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Abstract 18 

Wastewater surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has proven a 19 

practical complement to clinical data for assessing community-scale infection trends.  Clinical assays, 20 

such as the CDC-promulgated N1, N2, and N3 have been used to detect and quantify viral RNA in 21 

wastewater but, to date, have not included estimates of reliability of true positive or true negative.  22 

Bayes’ Theorem was applied to estimate Type I and Type II error rates for detections of the virus in 23 

wastewater.  Conditional probabilities of true positive or true negative were investigated when one 24 

assay was used, or multiple assays were run concurrently.  Cumulative probability analysis was used to 25 

assess the likelihood of true SARS-CoV-2 detection using multiple samples.  Results demonstrate highly 26 

reliable positive (>0.86 for priors >0.25) and negative (>0.80 for priors = 0.50) results using a single 27 

assay. Using N1 and N2 concurrently caused greater reliability (>0.99 for priors <0.05) when results 28 

concurred but generated potentially counterintuitive interpretations when results were discordant.  29 

Regional wastewater surveillance data was investigated as a means of setting prior probabilities.  30 

Probability of true detection with a single marker was investigated using cumulative probability across 31 

all combinations of positive and negative results for a set of three samples.  Findings using a low (0.11) 32 

and uniformed (0.50) initial prior resulted in high probabilities of detection (>0.95) even when a set of 33 

samples included one or two negative results, demonstrating the influence of high sensitivity and 34 

specificity values.  Analyses presented here provide a practical framework for understanding analytical 35 

results generated by wastewater surveillance programs.    36 

 37 

Introduction 38 

The on-going coronavirus disease-2019 (COVID-19) pandemic has reached most regions of the 39 

world, with global cases and deaths currently greater than 185 million and 4 million, respectively (Dong 40 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 22, 2021. ; https://doi.org/10.1101/2021.08.17.21262165doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.17.21262165
http://creativecommons.org/licenses/by-nc-nd/4.0/


et al., 2020). COVID-19 wastewater surveillance has emerged as a complementary epidemiological tool 41 

used to identify community level infection trends, as an early warning system, and even to screen for 42 

infected individuals at the building level. The dominant analytical techniques to quantify severe acute 43 

respiratory syndrome 2 (SARS-CoV-2), the virus that causes COVID-19, are PCR-based (e.g., RT-qPCR, RT-44 

dPCR) and use clinical assays.  Globally, the research community (Bivins et al., 2020; Naughton et al. 45 

2021) has made considerable progress in effectively applying this tool to quantify the virus in 46 

wastewater and observe community-scale trends.  The next phase of implementation should focus on 47 

appropriate interpretation of results with respect to confidence or probability. 48 

Bayes’ Theorem can be used to calculate results in terms of likelihood, or in the language of 49 

Bayesian statistics, posterior probability. Because of type I and II errors in PCR data, results are more 50 

accurately reported in terms of probability, which includes a consideration of prior likelihood of an event 51 

as well as false positive and negative rates. This approach computes the conditional probability of 52 

reliable result (true negative or true positive), then continually updates prior assumptions as new 53 

information is acquired. A Bayesian framework for interpreting analytical results from environmental 54 

samples has been applied in the field of microbial source tracking (MST) (Kildare et al. 2007;  Johnston et 55 

al. 2013, Curtis and Gonzalez 2019, Chen et al. 2021).  Here PCR markers for human-associated fecal 56 

microbes are used to identify waterways potentially impacted by wastewater.  Employing a Bayesian 57 

approach characterizes results in terms of contamination probability rather than simple 58 

presence/absence or concentration of the marker.  This method provides a quantitative way to 59 

incorporate new information (e.g. recent sample results) into the interpretation of subsequent results.   60 

Applying a probabilistic framework for understanding the reliability of results requires only the 61 

sensitivity and specificity of the analytical test and the ability to set a prior. Here we examine this 62 

approach using the Centers for Disease Control (CDC) SARS-CoV-2 panel (N1, N2, N3) under a variety of 63 
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wastewater surveillance scenarios.  The likelihood of true positive and true negative is examined using 64 

individual assays across a range of prior probabilities and also using multiple assays concurrently.  A 65 

proposed technique for setting realistic priors based on wastewater sampling results is described using 66 

data from a wastewater surveillance network with nine treatment facilities in southeastern Virginia.  67 

Finally, cumulative probability is used to investigate the interpretation of multiple sample results under 68 

two scenarios.  69 

 70 

Methods 71 

CDC Assay Sensitivity and Specificity 72 

The CDC SARS-CoV-2 real-time reverse transcription PCR panel (N1, N2, N3) was used to assess 73 

the likelihood that wastewater samples contained SARS-CoV-2 RNA based on analytical results, and 74 

assay sensitivity and specificity. These assays were developed for clinical identification of SARS-CoV-2 75 

infection but have been widely applied to environmental samples, particularly wastewater, for virus 76 

detection and enumeration (e.g. Stadler et al. 2020, Agrawal et al. 2021, McClary-Gutierrez 2021). The 77 

specificity of each assay was tested in-vitro by Lu et al. (2020) finding N1, N2 and N3 assays with 78 

specificity values of 1.0, 1.0, and 0.955 respectively. Specificity can be described as the tendency of an 79 

assay to not detect the target of interest when it is absent and is calculated by dividing the number of 80 

true negative values by the number of test samples which did not contain the target.  Thus, a specificity 81 

of 0.955 suggests a false-negative rate of 4.5%.  82 

The sensitivity of an assay describes its ability to detect the target when it is present.  83 

Wastewater sensitivity values were calculated using regional clinical data from the Virginia Department 84 

of Health (https://www.vdh.virginia.gov/coronavirus/) and SARS-CoV-2 wastewater results (Gonzalez et 85 
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al. 2020). Clinical PCR positive case counts by zip code for all zip codes within the 9 wastewater 86 

treatment facility sewersheds in Hampton Roads, Virginia were gathered from May 15, 2020 through 87 

November 17, 2020. True positives were defined as when a weekly wastewater sample from a facility 88 

was positive and at least one zip code in the facility’s catchment had a clinically confirmed infected 89 

individual that week. For each of the 3 assays, the number of weekly wastewater samples from the 9 90 

facilities were pooled. The number of samples with a true positive were divided by the total number of 91 

samples to determine the sensitivity of each assay in wastewater. The sensitivity for N1, N2, and N3 92 

assays are 75% (200/266), 83% (220/266), and 80% (212/266) respectively.  Sensitivity and specificity as 93 

used in subsequent equations are described below. 94 

 95 

Sensitivity (Se) and Specificity (Sp); 96 

 97 

 98 

where; 99 

       Se = assay sensitivity 100 

       Sp = assay specificity 101 

       A+ = a positive detection with a given assay 102 

       A- = a negative analytical result with a given assay  103 

 104 

 105 

𝑆𝑒 =  𝑃(𝐴+|𝐶𝑜𝑉2+) 

𝑆𝑝 = 𝑃(𝐴−|𝐶𝑜𝑉2−) 
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Bayes’ Theorem 106 

Bayes’ Theorem (eq 1) was applied to CDC assay sensitivity and the wastewater-derived specificity to 107 

investigate the likelihood that SARS-CoV-2 is present in wastewater samples given positive and negative 108 

analytical results.   109 

 110 

Equation 1. 111 

 112 

 113 

where; 114 

 CoV2+ = SARS-CoV-2 is present  115 

 CoV2- = SARS-CoV-2 is absent 116 

 117 

The posterior probability that SARS-CoV-2 is present in a sample given detection of each assay (N1, N2, 118 

N3) was tested across all possible priors (0.0-1.0) using Equation 1.   A similar conditional probability was 119 

derived to test the likelihood that SARS-CoV-2 is absent from a sample given a negative assay result and 120 

was also tested across all priors.   121 

As noted, the specificity of the N1 and N2 assays determined by Lu et al. were 1.0.  A specificity value of 122 

1.0 guarantees the absence of false positive results regardless of assay sensitivity and prior probability. 123 

As a result, it is difficult to observe the effect of differing approaches for setting priors and the 124 

𝑃(𝐶𝑜𝑉2+|𝐴+) =  
𝑃(𝐴+|𝐶𝑜𝑉2+) ∗ 𝑃(𝐶𝑜𝑉2+)

[𝑃(𝐴+|𝐶𝑜𝑉2+) ∗ 𝑃(𝐶𝑜𝑉2+)] + [𝑃(𝐴+|𝐶𝑜𝑉2−) ∗ 𝑃(𝐶𝑜𝑉2−)]  
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implications of using one or multiple assays.  To investigate these factors, we have used a specificity 125 

value of 0.999 for all calculations.  126 

 127 

 128 

Surveillance Using Multiple Assays Concurrently 129 

A multiple-assay approach to environmental sampling has been supported in the field of 130 

microbial source tracking (MST) (Harwood et al. 2014; Ahmed et al. 2016; Jardé et al. 2018;) and is 131 

currently employed by many researchers conducting wastewater surveillance of SARS-CoV-2 (Stadler et 132 

al. 2020; Peñarrubia et al. 2020; Agrawal et al. 2021).  The likelihood that SARS-CoV-2 is present in a 133 

sample was investigated using multiple assays concurrently.  Equation 2 describes the probability that 134 

SARS-CoV-2 is present given positive detection of the virus with two assays.  N1 and N2 assay were 135 

selected for this analysis due to CDC’s recommendation to remove N3 from the clinical panel (Lu et al. 136 

2020).  An analogous equation was used to test the likelihood that SARS-CoV-2 is present when failing to 137 

detect the virus using two assays.  All combinations of N1 and N2 detection and non-detection were 138 

tested across the range of possible priors (0.0-1.0).   139 

 140 

Equation 2. 141 

 142 

 143 

where; 144 

𝑃(𝐶𝑜𝑉2+|𝐴1
+  ∩  𝐴2

+) =  
𝑆𝑒1 ∗ 𝑆𝑒2 ∗  𝑃(𝐶𝑜𝑉2+)

𝑆𝑒1 ∗ 𝑆𝑒2 ∗  𝑃(𝐶𝑜𝑉2+) + (1 − 𝑆𝑝1) ∗ (1 − 𝑆𝑝2) ∗ 𝑃(𝐶𝑜𝑉2
−)
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 Sei     =   sensitivity of assay i 145 

 Spi     =  specificity of assay i 146 

 𝐴𝑖
+  =  detection of assay i 147 

 𝐴𝑖
−  =  failing to detect assay i 148 

Prior Probabilities Based on Wastewater Detection 149 

Wastewater surveillance data using the N2 assay and the N1 and N2 assays concurrently were 150 

used to set priors based on percent positive wastewater samples.  In this case the prior probability of 151 

SARS-CoV-2 in wastewater was set as the percent of samples which were positive for one or both assay 152 

in the week prior.  Wastewater data for these analyses come from the wastewater surveillance program 153 

being conducted by the Hampton Roads Sanitation District (HRSD) and comprise a raw influent sample 154 

from each of 9 regional treatment facilities.  For a detailed description of sampling and analytical 155 

methodologies see Gonzalez et al. 2020. Using wastewater-derived priors, posterior probability of SARS-156 

CoV-2 presence was calculated for wastewater samples using N2 alone and N1 and N2 concurrently.  For 157 

samples that were negative for N2 or both N1 and N2 the posterior probability that SARS-CoV-2 is 158 

absent in a given wastewater sample was reported.  159 

 160 

Cumulative Probability from Multiple Samples 161 

The cumulative probability of SARS-CoV-2 based on results from three separate samples was 162 

investigated for two scenarios representing a comparatively low and high initial prior.  The low initial 163 

prior (0.11) was based on the lowest possible non-zero value for percent positive treatment facilities (1 164 

of 9 facilities with a detection) in the Hampton Roads wastewater surveillance network.  The high initial 165 
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prior (0.50) was used to examine a situation where there is no reliable way to estimate prior likelihood 166 

and thus priors are uninformed.  Cumulative probability of the presence of SARS-CoV-2 was calculated 167 

using Equation 4 for each sample and the resulting posterior probability was used as the prior for 168 

subsequent samples.  169 

Equation 4. 170 

 171 

 172 

Where; 173 

P(CoV2+)c       =   cumulative probability of SARS-CoV-2 174 

P(CoV2+|A±)  =  probability of SARS-CoV-2 given a positive or negative assay  175 

 176 

 177 

Results and Discussion 178 

Confidence Using a Single Assay 179 

Bayes’ Theorem was applied in conjunction with sensitivity and specificity values for the three 180 

CDC assays to calculate posterior probabilities of true positive and true negative across all possible 181 

priors (Figure 1).  The high specificity values of each assay resulted in expectedly high posterior 182 

probabilities of SARS-CoV-2 given a positive analytical result (Figure 1a).  The resulting curves suggest 183 

that when N1 or N2 are used, a positive analytical result is highly reliable (>0.97), even at priors below 184 

0.05.  While not as overwhelming as N1 or N2, the N3 assay also generated highly reliable positive 185 

𝑃(𝐶𝑜𝑉2+)𝐶 = 1 − 𝛱 (1 − 𝑃(𝐶𝑜𝑉2+|𝐴−
+)) 
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results with posterior probabilities of SARS-CoV-2 >0.86 for priors >0.25.  The marginally increased 186 

likelihood of false positive results for N3 was expected given the slightly lower specificity (0.955).  As 187 

described by Lu et al., the N3 assay was intentionally designed to also detect SARS-CoV, resulting in a 188 

lower specificity value when cross-reactivity was tested against closely related respiratory viruses.  The 189 

likelihood of obtaining a true negative result was high with all assays when SARS-CoV-2 was absent 190 

(Figure 1b).  Values denoting likelihood of true negative result are more similar among assays than those 191 

for true positives, owing to the similarity in calculated sensitivity values. Findings suggest that when 192 

using an uninformed prior (0.50) a single assay generates acceptable confidence (0.80) in negative 193 

results.  Given no additional data to inform prior selection all assays performed well and result in a 194 

reasonably high likelihood of true negative results.  If there is reason to reduce the estimate of prior 195 

probability the reliability of a true negative increases dramatically and is greater than 0.92 for all priors 196 

<0.25 (Figure 1). 197 

 198 

Surveillance Using Multiple Assays Concurrently 199 

Many COVID-19 wastewater surveillance publications have concurrently used multiple SARS-200 

CoV-2 assays.  When different combinations of N1 and N2 assay results were tested across all priors, the 201 

resulting posterior probabilities for SARS-CoV-2 presence track in a generally predictable manner (Figure 202 

2).  When both assays detect the virus there is an exceedingly high probability (>0.99) that this detection 203 

is reliable, even at very low priors (0.005).  Similarly, when either assay is used individually and detects 204 

the virus, these results are also highly reliable, as described in the previous section.  Discordant results 205 

(N1+/N2- or N2+/N1-) using two assays also yields a high probability that SARS-CoV-2 is present (>0.87), 206 

even when priors are low (0.05).  This is a potentially counterintuitive result which requires an 207 

understanding of test characteristics (sensitivity and specificity) as well as the effect of prior probability 208 
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to appropriately interpret.  Failing to consider these results in a Bayesian framework, one might tacitly 209 

assign a likelihood of 0.5 to the probability that SARS-CoV-2 is present, given that two highly accurate 210 

tests yielded conflicting results.  Such an interpretation not only underestimates the likelihood that 211 

SARS-CoV-2 is present, it also provides no more information about SARS-CoV-2 presence in wastewater 212 

than what was known prior to sampling. In other words, this interpretation suggests that the virus is just 213 

as likely present as not. Alternatively, one might assume a low prior probability that SARS-CoV-2 is 214 

present, given low community incidence at the time of sampling, and therefore conclude that conflicting 215 

results actually suggest the virus is absent by considering the one positive result a false positive.  This 216 

would also be an incorrect interpretation, given what is known about the sensitivity and specificity of 217 

these assays.  The implication of this interpretation is assigning a 0.0 probability that SARS-CoV-2 is 218 

present when in fact there is a >0.93 likelihood that it is present for all priors above 0.10. 219 

  220 

Wastewater Detections to Inform Priors 221 

 One strategy for selecting prior probability of SARS-CoV-2 in wastewater samples is to use 222 

recent wastewater surveillance results.  Surveillance programs often sample at routine intervals, and 223 

some include multiple facilities.  Therefore, a simple metric such as percent positive samples over recent 224 

weeks or across multiple facilities can be used to inform prior probability.  Relatively large priors (0.39-225 

1.0) resulted when percent positive facilities were calculated using the Hampton Roads surveillance data 226 

due to the ubiquity of the virus in this region for the study period.  With most priors being >0.50 positive 227 

results are highly reliable for all samples, regardless if one or both assays were used (Fig 3).  These 228 

findings suggest that a single assay likely provides sufficient confidence in positive results when 229 

detections are routinely seen at monitored facilities, causing priors to be set relatively high.   230 
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Conversely, the likelihood of true negative is somewhat driven down (Figure 3) when 231 

wastewater-derived priors result in high values.  This effect is understandable considering that 232 

numerous recent detections should suggest a greater likelihood of detection for the current set of 233 

samples.  The consequence of high priors in constraining reliability of negative results is clearly shown in 234 

the 7/21/20 data from Figure 3.  This figure shows the likelihood of true positive for samples given 235 

detection of one or both assay and likelihood of true negative when one or both assays fail to detect 236 

viral RNA.  Here, given a prior probability of 83% that SARS-CoV-2 is present, a single negative N2 result 237 

indicates a 54% likelihood of true negative.  Finding negative results for both assays increases the 238 

likelihood of true negative, but only to 74%.  This is a significant departure for the reliability associated 239 

with concordant negative results when priors are lower (<0.15), which approaches 100%.  In a scenario 240 

of high priors based on numerous recent detections a negative result should be assigned less reliability 241 

than one when few recent samples are positive, given that wastewater detection of viral RNA is an 242 

indication of community incidence for a catchment.  However, such an interpretation may not be 243 

intuitive if one simply considers the sensitivity of the assay but fails to account for the prior likelihood of 244 

detection. 245 

Finding conflicting results when running multiple assays in the context of higher, wastewater-246 

derived priors also produces potentially difficult to interpret results.  For the range of wastewater-247 

derived priors tested (0.39-1.0), discordant results regardless of which assay was detected, provide 248 

strong evidence that SARS-CoV-2 is present (Figure 3). As described above, failing to consider prior 249 

probability of detection could lead a researcher to interpret conflicting results as a 0.5 likelihood that 250 

SAR-CoV-2 RNA is present in the sample. Interpretation using a Bayesian framework would suggest that, 251 

even at the lowest prior for which there were conflicting results (0.56), the likelihood that the virus is 252 

present is >0.99.  253 
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 254 

Multiple Samples 255 

 Collecting multiple samples is an effective alternative for increasing reliability in results while 256 

avoiding the need to run multiple assays.  This approach generates high confidence via the cumulative 257 

probability of true positive/negative results across samples, rather than the intersection of 258 

positive/negative results for two or more assays.  A multiple sample strategy was applied using a prior of 259 

0.11 to examine the effect of a wastewater-derived prior for a situation where one of the nine facilities 260 

in the HRSD surveillance network had a positive detection in the previous week.  At this prior, any 261 

combinations of samples that include a positive result yield >0.95 likelihood that viral RNA is present. A 262 

negative result in sample one reduces the likelihood that SARS-CoV-2 is present from 0.11 to 0.02.  In 263 

this scenario the second sample is highly informative.  Finding a positive result in sample two, even after 264 

a negative for sample one, yields a 0.95 likelihood that the virus is present. High cumulative probability 265 

that the virus is present given conflicting results from two samples using a single assay is consistent with 266 

the analogous finding of high likelihood given the intersection of two conflicting, different assays run on 267 

a single sample.   With no detection in sample one, a second negative result has little impact on the 268 

cumulative probability, which is 0.025, giving good evidence that the virus is absent.  This pattern 269 

continues for each sample three endpoint, wherein any positive result drives the cumulative probability 270 

that SARS-CoV-2 is present in a set of three samples above 0.94 while consecutive negative results yield 271 

cumulative probabilities (0.020 – 0.028) which remain one order of magnitude lower than the prior 272 

(0.11).   273 

Using an uniformed prior (0.50) results in a similarly high posterior probability (>0.99) that SARS-274 

CoV-2 is present for all combinations of sampling results other than three consecutive negatives.  A key 275 

difference with this prior is that even samples with only negative results still yield a 0.15-0.20 likelihood 276 
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that SARS-CoV-2 is present.  As described previously, this strategy for setting priors is reasonable when 277 

there is no reliable way to estimate likelihood of detecting viral RNA before samples have been 278 

analyzed.  Using a prior of 0.50 suggests a 50% likelihood that a sample contains the SARS-CoV-2 virus at 279 

a concentration greater than the analytical limit of detection.  The interaction of a prior that suggests an 280 

equal chance of detecting RNA as not (0.50) with the high sensitivity and specificity of the N2 assay 281 

generates some cumulative probabilities that may seem counterintuitive.  The main examples include 282 

sets of three samples for which two results are negative and one is positive but the cumulative 283 

probability that SARS-CoV-2 is present is still >0.99.  Intuitively, two negative results, regardless of where 284 

they occur in the sequence of samples, seem to suggest the absence of SARS-CoV-2.  Following a 285 

Bayesian approach in which priors are updated each time new data is acquired helps clarify these 286 

results. As described, the posterior probability from each sample is used as the prior for subsequent 287 

samples.  Sets of samples where the positive result occurred first in sequence results in high posterior 288 

probabilities which are carried through as priors for the remaining samples.  For these cases, even 289 

negative downstream results yield high posterior probabilities, driven by priors of >0.99 used in samples 290 

two and three.  In cases where sample one is negative, the prior of 0.50 and high sensitivity and 291 

specificity prevent the posterior probability from being driven below 0.14.  As a result, a positive 292 

detection in sample one or two results in a cumulative probability of >0.99. 293 

  294 

 295 

Limitations and Assumptions 296 

Applying a Bayesian framework for interpreting analytical findings is fundamentally driven by the 297 

sensitivity and specificity values assigned to the assays in question, along with the assumed prior.  As a 298 

result, the accuracy of these values is highly consequential for the analysis.  For this preliminary exercise, 299 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 22, 2021. ; https://doi.org/10.1101/2021.08.17.21262165doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.17.21262165
http://creativecommons.org/licenses/by-nc-nd/4.0/


in vivo specificity values similar to those reported by Lu et al. (2020) were used in conjunction with a 300 

novel in situ approach to determining sensitivity values from a regional SARS-CoV-2 wastewater 301 

monitoring program. As noted, specificity values of 0.999 were used in place of the 1.0 specificities 302 

reported by Lu et al. (2020) for the N1 and N2 assays.  The goal of this approach was to assume a false 303 

positive rate of 1/1000 in order to conservatively examine the reliability of analytical results when 304 

neither sensitivity nor specificity are perfect.  Where possible, future studies should conduct in-house 305 

specificity testing using their own analytical methodology performed on the matrix being studied to 306 

derive lab-specific specificity values.  A similar recommendation is suggested for deriving lab-specific 307 

sensitivity values and is likely more impacted by wastewater matrix effects such as inhibition.  308 

After establishing assay sensitivity and specificity, prior probability is the final value required to conduct 309 

the simple conditional probability analyses described above.  Prior probability is another critical piece of 310 

this framework as it also exerts a significant influence on the outcome and the process for setting a 311 

value may not be intuitive. Establishing the prior probability of an event or result can be challenging 312 

when little is known about the system being studied.  Regarding wastewater-based epidemiology one 313 

suggested approach for estimating prior probability of SARS-CoV-2 detection is to use recent results 314 

from the same location (e.g., the proportion of positive results from the last set or sets of samples) or 315 

results from other areas within a common region.  Priors may also comprise a distribution, allowing for 316 

some incorporation of uncertainty.  For instance, noting that clinical cases in the area of study have 317 

been increasing rapidly in the preceding weeks does not suggest a specific value for use as a prior 318 

probability but does provide information which should not be ignored when assessing reliability of 319 

wastewater detections.  Integrating this clinical information into a Bayesian analysis of wastewater 320 

results might include setting priors using a uniform distribution of 0.51-0.99, implying that little is known 321 

about the true prior probability of SARS-CoV-2 detection, but regional case data suggests that a 322 
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detection is likelier than not.  Performed this way the posterior probability is also a distribution which 323 

allows for uncertainty around the estimate to be easily included.  324 

 325 
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 410 

 411 

Figure 1. 412 

 413 

Posterior probability of true positive (top) and true negative (bottom) result for the N1, N2, and N3 414 

assays across all possible prior probabilities. 415 

 416 

 417 

 418 
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 420 

 421 

 422 

 423 

Figure 2. 424 

 425 

Posterior probability that SARS-CoV-2 nucleic acid is present given combinations of results using one or 426 

both of the N1 and N2 assays.  Posteriors plotted across all possible prior probabilities that SARS-CoV-2 427 

is present. 428 

 429 
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 430 

 431 

 432 

Figure 3. 433 

 434 

 435 

Posterior probability of true positive or true negative using the N2 assay (top).  The middle panel shows 436 

the likelihood of true positive given detection with one or both of N1 and N2 assays and true negative 437 

when both assays used concurrently fail to detect the virus.  The bottom panel indicates the number of 438 

treatment facilities (n=9) in which the virus was detected.  These values are used as priors for calculating 439 

posterior probabilities plotted in the top and middle panels. 440 

 441 
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 442 

 443 

 444 

Figure 4.  445 

 446 

 447 

 448 

Cumulative probability that SARS-CoV-2 nucleic acid is present given two initial priors (0.11, 0.50).  449 

Cumulative posteriors are plotted across three sampling events with all combinations of 450 

positive/negative results displayed. 451 
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