ratio estimate is defined as: 𝜃 =  
𝛽̂𝑌𝐺

𝛽̂𝑋𝐺
, where 𝛽̂𝑌𝐺 is the coefficient from regressing Y 

on G, and 𝛽̂𝑋𝐺 is the coefficient from regressing X on G [11].  

Collider bias will occur when adjusting for a collider variable C in the regression models 

for the ratio estimate, since an association between the instrument and the outcome will 

occur through conditioning on the collider. To demonstrate the impact and magnitude of 

collider bias, we performed a simulation study in which we compared estimates when no 

adjustment on C is made versus when the outcome regression is adjusted for C. It is also 

possible to adjust the risk factor regression for C; however, while this will distort 

estimates, this adjustment alone will not bias causal estimates when the true causal effect 

is null. 

Stratification in Mendelian randomization 

To further illustrate the impact of collider bias, we performed a simulation study in which 

we calculated causal estimates using the ratio method within strata of the population 

defined using a variable that is influenced by the risk factor, and hence is a collider. We 

compared two approaches: first, we stratified directly on the collider C, and second, we 

stratified on a new variable C0, referred to as the “residual collider”. The residual collider 

was generated as the residual from regression of the collider on the genetic instruments: 

𝐶0 = 𝐶 −  𝐶̂, where 𝐶̂ are the fitted values from regression of C on G. 

The residual collider C0 is not associated with the instrument, and hence it is not itself a 

collider. It is influenced by the component of the risk factor that is not a function of G, 

but not by the component that is a function of G. However, provided that the genetic 

instrument does not explain much of the variance in the risk factor (as is typical in a MR 

application), it is likely not to explain much of the variance in the collider, and so the 

residual collider will be highly correlated with the collider. Hence, while stratifying on 

the residual collider is important to avoid bias, the strata defined by stratifying on the 
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collider or residual collider are likely to be similar and so any difference in the 

interpretation of stratum-specific estimates is minimal. 

Here we considered estimates in four strata of the population defined by quartiles of the 

distribution of the collider or residual collider; however, in practice any number of strata 

could be considered. We estimated genetic associations with the outcome in each stratum 

separately. We estimated genetic associations with the risk factor in the full dataset, 

although if it is believed that these associations vary between strata, it would be possible 

to estimate these within each stratum as well. The stratum-specific estimate is calculated 

as the ratio of the stratum-specific genetic association with the outcome divided by the 

genetic association with the risk factor. We also investigated heterogeneity between the 

stratum-specific estimates using Cochran’s Q statistic [12], and (in the applied example) 

we examined the presence of a trend in the estimates by meta-regression of the stratum-

specific estimates on the median value of the collider in each stratum [13]. 

Simulation set-up 

To investigate the impact of collider bias in realistic scenarios, we generated simulated 

data using the following data-generating model:   

G, U, εX, εY, εC ~ N(0,1) independently  

X =  α0 + α1G +  α2U +  εX 

Y =  β0 + β1X +  β2U +  εY 

C =  μ0 + μ1X +  μ2U + εC 

We simulated the instrument G, the confounder U, and the error terms for X, Y and C, εX, 

εY and εC, as independent normally distributed variables. The risk factor X is defined as 

a linear combination of the instrument, the confounder, and the error term. The outcome 

Y and the collider C are both linear combinations of the risk factor, confounder, and their 

error terms. In each simulated dataset, we also generated the residual collider C0 as the 

residual from regression of C on G as previously described.  

The causal estimate of interest is 𝛽1, while 𝛼2 and 𝛽2 represent the effects of U on X and 

Y respectively; 𝛼1 is the effect of G on X; and 𝜇1 and 𝜇2 are the effects of X and U on C, 

respectively.  
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We considered three scenarios based on the parameter 𝛽1: Scenario A1, where there is a 

null causal effect of X on Y (β1 = 0); Scenario A2, where the effect is constant and 

positive (β1 = 0.5); and Scenario A3, where the effect depends on C (β1 = 0.5 + 0.2C). 

In Scenario A1, we considered estimates from the ratio method with and without 

adjustment for the collider. In Scenarios A2 and A3, we consider stratum-specific 

estimates from stratification on the collider C or the residual collider C0. 

We varied the other parameters to consider the impact of different settings on collider 

bias: i) α1 = (0.05, 0.1, and 0.3), in order to study the impact of the strength of the 

instrument on estimates; ii) positive confounding (α2 = 0.8, β2 = 0.8) negative (α2 =

−0.8, β2 = −0.8) and mixed (α2 = 0.8, β2 = −0.8), to study how the direction of 

confounding affects the estimates and, iii) μ1 and μ2 = (−1, −0.5, 0, 0.5, 1) to study how 

the strength of the collider effects influence bias.  

We also considered scenarios where the collider is a common effect of X and Y (Figure 

1C). In these scenarios, the collider is generated as C =  μ0 + μ1X +  μ2U +  μ3Y +  εC, 

where μ2 = 0.3 and μ3 = (−1, −0.5, 0, 0.5, 1) . In Scenario B1, the causal effect of X on 

Y is null (β1 = 0), in Scenario B2, the causal effect is constant and positive (β1 = 0.5), 

and in Scenario B3, the causal effect depends on U (β1 = 0.5 + 0.2𝑈), as it is not possible 

for the causal effect to depend on C when C is a function of Y. Finally, we investigated 

additional scenarios with a binary outcome Y. We generate Y from a Binomial distribution 

where the probability is obtained from a logit transformation as: logit(𝑃(Y = 1)) =  β0 +

 β1X +  β2U, where β0 = 0.5. In Scenario C1, the causal effect of X on Y is null (β1 = 0), 

in Scenario C2, the causal effect is constant and positive (β1 = 0.5) and in Scenario C3, 

the causal effect depends on C (β1 = 0.5 + 0.2C). In the binary outcome scenarios, 

genetic associations with the outcome were estimated by logistic regression. For these 

additional scenarios, we only consider α1 = 0.1 and the positive confounding values; 

otherwise, we consider all parameters as in scenarios A1 to A3.  

We considered a sample size of n = 10,000 and m = 500 replications for each set of 

parameter values. A directed acyclic graph illustrating the simulation parameters is shown 

in Figure 1D. 

Applied example: effect of tobacco smoking on bladder cancer risk across bodyweight 

strata 
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We applied the proposed MR stratification approach to investigate the causal effect of 

tobacco smoking on bladder cancer across strata of the population defined by bodyweight. 

Tobacco smoking is one of the strongest risk factors for cancer, and it has already been 

reported to be causally associated with bladder cancer risk in a previous Mendelian 

randomization study [14]. With our current example, the objective was to investigate 

whether the effect of smoking on the risk of developing bladder cancer is homogeneous 

across the bodyweight distribution of the population, while avoiding potential collider 

bias by applying our new stratification approach.  

We performed analyses in the UK Biobank study, a population-based cohort of more than 

500,000 United Kingdom residents recruited between 2006 and 2010 [15]. For our 

analysis, we restricted to unrelated European ancestry participants, resulting in a final 

sample size of 367,643 individuals following sample selection and quality control 

procedures as described previously [14]. The risk factor is a binary variable representing 

the smoking behaviour, defined as being a current smoker versus a former or never 

smoker; the stratifying variable is bodyweight, measured in kg; and the binary outcome 

is bladder cancer status, defined based on the data from national registries (International 

Classification of Diseases 9th edition codes: 188, 189.1, 189.2, V10.51, V10.53; or 

International Classification of Diseases 10th edition codes: C67, C65, C66, Z85.51, 

Z85.54, Z85.53), and self-reported information from an interview with a nurse 

practitioner. The instrument for smoking was a weighted genetic risk score comprising 

378 conditionally independent SNPs obtained from a genome-wide association study 

(GWAS) assessing associations with smoking initiation (i.e., probability of ever smoked 

regularly), and weighted by the associations with smoking initiation [16]. Genetic 

associations with the risk factor and outcome were obtained by logistic regression in UK 

Biobank with adjustment for age, sex, and 10 genomic principal components. While age, 

sex, and principal components cannot logically be colliders as they are not affected by 

the risk factor or outcome, bodyweight is likely to be a collider, as it is influenced by 

smoking status [17].  
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Results 

Illustration of collider bias 

Results from Scenario A1 (β1 = 0, null causal effect) are presented in Table 1 for α1 =

0.1 (corresponding to R2=0.006 for the mean proportion of variance in the risk factor 

explained by the instrument and a mean F statistic of 60.8) and Supplementary Tables 1 

and 2 for α1 = 0.3 (corresponding to R2=0.051, mean F statistic of 548.6) and α1 = 0.05 

(corresponding to R2=0.001, mean F statistic of 15.3). In each case, we report the median 

estimate of β1 across simulations, and the empirical type I error rate, representing the 

proportion of simulated datasets where the 95% confidence interval for the ratio estimate 

excludes zero. With no adjustment for the collider, median estimates were close to zero 

and empirical type I error rate was close to the expected value of 5%. When adjusting for 

the collider in the regression of Y on G, estimates were biased, and type I error rates were 

substantially above 5%. The only exception was for μ1 = 0; in this case, the variable C 

is not a function of the risk factor, and so does not act as a collider. Bias and type I error 

rates generally increased for more extreme values of μ1 and μ2 (both positive and negative 

values). The direction of bias depended on μ1 and μ2 and the direction of confounding.  

Stratification in Mendelian randomization 

Results from Scenario A2 (β1 = 0.5, constant positive effect) are presented in Table 2 for 

α1 = 0.1 with positive confounding. Supplementary Table 3 shows results for α1 = 0.1 

with negative and mixed confounding, and Supplementary Tables 4 and 5 for α1 = 0.3 

and α1 = 0.05. We report the median estimate of β1 in four strata of the sample defined 

by quartiles of the collider C or residual collider C0, and the proportion of simulated 

datasets for which the heterogeneity test statistic is rejected. When stratifying on the 

collider, median estimates were somewhat variable between the strata, although the 

proportion of datasets in which the heterogeneity test rejects the null hypothesis of 

homogeneity was not much above 5% in any scenario, reaching a maximum of 11% when 

α1 = 0.3. However, if we considered stronger instruments or larger sample sizes, we 

would see this proportion considerably exceed 5% (see Supplementary Table 6 where we 

first set α1 = 0.5 and n=10,000, and then set α1 = 0.1  and n = 50,000, and the type I 

error rate reached 16% in each case). Median estimates differed substantially from the 

true value of 0.5 across strata, especially when the collider was strongly affected by the 

risk factor. In contrast, when stratifying on the residual collider, median estimates of β1 
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were close to 0.5 throughout, and there was no suggestion in any case that the 

heterogeneity test rejected the null above the expected 5% rate. 

Results from Scenario A3 (variable effect) are presented in Table 3 for α1 = 0.1 with 

positive confounding. Supplementary Table 7 shows results for α1 = 0.1 with negative 

and mixed confounding, and Supplementary Tables 8 and 9 for α1 = 0.3 and α1 = 0.05. 

Estimates differed somewhat when stratifying on the collider versus the residual collider, 

although in both cases median estimates increased across the four strata. The proportion 

of datasets in which the heterogeneity test was rejected, which in this case represents the 

empirical power to detect heterogeneity in the stratum-specific estimates, was 

consistently higher when stratifying on the residual collider, indicating that true 

differences in the stratum-specific estimates were better detected when stratifying on the 

residual collider. 

Additional scenarios 

In Scenarios B1 (β1 = 0), B2 (β1 = 0.5) and B3 (β1 = 0.5 + 0.2U), where the collider 

was a function of both the risk factor and outcome, similar results were observed, with 

collider bias evident when conditioning on the collider (Supplementary Table 10) and 

when stratifying on the collider (Supplementary Table 11). Collider bias in Scenarios B1 

and B2 was greater compared with Scenarios A1 and A2 where the collider was a function 

of the risk factor only. Similarly, bias was not observed when stratifying on the residual 

collider (Supplementary Table 11). For Scenario B3, the power of the homogeneity test 

was lower in comparison to Scenario A3 (Supplementary Table 11), as the dependence 

of effect heterogeneity on the collider was weaker; however, heterogeneity was detected 

more often when stratifying on the residual collider than on the collider. 

For Scenarios C1 (β1 = 0), C2 (β1 = 0.5) and C3 (β1 = 0.5 + 0.2C), where the outcome 

was binary, again similar results were observed, with collider bias evident when 

conditioning on the collider in Scenario C1 (Supplementary Table 12) and when 

stratifying on the collider in Scenarios C2 and C3 (Supplementary Table 13). Bias was 

smaller than in cases with a continuous outcome, although direct comparison is somewhat 

unfair as estimates with a binary outcome were obtained from logistic regression and so 

represent log odds ratios. Estimates when stratifying on the residual collider were slightly 

attenuated from 0.5 due to the non-collapsibility of the odds ratio [18,19]. Despite this, in 

Scenario C2 we observed similar estimates across the different strata of C0 for each set of 
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parameter values. Similarly, in Scenario C3 we observed that median stratum-specific 

estimates increased across the four strata when stratifying on either the collider or residual 

collider. Power to detect heterogeneity was lower compared with Scenario A3 as the 

stratum-specific estimates are less precise, although again power was consistently higher 

when stratifying on the residual collider.  

Applied example: effect of tobacco smoking on bladder cancer risk across bodyweight 

strata 

Estimates for the causal effect of smoking on bladder cancer in strata of bodyweight and 

residual bodyweight are shown in Table 4. Estimates represent the odds ratio for bladder 

cancer per one unit increase in the log odds of being a current smoker. Estimates were 

positive in all strata, although larger in strata 1 and 2 for both bodyweight and residual 

bodyweight, and 95% confidence intervals excluded the null in these strata only. 

Although the homogeneity test was not rejected for either collider variable (p-value = 

0.151 and p-value = 0.084 for bodyweight and residual bodyweight, respectively), there 

was evidence of trend in the stratum-specific estimates for residual bodyweight from 

meta-regression on the mean value of bodyweight in each stratum (p-value = 0.019). 

These results suggest that the effect of smoking on bladder cancer is stronger for 

subgroups of the population with lower bodyweight.   
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Discussion 

In this paper, we have demonstrated that conditioning or stratifying on a variable that is 

a collider can have a serious impact on MR estimates. We have introduced a simple 

approach that constructs a new variable, the residual collider, which is typically highly 

correlated with the collider, but is independent of the instrument. Estimates obtained from 

stratification on the residual collider did not suffer from bias in a range of simulation 

studies. Stratification on the residual collider allows investigators to explore causal 

estimation in relevant subgroups of the population. We applied our new approach to 

demonstrate that MR estimates for the effect of smoking on bladder cancer differ within 

strata of bodyweight, suggesting that the effect of smoking is stronger for subgroups of 

the population with lower bodyweight. 

The approach of stratifying on the residual collider follows the same logic as a previously 

proposed method for non-linear MR, in which causal estimates are obtained in strata of 

the population defined by the “residual risk factor” or “IV-free exposure” [20,21]. This 

variable is defined similarly to the residual collider, except the collider variable is the risk 

factor itself. This method has been used previously to estimate the causal effect of blood 

pressure on coronary heart disease risk within strata of blood pressure, resulting in a curve 

that represents the shape of the causal relationship between the risk factor and the 

outcome [22]. This paper extends on that method, showing that the same idea can be used 

to provide causal estimates stratified on a separate variable even if that variable is a 

collider. 

There are some limitations to this approach. First, while the independence of the residual 

collider from the instrument is theoretically justified, we demonstrated the validity of our 

approach through simulation studies. Although we considered a range of different 

scenarios and parameter values, it is not possible to consider every possible data-

generating mechanism by which that a collider could arise. Second, in practice, the 

relationships between variables are unknown, and so it may be unclear whether a 

proposed stratifying variable is a collider. However, even if the variable is not a collider, 

it is unlikely stratification on the residual variable will lead to invalid estimates, 

suggesting that this approach would be valid for stratifying on variables that are not 

colliders. This was demonstrated in the simulation study when the effect of the risk factor 

on the “collider” was zero (μ1 = 0), and so the stratifying variable was not a collider. One 

exception is if the stratifying variable is on the causal pathway from the risk factor to the 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 24, 2021. ; https://doi.org/10.1101/2021.08.17.21262178doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.17.21262178
http://creativecommons.org/licenses/by/4.0/


outcome. Stratification on such a variable (a “mediator”) will lead to biased estimates 

even in the proposed approach. Finally, the degree of collider bias depended on the 

strength of the effects of the risk factor and confounder on the collider, and the direction 

of confounding. It is possible that collider bias may not be substantial in practice, as 

observed in the applied example, where estimates were broadly similar when stratifying 

on bodyweight or residual bodyweight. However, the power to detect heterogeneity in 

stratum-specific estimates in the simulation study was greater when stratifying on the 

residual collider, especially when the proportion of variance of the risk factor explained 

by the instrument was higher. This was also observed in the applied example, where a 

lower p-value was observed in both the heterogeneity test and the trend test when 

stratifying on residual bodyweight. 

The finding that the effect of smoking on bladder cancer is greater in lower bodyweight 

subgroups is plausible, because for any given level of cigarette consumption smaller 

individuals will tend to be exposed to greater concentrations of carcinogens [23]. An 

alternative explanation is that the genetic variants could associate more strongly with 

smoking intensity in individuals of lower bodyweight. However, we would be cautious 

not to interpret estimates in the higher bodyweight quartiles as implying an absence of a 

causal effect in heavier individuals; it is possible that the null estimates reflect limited 

power. A limitation of the applied example is overlap between the discovery dataset for 

the genetic variants, and the dataset used in the MR analysis, which can lead to winner’s 

curse, and the one-sample setting, which can lead to weak instrument bias. 

In conclusion, we recommend that researchers performing MR to investigate causal 

effects in strata of a population defined by a collider stratify on residual values of the 

collider rather than stratifying on the collider directly.  
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Figures  

Figure 1. Directed Acyclic Graphs (DAGs) illustrating relationships between the variables. 
 

 

A) Mendelian Randomization causal diagram with the instrumental variable assumptions. The dashed lines between G and Y and between G and U, represent violations of the IV2 and IV3 assumptions 
respectively. 

B) DAG considering a collider variable C, being a common child of genetic instrument G and confounders U. When conditioning on C (indicated by the square box on C), G and U become correlated (dashed 
line between G and U) and a violation of the IV3 assumption occurs.  

C) DAG considering a collider variable C, being a common child of risk factor X and outcome Y.  
D) DAG illustrating the variables and parameters used for the simulation study. Dash line from Y to C correspond to simulation scenarios B1 to B3
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Tables  

Table 1. Median of β1 estimates and empirical Type I error rates for Scenario A1 (null causal effect, β1 =0) with positive, negative, and mixed confounding, and α1 =0.1 

  Positive confounding (α2 and β2 = 0.8) Negative confounding (α2 and β2 = -0.8) Mixed confounding (α2 =0.8 and β2 = -0.8) 

  

Median 
estimate 

Type I 
error rate 

(%) 

Median 
estimate 

Type I 
error rate 

(%) 

Median 
estimate 

Type I 
error rate 

(%) 

Median 
estimate 

Type I 
error rate 

(%) 

Median 
estimate 

Type I 
error rate 

(%) 

Median 
estimate 

Type I 
error rate 

(%) 

µ1 µ2 No adjust for collider Adjust Y/G for collider  No adjust for collider Adjust Y/G for collider  No adjust for collider Adjust Y/G for collider  

-1 -1 0.01 7% -0.27 70% 0.01 5% 0.09 10% 0.00 5% 0.28 69% 
  -0.5 0.00 6% -0.28 66% -0.01 3% -0.12 15% 0.00 6% 0.29 69% 
  0 0.00 5% -0.24 50% -0.01 4% -0.26 53% 0.01 5% 0.25 54% 
  0.5 0.01 6% -0.10 15% 0.01 6% -0.28 69% 0.00 6% 0.12 15% 
  1 0.00 5% 0.08 8% 0.01 3% -0.27 68% 0.00 4% -0.08 11% 

-0.5 -1 0.01 6% -0.16 30% 0.00 6% 0.15 21% 0.00 5% 0.17 34% 
  -0.5 0.00 6% -0.18 32% 0.00 5% 0.04 7% 0.01 4% 0.18 30% 
  0 0.00 5% -0.11 16% 0.00 3% -0.12 14% 0.00 3% 0.11 14% 
  0.5 -0.01 5% 0.02 5% 0.00 6% -0.17 30% 0.00 4% -0.03 7% 
  1 0.01 5% 0.15 25% 0.00 6% -0.18 34% 0.01 4% -0.15 21% 

0 -1 -0.01 7% 0.00 6% 0.00 6% 0.00 6% 0.00 6% 0.00 6% 
  -0.5 0.00 7% 0.00 6% 0.00 6% 0.00 6% 0.00 5% -0.01 5% 
  0 0.00 6% 0.01 6% 0.01 6% 0.01 6% 0.00 6% 0.00 6% 
  0.5 -0.01 6% 0.00 6% 0.00 5% 0.00 6% 0.00 7% 0.00 7% 

  1 0.00 5% 0.01 6% 0.00 4% 0.00 4% -0.01 6% -0.01 5% 

0.5 -1 0.01 4% 0.16 22% 0.01 6% -0.17 35% 0.00 4% -0.15 23% 
  -0.5 -0.01 5% 0.02 5% -0.01 7% -0.19 36% 0.01 6% -0.03 7% 
  0 0.00 5% -0.11 14% 0.00 4% -0.11 15% -0.01 4% 0.10 15% 
  0.5 0.01 4% -0.17 28% 0.00 5% 0.03 7% 0.00 5% 0.18 34% 

  1 0.01 6% -0.17 31% 0.01 5% 0.15 23% 0.00 5% 0.17 33% 

1 -1 0.01 5% 0.08 8% 0.01 5% -0.27 70% 0.01 3% -0.07 9% 
  -0.5 0.01 4% -0.10 13% 0.01 5% -0.27 64% -0.01 5% 0.11 18% 
  0 0.01 6% -0.24 52% 0.00 5% -0.24 50% -0.01 3% 0.24 48% 
  0.5 0.01 5% -0.27 66% 0.01 4% -0.11 15% 0.00 4% 0.28 66% 

  1 0.01 4% -0.26 68% 0.00 4% 0.08 10% 0.02 5% 0.29 75% 

- Empirical Type I error rate represents the proportion of simulated datasets where the null hypothesis is not rejected.
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Table 2. Median of causal estimates in different quartiles, and proportion of datasets in which the homogeneity test was rejected for Scenario A2 (fixed causal effect of 

β1 =0.5) with positive confounding and α1 =0.1 

  Positive confounding (α2 and β2 = 0.8) 

  Stratifying on collider, C Stratifying on residual collider, C0 

µ1 µ2 
Proportion 

homogeneity 
rejected (%) 

Median 
estimates Q1 

Median 
estimates Q2  

Median 
estimates Q3 

Median 
estimates Q4 

Proportion 
homogeneity 
rejected (%) 

Median 
estimates Q1 

Median 
estimates Q2  

Median 
estimates Q3 

Median 
estimates Q4 

-1 -1 8% 0.11 -0.01 0.01 0.10 8% 0.49 0.48 0.49 0.50 

  -0.5 6% 0.09 -0.05 -0.05 0.09 5% 0.53 0.48 0.51 0.53 

  0 7% 0.07 0.01 -0.04 0.07 6% 0.50 0.52 0.50 0.49 

  0.5 7% 0.19 0.10 0.09 0.17 6% 0.49 0.50 0.49 0.48 

  1 4% 0.41 0.37 0.40 0.40 4% 0.50 0.48 0.52 0.49 

-0.5 -1 7% 0.30 0.21 0.23 0.26 5% 0.53 0.53 0.52 0.48 

  -0.5 5% 0.24 0.16 0.18 0.25 5% 0.48 0.47 0.51 0.48 

  0 4% 0.29 0.23 0.21 0.29 4% 0.50 0.47 0.45 0.49 

  0.5 6% 0.47 0.42 0.47 0.46 6% 0.50 0.50 0.50 0.50 

  1 3% 0.59 0.65 0.64 0.60 5% 0.48 0.50 0.51 0.50 

0 -1 6% 0.50 0.50 0.48 0.48 6% 0.51 0.50 0.48 0.47 

  -0.5 4% 0.48 0.48 0.52 0.50 4% 0.47 0.47 0.52 0.50 

  0 4% 0.49 0.48 0.51 0.52 4% 0.49 0.49 0.51 0.51 

  0.5 5% 0.52 0.49 0.49 0.53 6% 0.54 0.49 0.48 0.53 

  1 4% 0.48 0.48 0.51 0.49 4% 0.48 0.47 0.52 0.50 

0.5 -1 4% 0.62 0.63 0.66 0.63 4% 0.51 0.49 0.52 0.52 

  -0.5 5% 0.45 0.44 0.44 0.47 4% 0.49 0.50 0.49 0.51 

  0 4% 0.32 0.23 0.23 0.29 4% 0.51 0.51 0.47 0.49 

  0.5 5% 0.25 0.18 0.19 0.25 3% 0.51 0.49 0.52 0.50 

  1 5% 0.26 0.23 0.20 0.28 5% 0.46 0.51 0.49 0.50 

1 -1 5% 0.41 0.37 0.34 0.40 5% 0.49 0.50 0.46 0.49 

  -0.5 5% 0.16 0.11 0.09 0.21 4% 0.49 0.49 0.50 0.51 

  0 6% 0.12 -0.03 0.00 0.11 6% 0.50 0.50 0.53 0.51 

  0.5 6% 0.04 -0.03 -0.02 0.07 4% 0.47 0.51 0.51 0.50 

  1 6% 0.14 0.00 0.03 0.10 6% 0.54 0.49 0.50 0.49 

Proportion homogeneity rejected represents the proportion of simulated datasets where the null hypothesis of homogeneity is rejected
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Table 3. Median of causal estimates in different quartiles, and proportion of datasets in which the homogeneity test was rejected for Scenario A3 (varying causal effect) with 1 
positive confounding and α1 =0.1 2 

  Positive confounding (α2 and β2= 0.8) 

  Stratifying on collider, C Stratifying on residual collider, C0 

µ1 µ2 
Proportion 

homogeneity 
rejected (%) 

Median 
estimates 

Q1 

Median 
estimates 

Q2  

Median 
estimates 

Q3 

Median 
estimates 

Q4 

Proportion 
homogeneity 
rejected (%) 

Median 
estimates 

Q1 

Median 
estimates 

Q2  

Median 
estimates 

Q3 

Median 
estimates 

Q4 

-1 -1 48% -0.39 -0.07 0.14 0.58 95% -0.46 0.19 0.64 1.27 
  -0.5 30% -0.33 -0.06 0.00 0.44 88% -0.36 0.24 0.59 1.15 
  0 19% -0.25 -0.08 0.00 0.38 78% -0.25 0.22 0.55 1.09 
  0.5 15% -0.11 0.05 0.14 0.46 61% -0.19 0.24 0.56 0.99 
  1 16% 0.09 0.32 0.44 0.63 40% -0.09 0.28 0.54 0.88 

-0.5 -1 36% -0.11 0.15 0.32 0.71 68% -0.07 0.34 0.64 1.08 
  -0.5 19% -0.07 0.14 0.30 0.58 48% -0.01 0.38 0.64 0.94 
  0 14% 0.08 0.23 0.36 0.57 25% 0.11 0.41 0.59 0.87 
  0.5 11% 0.22 0.46 0.55 0.76 16% 0.16 0.43 0.56 0.83 
  1 16% 0.35 0.58 0.77 0.98 16% 0.19 0.40 0.57 0.81 

0 -1 24% 0.24 0.49 0.66 0.95 24% 0.24 0.51 0.70 0.94 
  -0.5 14% 0.33 0.52 0.67 0.90 15% 0.33 0.50 0.66 0.89 
  0 13% 0.34 0.52 0.66 0.86 13% 0.35 0.53 0.66 0.87 
  0.5 13% 0.33 0.51 0.69 0.88 13% 0.33 0.52 0.69 0.89 
  1 25% 0.24 0.51 0.69 0.98 26% 0.25 0.52 0.70 0.99 

0.5 -1 18% 0.45 0.69 0.87 1.07 18% 0.38 0.59 0.77 1.01 
  -0.5 15% 0.34 0.50 0.64 0.88 18% 0.37 0.61 0.79 1.03 
  0 14% 0.17 0.30 0.41 0.68 26% 0.30 0.61 0.77 1.07 
  0.5 19% 0.05 0.22 0.37 0.72 45% 0.20 0.57 0.84 1.17 
  1 34% 0.00 0.25 0.41 0.81 63% 0.13 0.56 0.83 1.27 

1 -1 16% 0.25 0.46 0.55 0.88 40% 0.26 0.68 0.90 1.33 
  -0.5 12% 0.03 0.16 0.30 0.58 53% 0.19 0.65 0.97 1.37 
  0 18% -0.10 -0.02 0.11 0.49 70% 0.13 0.63 0.97 1.46 
  0.5 23% -0.16 -0.02 0.11 0.60 83% 0.04 0.59 0.98 1.54 
  1 35% -0.23 0.01 0.20 0.71 94% -0.07 0.55 1.04 1.65 

Proportion homogeneity rejected represents the proportion of simulated datasets where the null hypothesis of homogeneity is rejected 3 
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Table 4. Applied example using UK Biobank to investigate the effect of smoking status on bladder cancer risk in different bodyweight strata.  4 

 Bodyweight Q1 

OR [95%CI] 
Bodyweight Q2 

OR [95%CI] 
Bodyweight Q3 

OR [95%CI] 
Bodyweight Q4 

OR [95%CI] 
Heterogeneity 

test p-value 
Trend test 

p-value 

Stratifying on 
bodyweight 

1.59 [1.08; 2.33] 1.58 [1.16; 2.14] 1.13 [0.87; 1.45] 1.11 [0.88; 1.41] 0.151 0.051 

Stratifying on 
residual 

bodyweight 
1.61 [1.09; 2.37] 1.73 [1.28; 2.34] 1.25 [0.97; 1.62] 1.10 [0.87; 1.39] 0.084 0.019 

Bodyweight Q1, Q2, Q3, Q4, represent the four quartiles for both collider and residual collider in which the causal effect of smoking on bladder cancer risk is estimated.  5 
Odds ratios (OR) and 95% confidence intervals (95% CI) for bladder cancer are represent estimates per one unit increase in the log odds of being a current smoker.  6 
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