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Abstract 

Background: The Cardiovascular Risk Factors, Aging, and Incidence of Dementia (CAIDE) dementia 

risk score is a recognized tool for dementia risk stratification. However, its application is limited due to 

the requirements for multidimensional information and fasting blood draw. Consequently, effective, 

and noninvasive tool for screening individuals with high dementia risk in large population-based 

settings is urgently needed. 

Methods: A deep learning algorithm based on fundus photographs for estimating the CAIDE dementia 

risk score was developed and internally validated by a medical check-up dataset included 271,864 

participants, and externally validated by two independent datasets, one included 19,178 medical 

check-up participants, another included 1,512 community residents. The performance for identifying 

individuals with high dementia risk (CAIDE score ≥10 points) was evaluated by area under the receiver 

operating curve (AUC) with 95% confidence interval (CI). 

Findings: The algorithm achieved an AUC of 0·944 (95% CI, 0·939–0·950) in the internal validation, 

0·877 (95% CI, 0.847–0.907) and 0·781 (95% CI, 0·748–0·814) in the external validations, respectively. 

Besides, the estimated CAIDE score was significantly associated with both comprehensive cognitive 

function and specific cognitive domains. 

Interpretation: This algorithm trained via fundus photographs could well identify individuals with 

high dementia risk in a population setting. Therefore, it has potential to be utilized as a noninvasive and 

more expedient method for dementia risk stratification. 

Funding: We were supported by National Natural Science Foundation of China (project no. 81974489), 

2019 Irma and Paul Milstein Program for Senior Health Research Project Award, National Key R&D 

Programme of China (2017YFE0118800).   
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Research in context 

Evidence before this study 

The retina is an exceptional site where the microcirculation can be handily and noninvasively 

visualized by fundus photography, thus providing insights into the brain microvasculature. The 

emerging artificial intelligence technique might be a promising tool to integrate multiple retinal 

features for identifying individuals with high dementia risk. We searched PubMed up to Feb 24, 2022 

with no language restrictions, by the search terms: (“retina” or “fundus”) and (“deep learning” or 

“artificial intelligence” or “AI”) and (“dementia” or “Alzheimer’s disease” or “CAIDE”), 15 records 

were yielded. However, we did not find any artificial intelligence algorithm trained by retinal images 

for estimating or predicting dementia risk.  

Added value of this study 

To the best of our knowledge, the present study is the first investigation on developing a deep learning 

algorithm based on fundus photographs for identifying individuals with high dementia risk. The 

algorithm developed by fundus photographs from 258,305 check-up participants could well identify 

individuals with high dementia risk, with an AUC of 0·944 in internal validation, 0·877 and 0·781 in 

two independent external validation datasets, respectively. Besides, the estimated CAIDE dementia risk 

score exhibited significant association with cognitive function. These findings suggested that the deep 

learning algorithm based on fundus photographs has potential to identify individuals with high 

dementia risk in population-based settings. Previous studies have investigated deep learning algorithm 

based on fundus photographs for predicting cardiovascular diseases, our study added novel evidence 

regarding dementia in this field, potentially facilitating the eventual application of fundus photography 

for simultaneous screening of multiple diseases in large population-based settings. 

Implications of all the available evidence 

This work indicated that a deep learning algorithm trained via fundus photographs could well identify 

individuals with high dementia risk. Therefore, it has potential application in community-based 

screening or clinic, and could also be adopted in dementia clinical trials, incorporated as inclusion 

criteria to efficiently select eligible participants. Future research on escalating the artificial intelligence 

technology, as well as collecting larger and more detailed datasets, are warranted to further improve 

and verify the algorithm’s performance. 
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Introduction 

Worldwide, the number of people have dementia is projected to triply increase to 152 million by 2050, 

given the dramatic rise in ageing populations, yet there are no curative therapeutics available.1 

Dementia has a long preclinical phase when no symptomatic cognitive impairments, but 

neurodegenerative progressions are occurring.2 Early identification of high-risk individuals is essential 

for preventing dementia, which efficiently targets participants who could benefit most from more 

intensive examinations and interventions.3 

The Cardiovascular Risk Factors, Aging, and Incidence of Dementia (CAIDE) dementia risk score 

was a recognized model to predict 20-year dementia risk, which based on multidimensional risk factors: 

age, sex, educational level, physical inactivity, systolic blood pressure (SBP), total cholesterol (TC), 

and body mass index (BMI). It was also highly predictive in external validation of a large multiethnic 

population,4-6 and adopted in Finnish Geriatric Intervention Study (FINGER) to select eligible at-risk 

participants.7 However, the CAIDE dementia risk score entails measurements by questionnaire inquiry, 

physical examinations and fasting blood draw, these procedures are time-consuming or invasive for 

participants, also increase the labor costs of healthcare practitioners and produce biohazardous waste. 

Consequently, effective, convenient and noninvasive tool to screen individuals with high dementia risk 

in large population-based settings is warranted. 

Vascular disease, especially microvasculature damage in the brain, is recognized as a major 

contributor to dementia.1,8 Anatomically and developmentally, the retina shares homology with the 

brain.9 The retina is an exceptional site where the microcirculation can be handily and noninvasively 

visualized by fundus photography, thus providing insights into the brain microvasculature. Large 

population studies have demonstrated the correlations between various retinal microvascular 

abnormalities (such as retinopathy, arteriolar narrowing and venular dilation) and increased risk of 

dementia.10-12 Moreover, The emerging artificial intelligence technique, especially deep learning, has 

realized integrating multiple retinal features from fundus photographs, to provide estimation on 

vascular risk factors, and prediction on cardiovascular diseases.13-15 However, to our knowledge, this 

method has not been investigated on predicting dementia. 

Herein, we hypothesized that the deep learning algorithm trained via fundus photographs might help 

to dementia risk stratification. Due to the insufficient time length to occur enough dementia events in 

our dataset, the present study aimed to train a deep learning algorithm for estimating the CAIDE 

dementia risk score thus identifying individuals with high dementia risk, and we proposed that the 

estimated score generated from the algorithm associated with the cognitive function. 

 

Methods 

Study design 

This was a cross-sectional study. A deep learning algorithm based on fundus photographs for estimating 

the CAIDE dementia risk score was developed and internally validated by a medical check-up dataset. 

Additionally, by two independent datasets, one was a medical check-up dataset derived from a different 

site, another was a community-based cohort dataset, we externally validated the algorithm’s 

discrimination on individuals with high dementia risk. We also further explored the association 

between the estimated CAIDE dementia risk score and cognitive function based on the community 

cohort dataset. 

Participants and datasets 
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For the algorithm development, a dataset from 271,864 participants from Tongren Hospital in Beijing, 

Shibei Hospital in Shanghai, and iKang Healthcare Group who attending medical check-up in 19 

province-level administrative regions of China during September 2018 to December 2019, were 

randomly divided into development (95%) and internal validation (5%) components. This dataset 

contained retinal fundus images and routine medical information, including age, sex, SBP, TC, and 

BMI. The use of the dataset for the algorithm training was approved by Tongren Hospital Institutional 

Review Board, Shibei Hospital Institutional Review Board, and iKang Healthcare Group Institutional 

Review Board with a waiver of informed consent. The algorithm’s performance was further externally 

validated by two independent datasets. One was the Health Management Institute (HMI) dataset, which 

included 19,178 medical check-up participants attended the Health Management Institute of Chinese 

PLA General Hospital during October 2009 to December 2020. The use of the HMI dataset was 

approved by Chinese PLA General Hospital Institutional Review Board (ethical review approval 

number: S2019-131-01), all participants provided written informed consent. Another external dataset 

based on the baseline data from Beijing Research on Ageing and VEssel (BRAVE), a community-based 

cohort collecting fundus images and health information of middle-aged and older adults in Shijingshan 

District, Beijing during October to November in 2019.16 The BRAVE was approved by the Peking 

University School Institutional Review Board (ethical review approval number: IRB0001052–19060), 

all participants have given written informed consent. 

A variety of digital nonmydriatic fundus cameras were adopted to obtain fundus images, including 

Canon CR1/CR2 and Crystalvue FundusVue/TonoVue in the development dataset, Canon CR1 in HMI 

dataset, and Centervue DRS in the BRAVE. All images were captured using 45º fields of view. All 

datasets calculated the CAIDE dementia risk score based on the function proposed by Kivipelto et al.4 

However, educational level and physical inactivity were not collected in the development dataset. We 

imputed the risk score of educational level to the algorithm based on the Sixth National Census,17 

according to the average risk score of educational level among the corresponding sex and age group of 

the individual. Score of physical inactivity was imputed according to BMI status, those overweight or 

obese participants (defined as BMI ≥24 kg/m2) were regarded as physical inactive, given that the 

significant association with physical inactive.18 

Development of the algorithm 

The development dataset consists of a training dataset and a tuning dataset. The training dataset was 

used to update model parameters during the training stage, and the tuning set was used for model 

selection. The label for training and testing of the network is given as yCAIDE Score which is the score 

summation of risk factors according to the CAIDE dementia risk model.4 

Our CAIDE algorithm was trained and tested using InceptionResNetV2 architecture on the platform 

Keras v2·2·2 and the Python scikit-learn package 0·22·2. The open source frameworks platform Keras 

v2·2·2 was available at https://github.com/keras-team/keras. The source code of InceptionResNetV2 

was obtained from 

https://github.com/keras-team/keras-applications/blob/master/keras_applications/inception_resnet_v2.p

y. The training and testing of the algorithm were performed using a GTX 1080Ti GPU ×2 (CUDA 

version 9.0, Nvidia Corp., USA) with a batch size of 64 on an operation system Ubuntu v16·04·6. The 

model was trained for prediction of the CAIDE score as a regression task. We deployed Mean Absolute 

Error (MAE) as the loss function to minimize during the training stage by Adam optimizer.19 

The image data was loaded by using OpenCV version 4·2·0. The data augmentations of random 
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cropping, random rotation (±30°) and random horizontal flipping were implemented by Keras image 

augmentation package of data generator. In order to improve the robustness of model performance on 

varying image quality and photography style. An image normalization method, enhanced domain 

transformation, was used to map any input image pixel values to a given task distribution.20 To speed 

up training and validation, multi-processing and 12 workers were utilized by implementing Keras fit 

generator function. 

Validation of the algorithm 

The estimated CAIDE dementia risk score of the participants deprived from mean estimated yCAIDE Score 

of both eyes, and the actual dementia risk score was calculated according to the CAIDE model. The 

goodness of fit of the algorithm was assessed by the coefficient of determination (R2) in the internal 

validation dataset and the two external datasets. Besides, the algorithm’s discrimination on identifying 

individuals with high dementia risk was evaluated by area under the receiver operating curve (AUC) 

with 95% confidence interval (CI) by the pROC package version 1·16·2. Consistent with Sindi et al, 

dementia risk score ≥10 points were recognized as high dementia risk.6 The maximum Youden index 

was applied to determine the optimal cut-off point. 

Cognitive assessments 

We further explored the associations between the estimated CAIDE dementia risk score and cognitive 

function based on the BRAVE dataset. The primary cognitive measurement in the BRAVE was the 

Chinese version of Montreal Cognitive Assessment (MoCA) Basic, a sensitive and validated cognitive 

test battery to comprehensively assess nine cognitive domains.21 In addition, the BRAVE also 

supplemented three tests to further assess specific cognitive domains. Specifically, the memory 

function was measured by immediate and delayed recall of a list of ten unrelated words, and the total 

score ranged from 0 to 20.22 The language and executive function was assessed by a verbal fluency test, 

which requiring participants to speak names of animals as many as possible within 1 minute, and the 

total number of animal names (excluding repetitive names) was count as the test score.23 The attention 

function and executive function were evaluated by the Chinese version of Trails Making Test (TMT),24 

which asking individuals to draw a line through 25 numbers consecutively in ascending order, and as 

fast as they could. The TMT included two tasks, the TMT-A comprised numbers from 1 to 25, while the 

TMT-B was different in 25 numbers enclosed in squares from 1 to 12 and circles from 1 to 13. The 

TMT-A evaluated processing speed and visual attention, and the TMT-B assessed executive function by 

measuring cognitive alternation ability. In both tests of memory and verbal fluency, the higher score 

indicated better cognitive performance, while in the TMT, the longer time manifested worse 

performance.    

Statistical analysis 

The results were presented using percentage for categorical variables and means ± standard deviations 

(SD) for continuous variables. We ran multiple linear regression models to examine the associations 

between the estimated CAIDE dementia risk score and different cognitive assessments. The first model 

only included the estimated score, while the second model adjusted for multiple covariates, which 

contained marriage status, drinking status, smoking status, depressive symptoms, APOE ε4 status, and 

chronic diseases status. Specifically, marriage status indicated currently married or not. Participants 

were divided into non-smokers (including ex-smokers) and current smokers. Alcohol consuming was 

defined as drinking at least once per week over the past one year. The BRAVE employed the ten-item 

version of the Center for Epidemiologic Studies Depression Scale (CES-D) to assess depressive 
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symptoms, with a summed score ranged from 0 to 30. According to the prior study, a score ≥12 was 

defined as having depressive symptoms in our study.25 Individuals were divided into APOE ε4 carriers 

(indicated the presence of one or two ε4 alleles) and noncarriers. Diabetes was defined as HbA1c ≥6·5% 

or fasting blood glucose ≥7·0 mmol/L, or self-reported current use of anti-diabetic therapy. Chronic 

disease measures also included self-reported physician-diagnosed coronary heart disease, cancer, stroke, 

and chronic obstructive pulmonary disease. Besides, we also employed analysis of covariance to 

compare cognitive performance between quartiles of the estimated dementia risk score, with the lowest 

quartile as the reference. Linear trend was also tested by including risk score quartiles as numerical 

variables. 

To test the robustness of the algorithm, we evaluated the performance of the algorithm using 9 points 

as the cut-off score of high dementia risk, in consistent with a previous study.26 We further tested the 

ability of the algorithm to identify participants eligible for multidomain intervention, since the 

FINGER trial adopted CAIDE score ≥6 points as one of the inclusion criteria to select eligible at-risk 

participants among the general population.7 In addition, we conducted subgroup analyses according to 

sex, age group (<60 years and ≥60 years), respectively, based on the BRAVE. For algorithm 

performance in identifying high risk individuals (with CAIDE score ≥10 points), we used Delong test 

to compare the AUC between subgroups. For the association with cognitive function, we respectively 

included the interaction terms of estimated dementia risk score with sex, as well as age group in 

multivariate linear regression models. To investigate the influence of imputation (scores of educational 

level and physical inactivity) on the algorithm’s performance, we additionally developed an algorithm 

for estimating CAIDE risk score without imputation (which contained scores of age, sex, SBP, TC, and 

BMI). We combined this algorithm and the actual scores of educational level and physical inactivity in 

the external validation dataset into an integrated estimated CAIDE dementia risk score, and assessed its 

performance based on the BRAVE.  

All statistical analyses were performed by SAS 9·4 (SAS Institute, Cary, NC), and R language 4·0·0 

(R Foundation, Vienna, Austria), with two-tailed alpha value of 0·05 as the statistically significant 

level. 

Role of the Funding Source 

The funding sources had no role in the design and conduct of the study; collection, management, 

analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision 

to submit the manuscript for publication. 

 

Results 

Study population 

The characteristics of individuals in the development dataset, internal validation dataset, and the 

BRAVE were summarized in Table 1.  

Among the 271,864 check-up participants, we randomly divided 95% (258,305 participants, mean 

aged 42·1 ± 13·4 years, men: 52·7%) into the development group and 5% (13,559 participants, mean 

aged 41·2 ± 13·3 years, men: 52·5%) into the internal validation group (eFigure 1a). These two groups 

shared similar baseline characteristics as shown in Table 1. Besides, the characteristics of participants 

in the training and tuning groups were displayed in eTable 1. A total of 19,178 individuals in the HMI 

dataset (mean aged 47·8 ± 7·9 years, men: 68.4%) were included in the external validation (eFigure 1b). 

Among 1,554 individuals taking participant in the baseline survey of BRAVE, 1,512 participants (mean 
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aged 59·8 ± 7·3 years, men: 37·1%) had fundus photographs and complete information for calculating 

CAIDE dementia risk score and thus were included in the external validation (eFigure 1c). Among the 

three datasets, individuals in the BRAVE were older, had a higher proportion of female, with higher 

SBP. Respectively, 200 (1·5%) individuals in the internal validation dataset, 77 (0·40%) in the HMI 

dataset, and 159 (10·5%) in the BRAVE were in high dementia risk, with their CAIDE dementia risk 

score ≥10 points. 

Algorithm performance 

The R2 between the estimated and actual CAIDE dementia risk score was 0·80 in the internal validation 

dataset, 0·54 in the HMI dataset, and 0·32 in the BRAVE (Figure 1). As shown in Figure 2, the 

algorithm achieved an AUC of 0·944 (95% CI, 0·939–0·950) in the internal validation dataset, 0·877 

(95% CI, 0·847–0·907) in the HMI dataset, and 0·781 (95% CI, 0·748–0·814) in the BRAVE for 

identifying individuals with high dementia risk. The maximum Youden index on the two receiver 

operating characteristic curves were 0·801 with the sensitivity of 0·959 and specificity of 0·842, 

corresponded to the optimal cut-off point of 6.793 in the internal validation dataset, 0·624 with the 

sensitivity of 0·922 and specificity of 0·702, corresponded to the optimal cut-off point of 5.772 in the 

HMI dataset, and 0·442 with the sensitivity of 0·792 and specificity of 0·650, corresponded to the 

optimal cut-off point of 8.305 in the BRAVE, respectively.  

The estimated score and cognitive function 

Linear regression analyses found that the estimated CAIDE dementia risk score (as continuous variable) 

was significantly associated with the score of MoCA. As shown in Table 2, 1-point increment of 

estimated CAIDE dementia risk score was significantly associated with −0·565 (95% CI, −0·673 to 

−0·457) increment of the MoCA score after multivariable adjustment, which manifested worse 

comprehensive cognitive performance. Similarly, the higher estimated CAIDE dementia risk score was 

significantly associated with lower score of memory and verbal fluency test, which indicated poorer 

performance of memory, language and executive function. The higher estimated score was also 

significantly associated with longer TMT-A and TMT-B time, which represented worse attention and 

executive function. The analysis of covariance found that after full adjustment, compared with the 

lowest quartile, the second, third, and highest quartiles were associated with worse comprehensive 

cognitive function, with lower MoCA score by −0·989 (95% CI, −1·452 to −0·525), −1·685 (95% CI, 

−2·158 to −1·212), and −2·247 (95% CI, −2·722 to −1·772), respectively (P for linear trend < 0·001, 

Table 3). Similar trends were also observed in performance of memory test, verbal fluency test, TMT-A 

and TMT-B. 

Sensitivity analysis 

As shown in eFigure 2, the algorithm still performed well in screening individuals with high dementia 

risk when the cut-off score changed to 9 points, with an AUC of 0·947 (95% CI, 0·942–0·951) in the 

internal validation dataset, 0·874 (95% CI, 0·860–0·888) in the HMI dataset, and 0·750 (95% CI, 

0·721–0·779) in the BRAVE. As shown in eFigure 3, the algorithm could also identify participants 

eligible for multidomain intervention, with an AUC of 0·977 (95% CI, 0·975–0·980) in the internal 

validation dataset, 0·832 (95% CI, 0·825–0·840) in the HMI dataset, and 0·752 (95% CI, 0·725–0·779) 

in the BRAVE. Besides, eFigure 4 summarized the algorithm performance in subgroups of the BRAVE. 

The algorithm presented a higher AUC in female (0·808 vs 0·733, P = 0·049), as well as in participants 

<60 years (0·806 vs 0·703, P = 0·009). As eFigure 5 presented, we found no interaction effect of sex or 

age group on the associations between estimated CAIDE dementia risk score and the score of MoCA, 
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or other specific cognitive functions. In addition, the R2 between the integrated estimated CAIDE 

dementia risk score (calculated as the sum of the estimated score derived from the additional algorithm 

and the actual scores of educational level and physical inactivity in the external validation dataset) and 

the actual score was 0·60 in the BRAVE, and the integrated estimated CAIDE dementia risk score 

achieved an AUC of 0·897 (95% CI, 0·873–0·922) in the BRAVE for identifying individuals with high 

dementia risk (shown in eFigure 6). 

 

Discussion 

To the best of our knowledge, the present study is the first investigation on developing a deep learning 

algorithm based on fundus photographs for identifying individuals with high dementia risk, with an 

AUC of 0·944 (95% CI, 0·939–0·950) in the internal validation, 0·877 (95% CI, 0·847–0·907) in the 

HMI dataset, and 0·781 (95% CI, 0·748–0·814) in the BRAVE. Moreover, the estimated CAIDE 

dementia risk score exhibited significant associations with both comprehensive and specific domains of 

cognitive function, which further supported the reasonability of the algorithm. Taken together, our 

study clarified the feasibility of adopting deep learning algorithm based on fundus photographs to 

screen individuals with high dementia risk in population-based settings. 

The rationale of our work based on the concept that, the retina shares similar morphological features 

and physiological properties with the brain, and hence provide a unique site to detect changes in 

microvasculature related to the development of dementia.9 Previous studies have investigated the 

associations between a spectrum of retinal vascular abnormalities measured via fundus photography 

and the risk of dementia.10-12 However, most studies measured retinal signs by semi-automated 

software, requiring human identification on the basis of prespecified protocols, which might introduce 

intra- and inter-variability. Besides, recent systematic reviews indicated that combination of multiple 

retinal vascular parameters, rather than individual marker, might provide higher prognostic value.27,28 

The present study utilized artificial intelligence technique, which might exhibit notable advantages in 

these issues. Artificial intelligence operates in absence of human assessment, and even performs 

superiorly to ophthalmologists in capturing subtle retinal changes that would otherwise fail to attract 

human attention.29 With faster, easier, more consistent and precise output, the artificial intelligence 

reduces variability and human cost, thus enhancing the clinical utility of retinal photography.30 

Moreover, artificial intelligence is able to fully extract and integrate multiple retinal features (including 

information beyond human existed perception or understanding) that are related to dementia risk.  

Participants in the BRAVE were much older, and had a larger proportion of female. The significant 

demographic heterogeneity between the development dataset and this external validation dataset 

suggested the algorithm’s robustness and promising wider utility. One application scenario for the 

algorithm is screening individuals with high dementia risk in community. Traditional dementia 

prediction models requiring cognitive tests or multidimensional risk factors increased application 

difficulties in population-based settings. By contrast, fundus photography is easy to implement and 

timesaving. According to our practical experience in BRAVE, an investigator with no background on 

ophthalmology could take fundus photographs within one minute after a few hours of training. Besides, 

compared with risk factors like blood lipids or glucose, the retinal images have no requirement for 

fasting status, with less fluctuation and can be obtained noninvasively, thus facilitating the acceptability 

and convenience of participants. In addition, the algorithm could also be recommended as an add-on to 

routine screening for diabetic retinopathy, given that patients with diabetes were significantly 
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associated with higher risk of cognitive decline and dementia.31 Moreover, our algorithm has potential 

utility in assessing pre-test dementia probability for further diagnostic tests in outpatient clinics. Last 

but not the least, this algorithm might also be adopted in dementia clinical trials, incorporated as 

inclusion criteria to efficiently target eligible participants, or surrogate outcome which could be 

observed expediently.7  

Previous studies have investigated deep learning algorithm based on fundus photographs for 

screening cardiovascular diseases and anaemia,13,14,32 our study added the novel evidence regarding 

dementia in this field, potentially facilitating the eventual application of fundus photography for 

simultaneous screening of multiple diseases in large population-based settings. The foremost strength 

of the present work was employing convolutional neural network to deal with large dataset of fundus 

images. The development dataset contained 579,880 fundus images of 258,305 individuals from 19 

province-level administrative regions of China, the convolutional neural network exhibited distinct 

advantages in processing such large dataset, by extracting multiple information from images with a 

deep architecture, which was similar to image process in human brain.33 Another strength was 

incorporating external validation cohorts with varied demographic characteristics and comprehensive 

cognitive tests, the results externally validated the performance and further supported the 

scientificalness of the algorithm.  

There were, however, also limitations in our study. First, the CAIDE dementia risk score was derived 

from cross-sectional data, investigations based on incident dementia events in longitudinal settings are 

warranted to further verify the predictive ability of the algorithm. Second, the R2 in the BRAVE was 

relatively small, probably due to the distinct age difference between the development and the BRAVE, 

given that age is the most important factor for dementia and cognitive function. Another reason could 

be the absence of educational level and physical inactivity in the development dataset. The sensitivity 

analysis showed that the integrated estimated CAIDE dementia risk score yielded higher R2 and AUC. 

Therefore, future collection of more detailed information in the development dataset could improve the 

algorithm’s performance. Third, the present study only included Chinese participants, which might 

limit the generalization of our algorithm to other ethnicities.  

 

Conclusions 

The present study demonstrated that a deep learning algorithm based on fundus photographs could well 

identify individuals with high dementia risk, and hold promise for wider application in 

community-based screening or clinic. As far as we know, this work is the first attempt to utilize deep 

learning technology and fundus photographs for screening dementia, future advancements in artificial 

intelligence technology and larger collection of relevant data would further improve and verify the 

performance of the algorithm. 
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Figure legends: 

Figure 1. Estimation of CAIDE dementia risk score in the internal validation dataset (a), the 

HMI dataset (b) and the BRAVE (c). 

The R2 (coefficient of determination) between the estimated CAIDE dementia risk score and actual 

CAIDE dementia risk score is presented. 

Abbreviation: HMI = Health Management Institute. BRAVE = Beijing Research on Ageing and Vessel.  

 

Figure 2. Algorithm performance for identifying participants with high dementia risk in the 

internal validation dataset (a), the HMI dataset (b) and the BRAVE (c).  

Individuals with high dementia risk were defined as CAIDE dementia risk score ≥10 points. The points 

on line indicate the maximum Youden index.  

Abbreviation: AUC = area under the receiver operating characteristic curve.  
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Table 1. Characteristics of individuals in development, internal validation, and two external validation datasets  

Characteristics Development dataset  Internal validation dataset  HMI dataset  BRAVE 

 Men Women  Men Women  Men Women  Men Women 

No. of images 306,795 273,085  16,124 14,246  26,527 12,233  1,122 1,902 

No. of participants 136,157 122,148  7,120 6,439  13,119 6,059  561 951 

Age (years) 42·3±13·6 41·8±13·8  42·2±13·6 41·9±13·9  48·5±7·8 48·2±8·7  60·7±7·1 59·3±7·3 

Systolic blood pressure (mm Hg) 124·1±16·3 116·2±17·8  124·5±16·6 116·1±17·9  125·9±12·8 112·7±19·5  136·1±16·1 130·3±17·4 

Total cholesterol (mmol/L) 4·9±0·9 4·9±1·0  4·9±1·0 4·9±1·0  4·8±0·9 4·8±0·9  4·8±0·9 5·0±0·9 

Body mass index (kg/m2) 25·0±3·4 22·8±3·4  25·0±3·5 22·7±3·4  26·2±3·1 23·5±3·2  26·2±3·2 25·8±3·5 

Education ≥10 years (%) a - -  - -  
12,497 
(95·2) 

5,570 (91·9)  328 (58·5) 576 (60·6) 

Physical inactive (%) b - -  - -  
6,652 
(50·7) 

3,472 (57·3)  500 (89·1) 739 (77·7) 

Data are presented as mean ± SD or n (%). 
a Educational level was not available in development or internal validation datasets. 
b Physical inactive was not available in development or internal validation datasets. 
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Table 2. Association between estimated CAIDE dementia risk score and different cognitive assessments: using multiple linear regression models 

Cognitive assessments 
Model 1a  Model 2b 

β (95% CI) P   β (95% CI) P  

MoCA score −0·589 (−0·692, −0·485) <0·001  −0·565 (−0·673, −0·457) <0·001 

Memory test score −0·548 (−0·647, −0·449) <0·001  −0·511 (−0·603, −0·409) <0·001 

Verbal fluency test score −0·435 (−0·558, −0·313) <0·001  −0·415 (−0·542, −0·288) <0·001 

TMT-A time (minutes) 0·099 (0·083, 0·115) <0·001  0·096 (0·079, 0·112) <0·001 

TMT-B time (minutes) 0·133 (0·115, 0·152) <0·001  0·132 (0·113, 0·151) <0·001 

a Model 1 only included estimated CADIE dementia risk score. 
b Model 2 adjusted for marriage status, drinking status, smoking status, depressive symptoms, APOE ε4 status, diabetes, and self-reported diagnosis of coronary heart disease, 
stroke, cancer and chronic obstructive pulmonary disease. 
Note: The lower score of MoCA, memory test and verbal fluency indicate worse performance. The longer time of TMT-A, TMT-B represent worse performance. 
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Table 3. Association between quartiles of estimated CAIDE dementia risk score and different cognitive assessments: using analysis of covariance 
Estimated 
CAIDE 
dementia risk 
score 

MoCA score  Memory test score  Verbal fluency test score  TMT-A time (minutes)  TMT-B time (minutes) 

β (95% CI) P  β (95% CI) P  β (95% CI) P  β (95% CI) P 
 

β (95% CI) P 

Model 1a            
   

Quartile 1 0·000 (ref.) /  0·000 (ref.) /  0·000 (ref.) /  0·000 (ref.) / 
 

0·000 (ref.) / 

Quartile 2 
−1·053 (−1·512, 

−0·594) <0·001  
−1·024 (−1·460, 

−0·587) <0·001  
−0·561 (−1·101, 

−0·021) <0·001  0·127 (0·057, 0·198) <0·001 
 

0·202 (0·121, 0·284) <0·001 

Quartile 3 
−1·778 (−2·237, 

−1·319) 
<0·001  

−1·500 (−1·937, 
−0·063) 

<0·001  
−1·249 (−1·789, 

−0·804) 
<0·001  0·253 (0·182, 0·323) <0·001 

 
0·367 (0·285, 0·449) <0·001 

Quartile 4 
−2·354 (−2·814, 

−1·896) 
<0·001  

−2·220 (−2·656, 
−1·783) 

<0·001  
−1·630 (−2·170, 

−1·089) 
<0·001  0·391 (0·320, 0·461) <0·001 

 
0·510 (0·428, 0·592) <0·001 

Test for linear 
trend 

−0·779 (−0·924, 
−0·634) 

<0·001  −0·713 (−0·852, 
−0·575) 

<0·001  −0·558 (−0·728, 
−0·387) 

<0·001  0·130 (0·107, 0·152) <0·001 
 

0·169 (0·144, 0·195) <0·001 

Model 2b            
 

  

Quartile 1 0·000 (ref.) /  0·000 (ref.) /  0·000 (ref.) /  0·000 (ref.) / 
 

0·000 (ref.) / 

Quartile 2 −0·989 (−1·452, 
−0·525) 

<0·001  −0·917 (−1·356, 
−0·478) 

<0·001  −0·532 (−1·075, 0·011) 0·055  0·122 (0·052, 0·193) <0·001 
 

0·208 (0·126, 0·290) <0·001 

Quartile 3 
−1·685 (−2·158, 

−1·212) <0·001  
−1·343 (−1·791, 

−0·895) <0·001  
−1·199 (−1·754, 

−0·645) <0·001  0·243 (0·171, 0·316) <0·001 
 

0·370 (0·287, 0·454) <0·001 

Quartile 4 
−2·247 (−2·722, 

−1·772) 
<0·001  

−2·065 (−2·515, 
−1·615) 

<0·001  
−1·538 (−2·094, 

−0·981) 
<0·001  0·376 (0·303, 0·449) <0·001 

 
0·502 (0·418, 0·586) <0·001 

Test for linear 
trend 

−0·742 (−0·893, 
−0·591) <0·001  

−0·662 (−0·805, 
−0·519) <0·001  

−0·527 (−0·704, 
−0·350) <0·001  0·125 (0·102, 0·148) <0·001 

 
0·167 (0·140, 0·193) <0·001 

a Model 1 only included estimated CADIE dementia risk score. 
b Model 2 adjusted for marriage status, drinking status, smoking status, depressive symptoms, APOE ε4 status, diabetes, and self-reported diagnosis of coronary heart disease, 
stroke, cancer and chronic obstructive pulmonary disease. 
Note: The lower score of MoCA, memory test and verbal fluency indicate worse performance. The longer time of TMT-A, TMT-B represent worse performance. 
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