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Summary 
 
Cystatin C (CyC) is a secreted cysteine protease inhibitor and its biological functions remain 
insufficiently characterized. Plasma CyC is elevated in many patients, especially when receiving 
glucocorticoid (GC) treatment. Endogenous GCs are essential for life and are appropriately 
upregulated in response to systemic stress. Here we empirically connect GCs with systemic 
regulation of CyC. We used genome-wide association and structural equation modeling to 
determine the genetics of the latent trait CyC production in UK Biobank. CyC production and a 
polygenic score (PGS) capturing germline predisposition to CyC production predicted elevated 
all-cause and cancer-specific mortality. We then demonstrated that CyC is a direct target of GC 
receptor, with GC-responsive CyC secretion exhibited by macrophages and cancer cells. Using 
isogenic CyC-knockout tumors, we discovered a markedly attenuated tumor growth in vivo and 
found abrogated recruitment of Trem2+ macrophages, which have been previously linked to 
failure of cancer immunotherapy. Finally, we showed that the CyC-production PGS predicted 
checkpoint immunotherapy failure in a combined clinical trial cohort of 685 metastatic cancer 
patients. Taken together, our results demonstrate that CyC may be a direct effector of GC-
induced immunosuppression, acting through recruitment of Trem2+ macrophages, and therefore 
could be a target for combination cancer immunotherapy. 
 
 
Introduction 
 
Large prospective patient cohorts with comprehensive genetic, physical and health data, 
captured in biobanks, allow for the re-evaluation of human disease, health and health care1. Due 
to substantial genetic variation between humans2, genome-wide association studies (GWAS) are 
analogous to forward genetic screens and can direct discovery of the molecular determinants of 
complex biomedically relevant phenotypes such as organ function3. Previously, we have 
developed a model for the accurate estimation of kidney filtration function, defined as the 
estimated glomerular filtration rate (eGFR), in patients with cancer4,5. Like others before, we used 
creatinine6, a breakdown product of muscle creatine metabolism that is renally excreted7, as a 
predictor variable. In non-cancer patients, this approach has been compared to the use of 
cystatin C (CyC; gene name CST3)8, a secreted cysteine protease inhibitor. Serum levels of both 
molecules depend on latent (unmeasured) components: most notably their synthesis and 
externalization by the producing cells and the GFR. While the determinants of creatinine 
production are relatively well-characterized and relate to muscle mass and diet9, the factors that 
regulate CyC production are in contrast poorly understood10. Unlike the metabolic end-product 
creatinine, but like many other secreted proteins, CyC has biological functions: in its monomeric 
form, it is a highly potent paracrine inhibitor of cysteine proteases11,12.  
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Given the known function of CyC and its extracellular localization, it is likely that CyC production 
is systemically regulated. The first indication of this regulation is from the following set of 
observations. Organ transplant patients tend to have a higher serum CyC for a given measured 
GFR13. The vast majority of transplant patients are prescribed exogenous glucocorticoids (GCs), 
such as prednisolone or dexamethasone, as part of their immunosuppressive regimen14. Paired 
analyses accounting for patient-specific factors and renal function have demonstrated that 
exogenous GCs increase CyC production15, an effect that has also been observed in patients with 
excess endogenous GC production (Cushing’s syndrome)16. Moreover, CyC production is 
increased in a range of disease states that induce GC elevations, including viral infection17, 
inflammatory disease10 and cancer18. This positive association between GC exposure and CyC 
production has been recapitulated experimentally in vitro19 and in vivo20.  
  
Cortisol, the endogenous GC in humans, is produced by the adrenal gland21 in a circadian rhythm 
peaking in the early morning22. Through action on the cytosolic GC receptor (GR), GCs profoundly 
modulate the cellular transcriptional landscape23, affecting up to 20% of all genes24 and driving 
systemic reprogramming of metabolism and immunity that is essential for life25. While our 
understanding of the mechanisms by which GCs are immune-modulatory remains limited26, their 
immunosuppressive function is firmly established and therapeutically employed across a wide 
range of auto-immune and inflammatory diseases, such as rheumatoid arthritis27. They are also 
used to mitigate immune-mediated damage to normal organ systems, a common and potentially 
severe side effect of T cell activation by checkpoint immunotherapy (CPI) in cancer28. This latter 
indication has emphasized the importance of determining whether, and in what circumstances, 
exogenous GCs could impair the efficacy of CPI29,30. Evidence from in vivo models of cancer 
suggests that even low doses of GCs can suppress anti-tumor immunity30, leading to enhanced 
metastasis and reduced survival31. This has remained difficult to empirically investigate in cancer 
patients due to confounding by performance status and comorbidities32, inconsistent CPI trial 
inclusion criteria29 and the difficulties in performing well-controlled trials in this context.  
 
We hypothesized that, rather than being a passive marker of renal function, cystatin C is directly 
associated with disease states and that this association might be mediated by GC signaling. Here, 
to empirically investigate this question, we leverage UK Biobank (UKB), a prospective population-
based cohort comprising approximately 480,000 subjects who provided germline genetics, serum 
CyC and serum creatinine. Using conventional GWAS for eGFR-CyC/eGFR-creatinine followed by 
structural equation modeling (SEM) we estimate single nucleotide polymorphism (SNP)-level 
associations with the latent trait of CyC-production. We characterize patient-level predisposition 
to CyC-production via construction of a polygenic score (PGS) which is validated in a held-out 
cohort. Through multi-modal genomics, in vitro, in vivo and experimental medicine approaches 
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we link CyC to GC signaling, recruitment of Trem2+ macrophages and failure of cancer 
immunotherapy. 
 
 
Results 
 
Genomic architecture of CyC production 
 
To investigate the genomic architecture of CyC production, we first performed a discovery GWAS 
for eGFR-CyC and eGFR-Creatinine (eGFR-Cr) in 381,764 European subjects in UKB, using linear 
mixed models to account for population stratification and cryptic relatedness. We randomly 
selected 50,000 unrelated subjects from the overall UKB European population and excluded their 
data from the GWAS to enable later validation analyses (Figure 1b). Using linkage disequilibrium 
(LD) score regression, we identified a strong genetic correlation (r2=0.61) between eGFR-CyC and 
eGFR-Cr, consistent with both traits sharing a common factor that reflects renal filtration 
function. We reasoned that the genetic variance in eGFR-CyC that was not explained by this 
common factor represented the latent trait of CyC-production, given that the CyC plasma level is 
a function of both CyC excretion in the kidney and its cellular production. Thus, we estimated the 
single-nucleotide polymorphism (SNP)-level effects on CyC-production and renal function, by 
constructing a genomic structural equation model (SEM, Figure 1c, Figure S1a-b) implemented in 
Genomic-SEM33, assuming no covariance between CyC-production and renal function. Providing 
confidence in our approach, loci known to directly regulate renal function such as SHROOM334 
and UMOD35 were predominantly associated with the renal function latent trait, while the locus 
coding for CyC (CST3) was predominantly associated with the CyC-production latent trait. Other 
loci associated with CyC-production, such as SH2B336 and FLT337, identify components of immune 
cell signaling cascades and are strongly associated with autoimmune disease. The index SNP at 
the SH2B3 locus is a missense variant (R262W) and exhibits a markedly larger effect size than 
would be expected for its allele frequency (minor allele fraction = 0.48, Figure S1c), consistent 
with evidence that this variant is under active positive selection38.  The CPS1 locus, coding for 
carbamoyl-phosphate synthase 1, stood out as having divergent effects on renal function and 
CyC-production, probably reflecting its independent roles in creatine metabolism39 and immune 
signaling40. We next performed tissue-specific partitioned heritability analysis using gene 
expression and chromatin accessibility datasets (including GTEx41 and Roadmap Epigenomics 
Project42) and this confirmed enrichment of heritability of the renal function rather than CyC-
production component of CyC levels in kidney tissues (Figure S1d-e). This analysis also 
demonstrated enriched heritability for the renal function trait in liver tissues, which may reflect 
the coupling of hepatic and kidney function, observed clinically as hepatorenal syndrome43.  
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Using the discovery data set, we captured the polygenic architecture of CyC-production by 
deriving a polygenic score (PGS), implemented in LDpred244 using HapMap3 variants, that could 
be reliably imputed in all of UKB, The Cancer Genome Atlas (TCGA) and Genotype-Tissue 
Expression (GTEx) cohorts (Figure S1f, Supplemental Data). We sought to maximize portability to 
clinical sequencing cohorts where only exome sequencing is available, and thus derived a second 
PGS from HapMap3 variants that could be reliably imputed from exome sequencing data 
(Methods, Figure S1g). To validate both PGSs with the data from the 50,000 unrelated European 
patients (Figure 1b), it was necessary to define an independent patient-level estimate for CyC-
production. This is possible because the discordance between eGFR-CyC and eGFR-Cr can be 
viewed as an approximation for CyC-production. Therefore, we modelled eGFR-CyC as a function 
of eGFR-Cr and sex, and computed the residual (termed CyC-residual, Figure 1e). Using this CyC-
residual as a surrogate for CyC-production, we confirmed that the genome-wide CyC-production 
PGS had significant predictive power in the validation cohort (r2=0.08, p<1e-300, Figure 1f). As 
expected, predictive performance was reduced for the exome-wide PGS in the validation cohort 
(r2=0.04, p<1e-300). 
 
To investigate the trans-ancestral portability of the genome-wide CyC-production PGS, we 
measured performance versus CyC-residual in African (AFR, n=8152) and Central and South Asian 
(CSA, n=9845) genetic ancestry groups in UKB. We observed poor trans-ancestral portability of 
this PGS in these ancestry groups, with a low proportion of CyC-residual variance explained in 
CSA and AFR populations (Figure S2a-b). In order to derive a PGS in each non-EUR population, we 
performed GWAS and SEM as described above (Figure 1b) in these two ancestry groups but these 
analyses were underpowered to detect any signals reaching genome-wide significance (Figure 
S2c-d). While the genetic correlation between eGFR-CyC and eGFR-Cr in CSA subjects (r2=0.65) 
was comparable to EUR subjects (r2=0.61), genetic correlation was substantially diminished in 
AFR subjects (r2=0.18). This indicates that eGFR-Cr and/or eGFR-Cy correlate weakly with true 
GFR in the AFR population, thus providing empirical genetic evidence to the observation that 
eGFR models have reduced performance in individuals self-identifying as Black or African 
American45. 
 
CyC production is associated with accelerated onset of disease 
 
We hypothesized that these quantitative measures of CyC production (CyC-residual and CyC-
production PGS) could be used to empirically investigate its prognostic potential. As a preliminary 
analysis, we used multivariate Cox regression to estimate the effect of CyC-residual on all-cause 
mortality, adjusted for relevant patient covariates known to predict mortality46–48. We found that 
CyC-residual was associated with significantly increased all-cause mortality (HR=1.56, p<1e-16, 
Figure 2a). We considered that CyC-residual has the potential to be confounded by 
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environmental factors, including exogenous GC treatment and, to mitigate this, we investigated 
whether the germline predisposition to CyC production, estimated as CyC-production PGS, could 
predict lifespan in our UKB European validation set (Figure 1b). Using multivariate Cox regression 
adjusted for sex, year of birth and principal components capturing genetic ancestry, we found 
that CyC-production PGS was associated with significantly reduced lifespan of UKB subjects 
(p=0.00013), as well as their two parents (p<1e-16, Figure 2b).   
 
We considered that increased all-cause mortality might be explained by either earlier onset of 
specific disease states, or reduced prognosis following disease diagnosis. To investigate the 
former, we performed a phenome-wide association analysis (PheWAS) in the UKB validation set 
to identify time-to-event phenotypes (n=694) that were significantly associated with CyC-
production using multivariate Cox regression (Figure 2c). We identified positive associations 
meeting phenome-wide significance (p<1e-5) between CyC-production PGS and multiple 
diseases linked to metabolic syndrome, including type 2 diabetes, obesity, hypertension and 
ischemic heart disease. To investigate how CyC-production could modulate disease prognosis, 
and as elevated plasma CyC is associated with cancer18, we examined whether CyC-residual and 
CyC-production PGS were independent predictors of adverse outcomes in patients with cancer. 
Using UKB patients diagnosed with cancer since 2000 and with cancer-specific mortality defined 
by manual review of death certificates, we found that CyC-residual is an independent predictor 
of increased cancer-specific mortality (HR = 1.22, p<1e-16, Figure 2a). To validate this finding, we 
performed multivariate Cox regression of cancer-specific mortality against CyC-production across 
13 tumor groups in 2 independent cohorts (UKB validation set, TCGA European subjects). Both 
fixed and random effect meta-analyses in each independent cohort confirmed a significant 
positive association between CyC-production PGS and cancer-specific mortality (Figure 2d-e). We 
noted that while there was variation in a single-cancer level the overall effect size was concordant 
between UKB and TCGA. Consistent with this, we have found that CyC-production PGS is 
associated with increased odds of COVID-19 critical illness in four cohorts spanning European and 
African ancestry populations (manuscript under review at iScience and attached to this 
submission). In summary, the association between CyC-production PGS and reduced lifespan is 
likely to be explained by a combination of earlier disease onset and reduced disease-specific 
survival. 
 
CyC is a glucocorticoid response gene in vitro 
 
To better understand the mechanism by which CyC production could regulate disease incidence 
and prognosis, we reviewed the genetic loci most associated with CyC-production in our GWAS 
summary statistics. The SERPINA1/6 locus on chromosome 14 had one of the largest effect sizes 
for CyC-production (Figure 1d, Figure 3a) and is known to be associated with plasma cortisol49, 
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implying the possibility of a link between cortisol and CyC. In a recent cortisol Genome-Wide 
Meta-Analysis (GWAMA), this signal was thought to be mediated by altered hepatic expression 
of SERPINA649, which encodes cortisol-binding globulin (CBG). To determine if there was a shared 
common variant, we performed co-localization analysis50. We did not detect a shared causal 
variant (posterior probability = 1.45e-15), but trans-expression qualitative trait loci (trans-eQTL) 
analysis in the Stockholm Tartu Atherosclerosis Reverse Networks Engineering Task (STARNET)51 
cohort identified a single SNP (rs2749527) at the SERPINA1/6 locus that was associated with 
significantly reduced plasma cortisol (p=1.75e-13) and significantly reduced CST3 gene 
expression in visceral adipose fat (p = 0.0024 in additive model, p=9.21e-6 in recessive model, 
Bonferroni-adjusted alpha level of 0.0025, Figure 3b). This variant is independently associated 
with significantly reduced liver SERPINA6 expression in STARNET (p=4.73e-9, Figure 3c) and GTEx 
(p=0.004, Figure S3c) cohorts. As such, a single genetic instrument connects CBG, plasma cortisol 
and CyC (Figure S3a), thus providing genetic evidence for a direct link between GCs and CyC. 
 
To further examine the link between GCs and CyC, we mapped each SNP meeting genome-wide 
significance to overlapping genes (defined by transcriptional start and end sites) and performed 
gene set enrichment analysis (GSEA) for gene sets relating to GC signaling. This analysis identified 
significant enrichment of 7/15 GC signaling gene sets from the Gene Ontology Resource (Figure 
3d). In light of this, we hypothesized that CST3 might be a direct transcriptional target of 
glucocorticoid receptor (GR, gene name NR3C1). Using functional genomics data derived from 
the ENCODE project, including chromatin immunoprecipitation sequencing (ChIP-seq) for GR and 
Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) data in the A549 cell 
line treated with dexamethasone, we identified dexamethasone-induced recruitment of GR to 
an accessible downstream enhancer element at the CST3 locus (Figure 3e-f). In the same 
experiment, dexamethasone significantly increased CST3 gene expression over time (p<0.0001, 
Figure 3g). We sought to investigate whether, and on what timescale, the transcriptional 
induction of CST3 by dexamethasone results in increased cellular secretion of CyC, which would 
cause increased tissue and circulating CyC levels. We first repeated the ENCODE experimental 
protocol using A549 cells and found that extracellular CyC concentration was significantly 
increased after 18 hours of treatment compared to 0 hours (Figure S3d). We next compared 
extracellular CyC concentration 18 hours after treatment with either dexamethasone or vehicle 
control in A549 cells (Figure 3h) and HeLa cells (Figure 3i) and found significant elevations of CyC 
in both cases.  
 
In light of our finding that extracellular CyC concentrations do not significantly increase until 18 
hours after dexamethasone treatment in vitro (Figure S3d), we hypothesized that CyC might be 
able to smooth the diurnal rhythm in plasma cortisol levels. Despite the fact that plasma cortisol 
was not directly measured in UKB, we were able to assess this, because previous studies have 
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demonstrated that plasma bilirubin is strongly correlated to plasma cortisol over time52. Using 
cosinor regression53 for CyC-residual and bilirubin in UKB subjects with available blood sampling, 
we determined that the diurnal variation of CyC-residual is diminished compared to bilirubin 
(amplitude coefficient = 0.038 versus 0.23, Figure S3e). Moreover, the peak in CyC-residual 
appears to be delayed by approximately 18 hours compared to the expected peak in plasma 
cortisol, consistent with our in vitro experiments. Taken together, these findings demonstrate 
that CyC production is directly induced by GCs, and that CyC has a reduced diurnal amplitude and 
offset periodicity compared to plasma cortisol.  
 
CyC is secreted in healthy individuals by monocytes in a glucocorticoid independent manner 
 
CyC has been validated as an effective marker of renal function in multiple large clinical cohorts54 
comprising patients without acute disease but has been shown to be dynamically regulated in 
disease states such as cancer18, and so we hypothesized that GC-inducible expression of CyC 
would operate in a context-dependent manner. To investigate this hypothesis, it was first 
necessary to characterize the dominant source of secreted CyC in health. At first glance, CST3 
gene expression was relatively consistent across all tissues examined as part of the GTEX project 
(GTEX Portal), but we reasoned that tissues that predominantly secrete CyC would exhibit a 
significant positive correlation between CyC-production PGS and CST3 gene expression. Using 
expression qualitative trait score (eQTS) analysis we detected a significant positive correlation in 
spleen tissues (n=171, Figure 4a). In support of this, we identified circadian rhythmicity from 
cosinor regression of spleen CST3 gene expression against time of death, which was attenuated 
compared to the canonical GC target FKBP5 (amplitude = 0.060 versus 0.24, Figure S4a).  To 
understand which cell types might be driving this signal, we examined available single-cell RNA 
sequencing (scRNA-seq) data from human spleen55. This showed that only myeloid-derived cell 
populations (dendritic cells, macrophages and monocytes) expressed CST3 (Figure 4b). We 
confirmed myeloid-specific CST3 expression in peripheral blood mononuclear cells (PBMCs) 
scRNA-seq56 (Figure 4c) and across multiple scRNA-seq datasets harmonized as part of the Human 
Protein Atlas57 (Figure 4d). As additional validation supporting the role of monocytes as a 
dominant contributor to plasma CyC levels, we found a significant positive correlation between 
blood monocyte counts and CyC-residual in the UKB cohort (Figure S4b), while two-sample 
Mendelian randomization using blood-derived CST3 eQTLs (eQTLGen58) as exposure identified a 
highly significant positive association with CyC-production (p=6.13e-77, Figure 4e). On the basis 
of these results, we hypothesized that monocyte-like THP-1 cells would have high basal CST3 
gene expression and secretion of CyC without GC-inducibility, and we confirmed this by RT-PCR 
(Figure 4f) and ELISA (Figure 4g). Consistent with these findings, dexamethasone treatment did 
not elevate plasma CyC levels in healthy BALB/c (Figure 4h) and C57BL/6J (Figure 4i) mice, nor 
did near-physiological hydrocortisone treatment affect creatinine-normalized CyC levels (ratio of 
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eGFR-Creatinine to eGFR-CyC, termed C2 ratio) in patients with primary adrenal insufficiency59 
(Figure 4j). Altogether, these findings indicate that CyC production is relatively constant in health, 
and in health does not significantly increase in response to GC agonism, explaining the validated 
utility of CyC as a marker of renal function in patients without acute illness. 
 
CyC secretion is dynamically and glucocorticoid dependently regulated in disease states 
 
Inflammation is characterized by the recruitment of monocytes to diseased tissues, where they 
differentiate into macrophages60. As GR is expressed in macrophages but not in monocytes61, we 
hypothesized that, while monocytes have high constitutive basal CyC production, macrophages 
would secrete CyC in response to GC signaling. To investigate this question, we treated monocytic 
human THP-1 cells with the protein kinase C activator PMA (phorbol 12-myristate 13-acetate) to 
induce macrophage-like differentiation. Dexamethasone treatment of PMA-activated THP-1 cells 
significantly increased CST3 gene expression at 12 hours (Figure 5a) and extracellular CyC protein 
concentration at 18 hours (Figure 5b), mirroring the results found in A549 and HeLa cells (Figure 
3h-i). Severe COVID-19 infection is characterized by persistent lung inflammation associated with 
concomitant recruitment of monocyte-derived macrophages62. Until the release of the 
RECOVERY trial63, patients with severe COVID-19 were not routinely treated with GC agonists 
such as dexamethasone. As such, COVID-19 presents a unique opportunity to investigate the 
effect of dexamethasone on creatinine-normalized CyC levels (C2 ratio). We collated plasma 
creatinine and CyC measurements in two independent cohorts of patients (from Calgary, 
Canada64 and Berlin, Germany65). In each cohort, a subset of patients received standard of care 
(pre-RECOVERY trial) and a subset received standard of care plus dexamethasone from admission 
(post-RECOVERY trial). We identified significantly increased C2 ratios in dexamethasone-treated 
patients at early timepoints (day 1 or day 3, Figure 5c-d) that normalized by day 7 after admission. 
 
The findings that CyC is primarily expressed by myeloid cells and that GC-responsive CyC 
secretion is predominantly mediated by macrophages have the potential to explain our finding 
that rs2749527 is a trans-eQTL for CST3 measured in visceral adipose fat (VAF) in the STARNET 
but not GTEX (p=0.77, Figure S3b). The STARNET study recruited patients with established 
coronary artery disease51, while GTEX is a relatively unselected cohort of deceased donors41. As 
metabolic syndrome is associated with significant macrophage accumulation in adipose tissue66, 
we hypothesized that STARNET patients would have significantly increased macrophage gene 
signatures in VAF, compared to GTEX donors. Using CIBERSORTx67 (absolute mode) analysis of 
RNA-seq data in each cohort, we identified highly significant enrichment of M2-like macrophages 
(demarcated by high expression of CCL18, TREM2 and CLEC4A) in STARNET versus GTEX (p=3.03e-
289, Figure S5a). M2-like macrophages were by far the most abundant myeloid component in 
the STARNET VAF samples, suggesting that they are the cell type underlying the trans-eQTL signal.  
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This finding both provides orthogonal validation for the role of macrophages in GC-responsive 
CyC secretion and illustrates the limitations of eQTL analysis using bulk RNA-seq data, as has been 
described previously68. 
 
While we did not identify significant CST3 gene expression in epithelial tissues in the GTEX and 
Human Protein Atlas datasets, it is notable that we detect high and GC-inducible CyC expression 
in cancer cell lines (Figure 3h-i). This raises the possibility that cancer cells co-opt a phenotype 
normally exhibited by macrophages and ectopically express CST3. In support of this, we re-
analyzed scRNA-seq data from melanoma specimens from 12 patients, confirming high CST3 
expression in the myeloid compartment and identifying comparable ectopic CST3 expression in 
the tumor compartment (Figure 4h). Consistent with elevated intratumorally GC levels26, 
Expression of the canonical GC target FKBP5 could be identified in all cell populations profiled in 
the tumor (Figure S5b)., demonstrating the GC signaling is necessary but not sufficient for CST3 
expression. The murine colorectal-26 (C26) model of cancer progression is characterized by 
marked elevations in endogenous GC production during disease progression30. As such, we 
hypothesized and subsequently confirmed that CyC levels would significantly increase during 
disease progression (Figure 5f), and that these increases would positively correlate with levels of 
the endogenous murine GC, corticosterone (Figure 5g). Dexamethasone treatment of C26 cells 
in vitro was associated with significantly increased CyC secretion at 24 hours (Figure 5h), 
suggesting that elevations in CyC during C26 cancer progression are mediated by GC-induced 
cancer cell-intrinsic CyC secretion. Altogether these findings demonstrate that the capacity of 
GCs to induce CyC secretion is highly context-dependent, and can be co-opted by cancer cells, 
suggesting a possible selective advantage to cancer cells. 
 
CyC directs recruitment of Trem2+ macrophages and failure of cancer immunotherapy 
 
To investigate how CyC expression would provide a selective advantage to cancer cells, we used 
transient transfection with Cas9 and CST3-specific guide RNAs (gRNAs) to generate a CST3-
knockout (CST3-/-) clone of the Mm1 cell line, which is derived from a liver metastasis of the 
autochthonous KPC model of pancreatic cancer69. Knockout was confirmed by ELISA for 
extracellular CyC (Figure S6a) and Sanger sequencing of the predicted edit site (Figure S6b), which 
confirmed 97% editing efficiency. While isogenic sgScrambled and CST3-/- Mm1 clones had 
equivalent doubling times in vitro (sgScrambled: 23.3 hours, 95% CI 21.6-25.4; CST3-/-): 24.0 
hours, 95% CI 22.4-25.8, Figure S6c), CST3-/- tumors had markedly attenuated growth kinetics in 
vivo (Figure 6a, independent replication Figure S6d) and significantly lower endpoint tumor 
weights (Figure S6e, independent replication Figure S6f). Considering that this growth defect was 
only detectable in vivo, CyC’s known function as a potent inhibitor of cysteine proteases12, such 
as those involved in antigen presentation70, and the role of GCs on CyC secretion, we 
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hypothesized that CyC might have an immune suppressive function. To minimize the effect of 
mouse-specific factors and to maximize the immune selective pressure on tumors, we inoculated 
mice with a sgScrambled tumor on the left flank and a CST3-/- tumor on the right flank (termed 
bi-flank model) and we treated mice with 2-3 doses of anti-PD-L1 antibody. This experiment 
confirmed the suppressed growth of CST3-/- versus paired sgScrambled tumors (Figure 6b and 
Figure S6h, independent replication Figure S6g and S6i). Consistent with this, the proportion of 
Ki67-positive cells was significantly lower in CST3-/- versus paired sgScrambled tumors (Figure 6c).  
 
To investigate whether altered growth kinetics reflected remodeling of the tumor 
microenvironment, we performed pan- cytokeratin immunohistochemistry and automated 
image segmentation to score the epithelial and non-epithelial areas in each tumor section. The 
fraction of non-epithelial cells was markedly reduced in paired CST3-/- versus sgScrambled 
tumors. In order to identify whether the depletion of specific non-epithelial cell types could 
explain this observation, we perform single-cell RNA sequencing (scRNA-seq) on 2 sgScrambled 
and 2 CST3-/- uni-flank tumors, with 14,416 cells spanning 14 cell types passing quality control 
criteria (Figure 6e, marker genes used to define cell identity summarized in Figure S7a and Table 
S7). scRNA-seq profiles of cancer cells confirmed Cst3 knockout in this compartment (Figure S7b, 
p=9.16e-30), but not in other compartments (p>0.05). To identify enriched or depleted cell types, 
we implemented the propeller method71 which models the logit-transformed cell type 
proportions as a function of the CST3 genotype. At 5% FDR we identified a single cell population, 
annotated as Trem2+ macrophages, which was significantly depleted in CST3-/- tumors (adjusted 
p=0.004, ratio=0.098, Figure 6f). We orthogonally validated depletion of Trem2+ cells by digital 
image analysis of Trem2 immunohistochemistry (IHC) in a non-overlapping cohort of bi-flank 
sgScrambled and CST3-/-tumor sections (Figure 6g). Unexpectedly, we identified a highly non-
random distribution of Trem2+ cells in both sgScrambled and CST3-/- sections, with a marked 
enrichment of Trem2+ cells in the outer rim of the tumor (Figure S7b). These findings suggest 
that CyC can influence migration or expansion of Trem2+ macrophages, and that Trem2+ 
macrophages might regulate trafficking of immune cells into the tumor. 
 
As Trem2+ monocytes can be detected in blood samples72, we hypothesized that GC treatment 
in unwell patients would be associated with expansion of Trem2+ monocytes in blood. To 
investigate this, we re-analyzed CD14+ monocyte scRNA-seq profiles from ICU-admitted patients 
with COVID-1964, recovered dropped-out features using an established approach73 and identified 
a high-confidence Trem2+ monocyte cluster (cluster 0, Figure S7d). We identified significant 
expansion of cluster 0 at day 7 versus day 1 in patients treated with dexamethasone (adjusted 
p=0.004, ratio=16.1, Figure S7e). This would support a step-wise model in which GC agonists 
increase extracellular CyC levels (Figure 5c), which in turn promote recruitment or expansion of 
Trem2+ myeloid cells. 
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Others have shown that TREM2+ macrophages play a highly immunosuppressive role in the 
tumor microenvironment74 and are known to be associated with failure of CPI targeting the PD-
1/PD-L1 axis75,76. In light of this, we hypothesized that increased CyC, by inducing recruitment 
and/or expansion of Trem2+ macrophages, would be associated with reduced efficacy of CPI. 
Consistent with this, CST3 gene expression was significantly elevated in the ‘immunologically-
quiet’ C5 TCGA immune subtype (p<1e-10, Tukey’s test against all other subtypes, Figure S8a), 
which is characterized by the highest macrophage and lowest lymphocyte abundance. To 
investigate whether dynamically increased CST3 gene expression would be associated with 
resistance to CPI, we reviewed paired pre- and post-treatment tumor biopsy scRNA-seq from 
patients (n=8) with metastatic basal cell carcinoma (BCC), treated with anti-PD-177. Patients were 
split into responders (n=3) and non-responders (n=5, Figure S8b) according to radiological 
response. Pre-treatment CST3 expression in macrophages, dendritic cells (DCs), cancer-
associated fibroblasts (CAF) and tumor clusters did not predict CPI responsiveness (p>0.05, paired 
t-test). However, we observed evidence for significant dynamic CST3 upregulation in CAFs and 
DCs in non-responder patients (p<0.05, paired t-test, Figure S8c-f). 
 
We considered that the CyC-production PGS could reasonably capture the capacity to 
dynamically regulate secretion of CyC, and so predict failure of CPI. To estimate CyC-production 
PGS in patients treated with CPI, we collated 8 published cohorts of cancer patients treated with 
anti-PD-1, anti-PD-L1 or anti-CTLA-4 therapies with available germline exome sequencing 
(termed panIO cohort, Figure S6b, Table S2a). 685 patients with European ancestry passed quality 
control for inclusion (cohort characteristics summarized in Table S2b). Following imputation of 
common variants, the exome-wide CyC-production PGS was scored in each patient. Using 
multivariate Cox regression adjusted for sex, genetic ancestry and tumor type, we demonstrated 
that CyC-production PGS was associated with significantly worse progression-free survival 
(HR=1.29, p=0.0005) and worse overall survival (HR=1.09, p=0.10, Figure 6h). Using logistic 
regression with the same covariates, we further demonstrated that the PGS was associated with 
significantly reduced odds of durable clinical benefit (OR=0.78, p=0.003, Figure 6h). This latter 
effect was broadly consistent in each tumor type (Figure 6i). Altogether, these findings suggest 
that increased intratumoral CyC production may make a substantial contribution to failure of 
cancer immunotherapy, and that this effect may be mediated by recruitment of TREM2+ 
macrophages. 
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Discussion 
 
This work firmly establishes a direct link between GC signaling, CyC and Trem2+ macrophages. 
We demonstrate CyC’s biological and clinical relevance using a combination of genetic analyses, 
in vitro, in vivo, experimental medicine approaches, and clinically relevant prognostic and 
predictive studies. While the focus on human datasets allowed us to investigate clinically-
relevant questions, we acknowledge that many of the analyses presented are limited by their 
associative nature. Although associations between measured CyC and clinical outcomes have the 
potential to be confounded in multiple directions, we agree with others that associations 
between patient-level polygenic scores and outcomes are substantially more robust, with the 
potential to capture causal associations78. In addition, we performed all PGS analyses in either a 
held-out validation cohort (for UKB) or an independent non-overlapping cohort (TCGA, panIO) to 
mitigate against the risk of overfitting. Thus, we argue that our findings make contributions to 
two gaps in our knowledge.  
 
Firstly, estimation of renal function plays a central role in routine clinical practice by defining 
disease states, capturing acute systemic illness, and informing optimal medication dosing. 
Therefore, the relative strengths and weaknesses of CyC as a marker of renal function have 
substantial clinical relevance. It has been reported previously that CyC performs well as a renal 
function marker in healthy patients, but that its performance deteriorates in patients with acute 
disease and patients who receive  GC agonists such as prednisolone, for example, renal transplant 
patients54. Our findings provide context for seemingly contradictory studies15,79 measuring the 
effect of GC treatment on CyC levels by demonstrating that GC-inducible CyC secretion is context-
dependent, and cannot be detected systemically in healthy mice and humans. One explanation 
for this context-dependency would be that an inflammatory stimulus would drive differentiation 
of monocytes to macrophages, in turn upregulating GR and enabling GC-dependent gene 
programs61, such as GC-inducible expression of CST3. Such a regulatory system would function to 
precisely tune the GC response program to minimize the off-target effects of GCs, which are well-
recognized in clinical practice80. We recognize that other non-macrophage populations, such as 
dendritic cells, might secrete CyC in a GC-responsive manner. In the context of inflammatory 
diseases, such as COVID-19, we demonstrate that dexamethasone treatment induces detectable 
increases in systemic CyC levels and have recently reported that CyC levels are dynamically 
regulated in COVID-19 patients and associate with in-hospital mortality (2nd manuscript in 
preparation). Altogether, this raises the question of whether CyC is a useful marker of renal 
function in patients with significant inflammatory disease, for whom estimation of kidney 
function is likely to be especially important. 
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Secondly, despite the widespread adoption of exogenous GCs as a treatment for inflammatory 
conditions and for treating autoimmune adverse effects of CPI, the exact upstream mechanisms 
by which GCs cause immunosuppression remains elusive80. Our findings, together with work from 
others, suggest that CyC qualifies as a candidate effector of GC-induced immunosuppression: CyC 
is biologically active as a potent cysteine protease inhibitor12, CyC secretion can be induced by 
GC agonists in inflammatory macrophages and this process is co-opted by cancer cells, for which 
the immune system is a dominant selection pressure81. Furthermore, CyC levels are highest in 
cerebrospinal and seminal fluid12, which may even suggest a role in immune privilege. We 
recognise that the GC effect is not exclusive to CyC. In support of this model, cancer cell-intrinsic 
CyC-knockout attenuates tumor growth kinetics and proliferation in immunocompetent mice, 
consistent with evidence that germline CST3 knockout abrogates metastasis in vivo82. Using 
single-cell omics and population genetics, we propose a model in which CyC directs the 
recruitment of immunosuppressive Trem2+ macrophages75,76, which in turn promote failure of 
cancer immunotherapy. However, future work has to determine the precise molecular 
mechanism by which this sequence occurs. One potential link is Apolipoprotein E (ApoE), which 
is known to be secreted by cancer cells83 and is a high-affinity ligand for the Trem2 receptor (Kd 
= 6 nM)84. Ligation of the Trem2 receptor by ApoE is sufficient to promote phagocytosis in 
TREM2-expressing microglial (brain-resident macrophage) cells, and in turn activates Apoe RNA 
expression85, suggesting the existence of an autocrine positive feedback loop. Given that ApoE 
can be proteolytically processed in a range of contexts86 and CyC is a potent protease inhibitor, 
it is conceivable that CyC might act to regulate ApoE availability in the tumor microenvironment, 
thereby regulating recruitment and proliferation of Trem2+ macrophages. Furthermore, 
evidence that M2-like macrophages appear to modulate the trans-eQTL association at rs2749527 
between cortisol and CST3 expression, but also express TREM275,87 suggests the existence of a 
single autocrine loop driving GC-induced expansion of TREM2+ macrophages.  In support of 
connectivity between CyC, ApoE and TREM2, Trem2-knockout mice have accelerated amyloid 
burden in mouse models of Alzheimer’s disease (AD)88, TREM2 R47H mutations impair ApoE 
binding84, and increase the risk of human AD89,  while CyC knockout is associated with reduced 
amyloid burden90. Consistent with a direct immunosuppressive function of CyC, we demonstrate 
that germline predisposition to CyC production is significantly associated with substantial 
remodeling of the intertumoral immune landscape and failure of cancer immunotherapy. The 
evidence that CyC-production PGS predicts failure of immunotherapy requires experimental 
confirmation that is beyond the scope of this present study. If confirmed, it would suggest that a 
combination of PD-1/PD-L1 blockade and CyC inhibition should be explored as a putative 
therapeutic approach in patients who do not respond to CPI. 
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Figures and figure legends 
 

 
Figure 1 - Genomic architecture of cystatin C (CyC) production. (a) Schematic of study plan.  The 
analysis of CyC-production latent trait in UK Biobank (UKB) is leveraged to determine the 
biological and clinical relevance of CyC. (b) Consort diagram and summary of UKB genome-wide 
association analysis strategy in the European ancestry population. The software packages utilized 
for each step are displayed in red. (c) Structural equation model to estimate latent traits of CyC-
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production and renal function. The model schematic, heritability (h2) of eGFR-creatinine and 
eGFR-CyC, and their genetic correlation derived from LD score regression are shown. Circular 
arrows refer to variance of each component and dashed lines refer to covariance between 
components. RF, Renal Function. (d) Latent trait effect sizes (CyC-production and renal function) 
for single nucleotide polymorphisms (SNPs) corresponding to each clumped locus in eGFR-CyC 
summary. Gene names are annotated per OpenTargets V2G pipeline. (e) Linear model of eGFR-
CyC as a function of eGFR-creatinine across all paired blood samples in UK Biobank, including sex 
as a covariate. The deviation of the eGFR-CyC from the linear fit as indicated by the red arrow is 
defined as the CyC-residual, a surrogate for CyC production. (f) Correlation of CyC-residual with 
CyC-production polygenic score (PGS). Only data from the independent validation set (see panel 
b) were used. Boxplots show median (central line) with interquartile range (IQR, box) and 
extrema (whiskers at 1.5× IQR).  
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Figure 2 - Cystatin C (CyC) production is associated with multiple disease states and is 
prognostic in cancer patients. (a) Multivariate Cox regression to measure effect size for CyC-
residual on overall survival in UK Biobank. Covariates included age, sex, body mass index (BMI), 
hemoglobin, C-reactive protein, eGFR-creatinine and operation status (for cancer-specific sub-
analysis). (b) Multivariate Cox regression to measure effect size for CyC-production polygenic 
score (PGS) on subject and parental lifespan in UKB validation cohort. Covariates included PC1-4, 
recruitment center, genotyping array, year of birth of subject and sex of subject (if applicable). 
(c) Phenome-wide association (Cox regression) between CyC-production PGS and 694 time-to-
event phenotypes in UKB validation cohort. Covariates included PC1-4, year of birth and sex. 
Multivariate Cox regression to measure effect size for CyC-production PGS on disease-specific 
survival for specific cancers in (d) UKB validation cohort (cancers diagnosed since 2000, n=3954) 
and (e) TCGA cohort (n=4368). Covariates included PC1-4, age, sex and a term reflecting whether 
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patient had curative surgery. Error bars indicate 95% confidence interval; grey squares indicate 
sample size.  
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Figure 3 - Cystatin C (CyC) is a glucocorticoid response gene in vitro. (a) Colocalization of 
summary statistics for CyC-production from UK Biobank (UKB) and plasma cortisol from CORNET 
Consortium at SERPINA1/6 locus. rs2749527 variant is highlighted in red. (b) Trans-eQTL analysis 
examining association between genetic instrument rs2749527 and CST3 gene expression in 
visceral adipose fat (VAF) in STARNET cohort. (c) Cis-eQTL association between rs2749527 and 
SERPINA6 (encodes cortisol-binding globulin) in liver in STARNET cohort. See Figure S3 for 
replication analysis in GTEX. (d) Gene set enrichment analysis (MAGMA) across CyC-production 
summary statistics (UKB) for steroid signaling-related gene sets. (e) Functional genomics in A549 
cell line (ENCODE project) treated with 100nM dexamethasone for 0 minutes to 12 hours. CHIP-
seq (for glucocorticoid receptor/NR3C1) and ATAC-seq (at 0 hours) at CST3 locus identifies a 
glucocorticoid-responsive and accessible distal enhancer element. Timecourse of (f) GR 
recruitment (at distal enhancer) and (g) CST3 gene expression (log-CPM) following 
dexamethasone treatment in A549 cells (ENCODE project). Trendline and shaded 95% confidence 
interval correspond to regression of gene expression as a function of log-time. Extracellular 
cystatin C concentration in (h) A549 cells and (i) HeLa cells normalized to cellular protein content 
after 18-hour treatment with 100nM dexamethasone or vehicle control. Each condition 
comprises at least 5 biological replicates; horizontal bars indicate mean extracellular CyC. See 
Figure S3 for timecourse. (b, c) Boxplots show median (central line) with interquartile range (IQR, 
box) and extrema (whiskers at 1.5× IQR). Outliers beyond 1.5× IQR are shown as dots. 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 16, 2022. ; https://doi.org/10.1101/2021.08.17.21261668doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.17.21261668
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 16, 2022. ; https://doi.org/10.1101/2021.08.17.21261668doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.17.21261668
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4 - Cystatin C (CyC) is predominantly produced by myeloid cells in health. (a) Tissue-
specific expression quantitative trait score (eQTS) analysis to identify tissues with significant 
correlation (Spearman coefficient) between CyC-production polygenic score (PGS) and tissue-
specific CST3 gene expression in GTEX cohort. P values are uncorrected as each correlation test 
is performed in a non-overlapping set of tissue-specific samples. Distribution of normalized 
single-cell CST3 expression (log-transcripts per million [TPM]) in cell clusters isolated from (b) 
spleen and (c) peripheral blood mononuclear cells (PBMCs). Clusters defined by correlation to 
reference PBMC data91. (d) Mean CST3 gene expression (log-TPM) in each cell cluster from 
multiple tissue-specific single-cell RNA sequencing projects, harmonized by Human Protein Atlas. 
The top cell cluster and tissue-specific macrophage cell type (if not top cluster) by tissue is 
annotated. (e) Two-sample mendelian randomization using blood-specific cis-eQTLs for CST3 
(eQTLGen) as exposure and CyC-production latent trait GWAS as outcome. Error bars correspond 
to standard errors, point color refers to linkage with top cis-eQTL. Change in (f) CST3 gene 
expression (reverse transcription-PCR) and (g) extracellular CyC concentration in human THP-1 
cells (monocyte-like) normalized to cellular protein content after 18-hour treatment with 
dexamethasone (100 nM) or vehicle control. Each condition comprises 10 biological replicates. 
Plasma CyC concentration in healthy (h) BALB/cJ and (i) C57BL/6J mice treated with vehicle or 
20mg/kg dexamethasone. (j) Creatinine-normalized plasma CyC (C2 ratio) in patients with 
primary adrenal insufficiency treated with placebo (saline) or hydrocortisone in a crossover 
experimental medicine study. The administered IV hydrocortisone dose was 0.030 mg/kg/hr 
between 12 AM and 7 AM (the time point of sampling), achieving near-physiological GC exposure. 
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Figure 5 – Cystatin C (CyC) production is dynamically regulated in disease states. Change in (a) 
CST3 gene expression (reverse transcription-PCR) and (b) extracellular CyC concentration in PMA-
treated human THP-1 cells (macrophage-like) normalized to cellular protein content after 18-
hour treatment with dexamethasone (100 nM) or vehicle control. Creatinine-normalized plasma 
CyC (C2 ratio) at specific timepoints with sufficient data in hospitalized COVID-19 patients treated 
with dexamethasone or standard of care as part of cohorts based in (c) Calgary, Canada and (d) 
Charité Hospital, Germany. Day 1 in the Calgary, Canada cohort refers to a time window of 72 
hours after admission to ICU. (e) Single-cell CST3 gene expression in each cell cluster in melanoma 
tumors (n=12) from Jerby-Anon et al92. Clusters defined by correlation to reference PBMC data91, 
with unclassified cells that exhibit detectable clonal copy number variation classified as tumor. 
(f) Plasma CyC concentration in BALBc mice after inoculation with colon-26 (C26) tumor cells. 
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Cachexia defined by >15% body weight loss, pre-cachexia refers to 14 days after tumor 
inoculation. (g) Significant positive correlation between plasma corticosterone and plasma 
cystatin C during tumor progression in C26 model. (h) Extracellular cystatin C concentrations in 
C26 cells normalized to cellular protein content after 0-, 6-, 12-, 18- or 24-hour treatment with 
100 nM dexamethasone. Each timepoint comprises at least 4 biological replicates. 
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Figure 6 - Cystatin C directs recruitment of TREM2+ macrophages and promotes failure of 
cancer immunotherapy. (a) Tumor growth curves (mean and standard error of the mean) for 
single-flank sgScrambled (n=8) and CST3-/- (CST3-KO, n=8) tumors, 100,000 cells inoculated in 
right flank (cohort A). (b) Tumor growth curves (mean and standard error of the mean) for bi-
flank paired sgScrambled (n=5) and CST3-/- (n=5) tumors, 50,000 cells inoculated in both flanks 
(cohort C). Mice received three doses of anti-PD-L1 antibody. (c) Proliferation index (proportion 
of Ki67-positive cells / total cells) and (d) proportion of non-epithelial cells in histological sections 
from paired bi-flank sgScrambled and CST3-/- tumors (pooled cohorts C and D). (e) UMAP 
projection of 14,416 cells, annotated with cell type, from 4 tumor samples (2 sgScrambled, 2 
CST3-/-). (f) Proportion of Trem2+ macrophages in sgScrambled and CST3-/- tumors, p-value is 
adjusted p-value from linear model of logit-transformed proportions. (g) Number of Trem2+ cells 
per mm2 from digital image analysis of Trem2 immunohistochemistry in paired bi-flank sections 
from sgScrambled and CST3-/- tumors. (h) Multivariate (Cox and logistic) regression of Z-scored 
CyC-production polygenic score (PGS) against immuno-oncology biomarkers (progression-free 
survival, overall survival, durable clinical benefit) in meta-analysis of European patients (n=685) 
treated with checkpoint immunotherapy (anti-CTLA4 or anti-PD1/PD-L1). Sample sizes for each 
clinical end-point were n=342, n=685 and n=670 respectively. In each model, covariates included 
the first four principal components, sex and cancer primary. Higher hazard ratios (survival) or 
lower odds ratios (durable clinical benefit) reflect worse therapeutic outcomes. (i) Sensitivity 
analysis indicating odds ratio and confidence interval for durable clinical benefit in each cancer 
type. *, p<0.05; **, p<0.01, ***, p<0.001. 
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Figure S1 - Summary statistics from (a) Cystatin C (CyC)-production and (b) Renal function latent 
traits in European UKB subjects, displayed a Manhattan plot. Loci with a p-value less than 1e-30 
are annotated with gene name from OpenTargets V2G pipeline. (c) Relationship between effect 
size and minor allele frequency in CyC-production trait, annotated with outlier loci. Partitioned 
heritability analysis across multiple tissue types derived from (d) gene expression and (e) 
chromatin accessibility data. Delta t-statistic refers to change in enrichment t-statistic between 
measured eGFR-CyC summary statistics and latent CyC-production or renal function statistics. 
Errors bars signify 95% confidence interval. Coefficients for each SNP included in polygenic scores 
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(PGS) generated using (f) HapMap SNPs (n=1,000,000) or (g) HapMap SNPs that can be reliably 
imputed from exome (n=300,000) sequencing data. CST3 locus on chromosome 20 is annotated. 
 

 
Figure S2 - Trans-ancestral portability of CyC-production polygenic score (PGS) derived in UK 
Biobank European training set (n=381,764) applied to subjects of (a) African (AFR, n=8152) and 
(b) Central and South Asian (CSA, n=9845) genetic ancestry. Boxplots show median (central line) 
with interquartile range (IQR, box) and extrema (whiskers at 1.5× IQR). Summary statistics from 
CyC-production latent trait in (c) AFR and (d) CSA genetic ancestry cohorts, derived from GWAS 
for eGFR-CyC and eGFR-creatinine followed by structural equation modeling. Results displayed 
as Manhattan plot; no loci reached genome-wide significance in latent trait analysis. 
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Figure S3 – (a) Role of single genetic instrument, rs2749527, as a trans-eQTL for CST3 on 
chromosome 20 (in visceral adipose fat) and as a cis-eQTL for SERPINA6 on chromosome 14 (in 
liver), which codes for cortisol-binding globulin, that is also significantly associated with morning 
plasma cortisol. Association analysis between rs2749527 and both (b) CST3 gene expression in 
visceral adipose fat (VAF, n=381) and (c) SERPINA6 gene expression in liver (n=175) in GTEX 
cohort (EUR ancestry). Boxplots show median (central line) with interquartile range (IQR, box) 
and extrema (whiskers at 1.5× IQR). Outliers beyond 1.5× IQR are shown as dots. (d) Extracellular 
cystatin C concentrations in A549 cells normalized to cellular protein content after 0-, 6-, 12- or 
18-hour treatment with 100nM dexamethasone. Each timepoint comprises 6 biological 
replicates. (e) Diurnal variation in CyC-residual and bilirubin (known to correlate with plasma 
cortisol) derived from cosinor regression in UKB cohort. Adjusted Z-score refers to Z-scoring 
stratified by age and gender. 
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Figure S4 - (a) Diurnal variation in CST3 and FKBP5 (canonical glucocorticoid response gene) 
derived from cosinor regression in GTEX spleen cohort, using time of death for each GTEX donor. 
(b) Significant positive correlation between logarithm of monocyte count and Z-score cystatin C 
(CyC)-residual in UKB cohort. Significance refers to multivariate regression including age, sex and 
body mass index (BMI). (c) Visualization of predicted enhancer elements at CST3 locus from 
activity-by-contact (ABC) model93, showing distal enhancer element acting on cystatin C. Each 
row corresponds to a cell line-treatment pair and epithelial grouping includes cancer cell lines. 
(d) ABC model scores for distal enhancer in THP-1 cells - with (macrophage-like) or without 
(monocyte-like) PMA treatment. 
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Figure S5 - (a) Inferred absolute myeloid cell composition from CIBERSORTx analysis (absolute 
mode) applied to visceral adipose tissue (VAF) from STARNET and GTEX cohorts. p values refer to 
t-tests with Bonferroni correction. While units are comparable between cell types and samples, 
they do not refer to an absolute cell fraction. Boxplots show median (central line) with 
interquartile range (IQR, box) and extrema (whiskers at 1.5× IQR). Outliers beyond 1.5× IQR are 
shown as dots. Marker genes used to define M0-like, M1-like (such as CCL19) and M2-like (such 
as CCL18) macrophages are described in the CIBERSORT manuscript94. (b) Single-cell FKBP5 
(canonical glucocorticoid receptor target) gene expression in each cell cluster in melanoma 
tumors (n=12) from Jerby-Anon et al95. Clusters defined by correlation to reference PBMC data91, 
with unclassified cells that exhibit detectable clonal copy number variation classified as tumor. 
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Figure S6 – (a) Extracellular cystatin C (CyC) concentrations measured by ELISA in monoclonal cell 
populations derived from transfection of Mm1 cells with guide RNAs (gRNAs) specific to the CST3 
gene locus (gRNA_1 and gRNA_2, plus sgScrambled control). Clone X was selected on the basis 
of lowest extracellular CyC concentration. (b) Sanger sequencing trace showing high editing 
efficiency (>97%) at the predicted binding site for gRNA_1 in clone X. (c) Cell confluence kinetics 
for sgScrambled and CST3-/- (clone X) cells normalized to confluence at the start of the 
experiment. (d) Tumor growth curves (mean and standard error of the mean) for an independent 
replication with single-flank sgScrambled (n=10) and CST3-/- (n=10) tumors, 200,000 cells 
inoculated in right flank (cohort B). Endpoint tumor weights at endpoint for (e) cohort A and (f) 
cohort B. (g) Tumor growth curves (mean and standard error of the mean) for an independent 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 16, 2022. ; https://doi.org/10.1101/2021.08.17.21261668doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.17.21261668
http://creativecommons.org/licenses/by-nc-nd/4.0/


replication bi-flank paired sgScrambled (n=4) and CST3-/- (n=4) tumors, 100,000 cells inoculated 
in both flanks (cohort D). Mice received two doses of anti-PD-L1 antibody. Endpoint tumor 
weights at endpoint for (h) cohort C and (i) cohort D. (j) Representative Ki67 
immunohistochemistry annotated with automated segmentation of epithelial and non-epithelial 
compartments. 
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Figure S7 – (a) Dotplot of marker gene expression (marker selection detailed in Table S7) used to 
define cell cluster identity in scRNA-seq of Mm1 tumors. Dot color signifies mean expression (log-
TPM) while dot size signifies the proportion of each cell population that have detectable 
expression of each gene. (b) Violin plot showing cancer cell compartment-specific CST3 gene 
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expression in sgScrambled and CST3-/- tumor samples. P-value refers to a pseudobulk 
comparison. (c) Histogram summarizing number of Trem2+ cells per mm2 in each 40μm window 
from the tumor margin in paired sgScrambled and CST3-/- tumor sections, each row corresponds 
to a mouse (n=9) with tumors inoculated in each flank. (d) UMAP plots of re-clustered CD14+ 
monocytes (n=10 clusters) from ICU-admitted COVID-19 patients64 annotated with the 
Nebulosa73 kernel function corresponding to TREM2, APOE and CSF1R gene expression; 
indicating that cluster 0 is enriched with Trem2+ monocytes. (e) Proportion of cluster 0 
monocytes at day 1 (within 72 hours of admission) and day 7 in ICU-admitted patients with 
COVID-19 who were treated with dexamethasone. p-value is adjusted p-value from linear model 
of logit-transformed proportions. 
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Figure S8 - (a) CST3 gene expression (log-normalized) in each TCGA immune subtype (Thorssen 
et al96). Subtype 5 corresponds to 'immunological quiet' subtype, characterized by reduced 
lymphocyte and increased M2 macrophage responses. Significance level refers to one-way 
ANOVA with post-hoc Tukey’s test. (b) Summary of radiological response data for patients with 
basal cell carcinoma (BCC, n=8) derived from Yost et al97. Response is nominally defined as tumor 
regression >25%. Numbers refer to patient IDs. Ratio of cluster-specific pseudo-bulk CST3 gene 
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expression (log-TPM) in paired biopsy samples pre/post anti-PD-1 treatment, segregated 
according to clinical response, for (c) macrophage, (d) dendritic cell, (e) cancer-associated 
fibroblast (CAF) and (f) tumor subsets. Uncorrected P values refer paired t-tests. 
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STAR Methods 
 
Key resources table 
 
REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Anti-TREM2 antibody Proteintech 13483-1-AP 

Anti-Ki67 antibody Thermo Fisher 14-5698-82 

Anti-pan-cyclokeratin antibody 
(HRP-conjugated) 

Novus Bio NBP1-48348H 

Anti-F4/80 antibody Thermo Fisher 14-4801-82 

Critical Commercial Assays 

Human Cystatin C ELISA Kit R&D DSCTC0 

Mouse Cystatin C ELISA Kit Abcam ab119590 

Mouse Cystatin C ELISA Kit 
(SimpleStep) 

Abcam ab201280 

Corticosterone ELISA IBL International RE52211 

Deposited Data 

UK Biobank https://www.ukbiobank.ac.uk/  

Genotype-Tissue Expression (GTEx https://gtexportal.org/home/ phs000424 

The Cancer Genome Atlas https://portal.gdc.cancer.gov/ phs000178 

STARNET   

Pan-UK Biobank project https://pan.ukbb.broadinstitute.org/  

ENCODE https://www.encodeproject.org/  

panIO patient cohort Accession codes detailed in Table S2a  

Single-cell RNA sequencing of 
monocytes from COVID-19 patients 

Processed Seurat matrix deposited on Figshare 
(https://doi.org/10.6084/m9.figshare.14330795.v13, 
‘covid.combined_final.CD14.Mono.Robj’) 

 

GWAS summary statistics To be deposited on GWAS Catalog  

CyC-production polygenic score To be deposited on PGS Catalog  

Single-cell RNA sequencing of 
mouse tumors 

Raw data to be deposited on NIH SRA, processed Seurat 
matrix deposited on Figshare 
(https://doi.org/10.6084/m9.figshare.20063402) 

 

Scanned mouse tumor sections To be deposited in the CSHL data repository  

Single-cell RNA sequencing from 
Yost et al.77 

NCBI GEO (GSE123813)  

Single-cell RNA sequencing from 
Jerby-Anon et al.97 

Single cell portal (SCP109)  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 16, 2022. ; https://doi.org/10.1101/2021.08.17.21261668doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.17.21261668
http://creativecommons.org/licenses/by-nc-nd/4.0/


Single-cell RNA sequencing from 
Madissoon et al.55  

https://data.humancellatlas.org/explore/projects/c4077
b3c-5c98-4d26-a614-246d12c2e5d7 

 

Single-cell RNA sequencing from 
Wilk et al.56  

Single cell portal (SCP345)  

Experimental Models: Cell Lines 

Mm1 cell line Gift from Tuveson Laboratory (Cold Spring Harbor 
Laboratory) 

 

A549 cell line ATCC  

C26 cell line Maintained in Janowitz Laboratory (Cold Spring Harbor 
Laboratory) 

 

HeLa cell line Gift from Cold Spring Harbor Laboratory  

THP-1 cell line ATCC  

Experimental Models: Organisms/Strains 

C57BL/6J Jax 000664 

BALB/c Charles River  

BALB/cJ Jax 000651 

Oligonucleotides 

Primer sequences Detailed in Table S5  

Guide RNA sequences Detailed in Table S6  

Software and Algorithms 

PLINK https://www.cog-genomics.org/plink/  

Hail https://hail.is/  

R https://www.r-project.org/  

TOPMED https://imputation.biodatacatalyst.nhlbi.nih.gov/#!  

Genomic-SEM https://github.com/GenomicSEM/GenomicSEM  

LDSC https://github.com/bulik/ldsc  

LDpred2 https://privefl.github.io/bigsnpr  

Seurat https://github.com/satijalab/seurat  

 
Resource Availability 
 
Lead Contact 
Further information and requests for resources should be directed to the Lead Contact, Tobias 
Janowitz (janowitz@cshl.edu). 
 
Materials Availability 
 
CyC-/- Mm1 cell line that was generated as part of this study is available from the lead contact 
with a completed material transfers agreement. 
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Data and Code Availability 
 

• Due to the data use agreements for the datasets analyzed in this manuscript, we are 
unable to directly share or distribute any patient-level data except for COVID-19 patient 
scRNA-seq (reposited at https://doi.org/10.6084/m9.figshare.14330795.v13, filename 
‘covid.combined_final.CD14.Mono.Robj’). All summary statistics are published alongside 
the study, and polygenic scores will be reposited on PGS Catalog on the acceptance of the 
peer-reviewed manuscript.  To facilitate dataset requests from applicable data use 
committees, we provide all accession codes for all datasets relating to this manuscript in 
the Key Resources Table and in Table S2a. UK Biobank data can be requested through the 
application process detailed at https://www.ukbiobank.ac.uk/.  

• Single-cell RNA sequencing from mouse tumors will be deposited on SRA on acceptance 
of a peer-reviewed manuscript, the processed Seurat matrix is available from Figshare 
(https://doi.org/10.6084/m9.figshare.20063402). Primary data for in vitro and in vivo 
experiments will be published on acceptance of a peer-reviewed manuscript. All scanned 
slides will be made available through the CSHL data repository on acceptance of a peer-
reviewed manuscript. 

• Code to reproduce core computational and statistical analyses has been reposited on 
Github at https://github.com/Janowitz-Lab/cystatinc. 

• Where data use agreements allow, additional information required to reanalyze the data 
reported in this paper is available from the lead contact upon request. 

 
Experimental model and subject details 
 
Cell line models 
 
Human lung carcinoma cell line A549 was purchased from ATCC (CCL-185). Human cervical cancer 
cell line HeLa was obtained from Cold Spring Harbor Laboratory. Human acute monocytic 
leukemic cell line THP-1 was purchased from ATCC (TIB-202). Mm1 cells were a gift from D. 
Tuveson (Cold Spring Harbor Laboratory, NY), and are derived from a liver metastasis in the KPC 
model of pancreatic ductal adenocarcinoma69. A549, HeLa and Mm1 cell lines were cultured in 
DMEM supplemented with 10% FBS and 1% penicillin-streptomycin. THP-1 and C26 cells were 
cultured in RPMI supplemented with 10% FBS and 1% penicillin-streptomycin.  Macrophage-like 
differentiation in THP-1 cells was induced by treatment with 50nM PMA (Sigma) for 48 hours, 
before replacement with PMA-free media and recovery for 24 hours prior to treatment. Cell 
viability was checked by trypan blue method and was consistently above 95% prior to seeding. 
All cell lines were cultured at 37°C in 5% CO2. Dexamethasone and PMA (phorbol 12-myristate 
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13-acetate) were purchased from Sigma-Aldrich. DMEM and RPMI cell culture media, fetal bovine 
serum (FBS), penicillin/streptomycin (P/S) and Dulbecco’s phosphate-buffered saline (DPBS) 
were purchased from Gibco 
 
Mouse models 
 
Wild-type BALB/c mice obtained from Charles River Laboratories (for C26 model of cancer 
progression) and Jax (for dexamethasone treatment); and wild-type C57BL/6J obtained from Jax. 
All mice examined as part of this study were male as C2 and Mm1 lines were isolated from male 
mice. Mice were allowed to acclimatize for 7 days from arrival in the Cold Spring Harbor 
Laboratory animal facility. All animal experiments and care were performed in accordance with 
the Cold Spring Harbor Laboratory (CSHL) Institutional Animal Care and Use Committee (IACUC) 
and the National Institutes of Health Guide for the Care and Use of Laboratory Animals. Mice 
were kept in specific pathogen-free conditions on a 24 hour 12:12 light-dark cycle. Tumor 
samples were obtained by dissection of mice after euthanasia by cervical dislocation and tumor 
weights were routinely recorded. Plasma samples were obtained from tail bleeds and terminal 
cardiac bleeds. Tail bleeds were performed using a scalpel via tail venesection without restraint, 
and terminal bleeds were obtained at endpoint (cachexia) through exsanguination via cardiac 
puncture under isoflurane anesthesia. Samples were kept on ice at all times. Plasma samples 
were collected into heparin-coated capillary tubes to avoid coagulation and were processed as 
follows: centrifuge spin at 14,000 rpm for 5 minutes at 4°C, snap frozen in liquid nitrogen, and 
stored at -80°C.  
 
Human studies 
 
This study incorporates human subjects from three independent studies. All human subjects gave 
informed consent, and all studies were approved by the respective institutional review boards. 
 

1. Cohort 1. This cohort has been reported previously59 and refers to a prospective, single-
center, single-blind randomized crossover clinical trial that recruited 10 subjects (men and 
women) with primary adrenal insufficiency (Addison’s disease). The study was approved 
by the Ethics Review Board of the University of Gothenburg, Sweden (permit no. 374-13, 
8 August 2013) and conducted in accordance with the Declaration of Helsinki. Written 
informed consent was obtained from all subjects before participation. The study was 
registered at ClinicalTrials.gov with identifier NCT02152553. 

2. Cohort 2. This cohort has been reported previously64 and refers to a prospective study 
that recruited 14 patients with COVID-19 necessitating admission to ICU, of which 6 
received dexamethasone treatment as part of their clinical course.  All patients or their 
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surrogate decision-makers gave informed consent for participation. This study was 
approved by the Conjoint Health Research Ethics Board at the University of Calgary (Ethics 
ID: REB20-0481) and is consistent with the Declaration of Helsinki. 

3. Cohort 3. This cohort (Pa-COVID-19 study) has been reported previously65 and refers to a 
prospective observational cohort study at Charité Universitätsmedizin Berlin. Patients 
with a PCR-confirmed diagnosis of SARS-CoV-2 infection were eligible for inclusion in the 
study. The Pa-COVID-19 study is carried out according to the Declaration of Helsinki and 
the principles of Good Clinical Practice (ICH 1996) where applicable and was approved by 
the ethics committee of Charité- Universitätsmedizin Berlin (EA2/066/20). 

 
Method details 
 
In vitro glucocorticoid treatment 
 
For all experiments, cells were plated in 6 well plates, at a density of approximately 500,000 
cells/ml. Cells reached confluence on day one or day two after being seeded. For time course 
experiments, cells were seeded and harvested at the same time, with the only variable being the 
duration of treatment with 100nM dexamethasone (varied between 0 and 18 hours), with 0-hour 
treatment acting as the control. For single-timepoint experiments, cells were treated with either 
100nM dexamethasone (Sigma) or 0.01% ethanol for 18 hours prior to harvesting. For each 
experiment all samples were harvested concurrently. 
 
For quantification of extracellular CyC, cell supernatant was collected at harvesting, spun at 
10000 x g for 5 minutes to remove debris, and analyzed by ELISA (Human Cystatin C ELISA Kit, 
R&D Systems; Mouse Cystatin C ELISA Kit, Abcam/ab119590), with each sample profiled in 
duplicate. For quantification of cellular protein content, cells were washed with DPBS and ice-
cold RIPA buffer with protease and phosphatase inhibitors (Thermo Fisher) was added to each 
well. The cell lysate was passed through a 25G syringe for homogenization and spun for 10000 x 
g for 15 minutes, at 4°C. The supernatant from the spun-down lysate was then stored at -80 for 
later analysis. BCA assay was performed on the cell lysate, with each sample profiled in duplicate. 
Normalized extracellular CyC concentrations were determined by dividing the ELISA-derived CyC 
concentration by the BCA-derived cellular protein content. 
 
For quantitative real-time polymerase chain reaction (RT-PCR), RNA was extracted using the 
RNeasy Mini Kit (Qiagen) and reverse transcribed using SuperScript IV VILO Master Mix (Thermo 
Fisher) according to the manufacturer’s protocol. Four housekeeping genes (GUSB, PPIA, RPL15, 
RPL19) with minimal variation on GC treatment were selected on the basis of a literature review98 
and differential expression analysis in ENCODE RNA-seq data (accession ENCSR897XFT), 
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implemented in edgeR. Primers were designed using NCBI Primer-BLAST, with exon-spanning 
primers designed where possible (primer sequences detailed in Table S5). PCR was performed 
using the PowerTrack SYBR Green Master Mix (Thermo Fisher) using the QuantStudio 6 Flex 
(Thermo Fisher) instrument, using a 10μl reaction volume in technical triplicate according to the 
manufacturer's protocol. The threshold cycle was determined by the Second Derivative 
Maximum method and the expression of each target was normalized relative to the geometric 
mean of four endogenous controls. 
 
In vivo glucocorticoid treatment 
 
Wild-type BALB/c and C57BL/6J were treated with a single dose of 20mg/kg dexamethasone 
given intraperitoneally (IP) at 9am. Dexamethasone 21-phosphate disodium salt (Sigma) was 
dissolved in PBS and filter sterilized prior to injection. Tail vein samples were taken 24- and 48-
hours following IP dosing, and plasma levels of CyC were determined with Mouse Cystatin C ELISA 
Kit (ab119590), Abcam. 
 
Glucocorticoid treatment in human subjects 
 
Glucocorticoid treatment in human cohort 1 has been reported previously59. Briefly, subjects 
were randomized to a 22-hour treatment (commencing at 9am) with placebo (intravenous 0.9% 
saline) or near-physiological glucocorticoid treatment with intravenous hydrocortisone. During 
the GC exposure, hydrocortisone was administered at a varying dose of 0.024 mg/kg/hr between 
9 AM and 12 PM (first day), 0.012 mg/kg/hr between 12 PM and 8 PM (first day), 0.008 mg/kg/hr 
between 8 PM and 12 AM (first day), and 0.030 mg/kg/hr between 12 AM and 7 AM (second 
day). After 2 weeks, subjects were given whichever treatment they had no yet received, as part 
of a crossover study design. Blood samples were collected in the morning of the second 
intervention day (6 AM) and plasma was isolated. Plasma CyC and creatinine were measured 
used validated clinical assays (creatinine: Alinity c Creatinine (Enzymatic) Reagent Kit; CyC: 
Gentian Cystatin C Immunoassay) at the laboratory of Sahlgrenska University Hospital in 
Gothenburg, Sweden. 
 
CyC quantification in patients with COVID-19 
 
For human cohort 2, serum samples were collected as specified timepoints (timepoint 1: within 
72 hours of admission/referred to as day 1, and timepoint 2: 7 days after timepoint 1)64. ELISA-
based serum cystatin C measurement was performed by Eve Technologies (Custom Human 
Kidney Injury Panel – Cystatin C). For human cohort 3, plasma sampling for plasma proteomics 
by mass spectrometry was performed three times per week subsequent to inclusion. Sample 
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processing, mass spectrometry and data analysis were performed as described previously22, 
allowing for quantification of plasma CyC levels in 309 patients. Out of these patients, 131 had 
available paired serum creatinine for at least one timepoint, as well as clinical outcome data 
(COVID-specific mortality). For patients with at least one creatinine measurement, missing data 
were imputed with the most recent value. Plasma CyC levels were scaled by a factor of 300, so 
that the cohort mean was comparable to the mean serum CyC recorded in the UKB cohort (field 
30720, units mg/L). For each patient, a creatinine-CyC (C2) ratio was calculated at each timepoint, 
using CKD-EPI eGFR equations with the race term set to 0. 
 
In vivo model of cancer progression 
 
Experiments with the C26 model were performed using 8-weeks old wild-type BALB/c male mice. 
Mice were inoculated subcutaneously in their right flank with the syngeneic C26 colorectal cancer 
cell line (2x106 viable cells in 100μl RPMI vehicle) that induces cachexia.  Prior to inoculation, C26 
cells were dissociated with trypsin, followed by resuspension in FBS-free RPMI and counting of 
the viable cell concentration (trypan blue). C26-tumor bearing mice were termed pre-cachectic 
from 18 days post-inoculation and were defined as cachectic when their weight loss exceeded 
15% from peak body weight. Plasma levels of CyC were determined with Mouse Cystatin C ELISA 
Kit (ab119590), Abcam. Corticosterone levels were quantified using Corticosterone ELISA 
(RE52211) from IBL International (TECAN).  
 
Establishment of isogenic CyC-/- cell line 
 
Mm1 were transiently transfected with CRISPR plasmids (PX459, GenScript) encoding either a 
guide RNA (gRNA) specific to a coding region in mouse Cst3 or a non-targeting (scrambled) gRNA. 
We tested two Cst3-specific gRNAs and one scrambled gRNA from a pre-validated database99. 
Guide RNA sequences are summarized in Table S6. Mm1 cells were seeded into 24-well plates 
with 50,000 cells per well and after 24 hours, they were transfected with 500ng plasmid using 
Lipofectamine 3000 (Thermo Fisher) according to the manufacturer’s protocol. We included a 
GFP-expressing plasmid to assess transfection efficiency. After 48 hours, the media was changed 
and replaced with DMEM media supplemented with 5μg/ml puromycin. After 72 hours, the 
media was replaced with DMEM media for 24 hours, followed by isolation of monoclonal 
populations by serial dilutions in a 96-well plate. To identify clones with CyC knockout, we 
measured CyC in the cell supernatant for each clone using the Mouse Cystatin C ELISA Kit 
(ab201280), Abcam. To verify the presence of truncating mutations in the Cst3 coding region, we 
extracted genomic DNA from each clone (Qiagen DNeasy Blood and Tissue Kit) and performed 
targeted polymerase chain reaction (PCR) amplification and Sanger sequencing of the predicted 
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gRNA binding sites. The editing efficiency was assessed using the Synthego ICE Analysis tool 
(https://ice.synthego.com/).  
 
Characterization of isogenic CyC-/- cell line 
 
To compare the in vitro growth kinetics of isogenic sgScrambled and CyC-/- cell lines, cells were 
seeded into 6-well plates with 200,000 cell per well, with three biological replicates per clonal 
cell line. Each well was scanned every 2 hours using an IncuCyte S3 Live Cell Analysis Instrument 
using the phase channel according to the manufacturer’s protocol. Cell confluence was estimated 
using the IncuCycte Cell-By-Cell analysis module, and was normalized to the first timepoint. The 
doubling time was estimated by fitting a model of log(time) as a function of confluence. To 
compare the in vivo growth kinetics of isogenic sgScrambled and CyC-/- cell lines, mice were 
inoculated subcutaneously with 50,000-200,000 cells in the flank. For uni-flank experiments, 
mice were inoculated in the right flank; for bi-flank experiments, mice were inoculated in both 
left and right flanks, with the sgScrambled tumors on the left flank and the CyC-/- tumor on the 
right flank. For tumor inoculation, Mm1 cells were dissociated with trypsin followed by 
resuspension in FBS-containing DMEM, counting of the viable cell concentration (trypan blue) 
and resuspension in sterile PBS. 10-20μl of PBS-suspended cell mixture was combined with an 
equal volume of Cultrex Reduced Growth Factor Basement Membrane Extract (3433-010-01, 
R&D Systems) on ice. Immediately prior to inoculation, the suspended cell mixture is thawed to 
room temperature and loaded into insulin syringes (328440, BD). Mice were monitored regularly 
until palpable tumors formed, after which point the longest and shortest dimensions of each 
tumor was measured every 3-4 days using calipers. For anti-PD-L1 treatment, mice were treated 
with 200μg of anti-PD-L1 monoclonal antibody (BioXCell, BP010) every 3 days, given 
intraperitoneally (IP). Unless otherwise stated, mice were sacrificed by cervical dislocation once 
tumors exceeded 20mm on one axis. 
 
Single-cell RNA sequencing of mouse tumors 
 
Tumors were finely minced at 4°C and transferred into tumor digestion medium containing 
collagenase/hyaluronidase and DNase I in RPMI 1640 with glutamine, then incubated on a shaker 
for 45 min at 37C and 300rpm. Freed cells were collected by passing through the dissociated 
tumor and media into a 70um cell strainer and quenching with FACS buffer at 4°C. Cells were 
spun down at 300g for 5 minutes at 4°C, the pellet resuspended in ice-cold ammonium chloride 
solution for 5 minutes and quenched with FACS buffer. Cells were spun down again and 
resuspended in FACS buffer. Viable cells were quantified by trypan blue method and samples 
were then subject to dead cell removal (EasySep Dead Cell Removal Kit, STEMCELL). Prior to 
library preparation, viability and cell number were re-assessed with a Countess II FL using AOPI 
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(PN- CS2-0106-5mL, Nexcelom Bioscience). Single-cell RNA-seq libraries targeting 8,000 cells per 
sample were generated using the Chromium Next GEM Single Cell 3ʹ Reagent Kits v3.1 (PN-
1000121, 10x Genomics) according to the manufacturer's instructions. Final libraries were 
sequenced to at least 25,000 reads per cell with the Illumina NextSeq 2000 and aligned with Cell 
Ranger (version 6.0.0, 10x Genomics) to the mm10 reference genome (refdata-gex-mm10-2020-
A, 10x Genomics). 
 
Tumor immunohistochemistry 
 
Tumors were harvested and embedded in tissue molds containing OCT (Sakura) and frozen on 
dry ice prior to storage at -80°C. IHC staining were performed at CSHL Tissue Imaging Shared 
Facility. OCT embedded fresh tissue blocks were sectioned with Thermo #NX50 cryostat. 10μm 
thick sections were collected and mounted on positive charged glass slides (VWR superfrost plus 
micro slide) IHC slides were stained on DISCOVERY ULTRA IHC/ISH research platform (Roche) 
following standard protocols.  Briefly, after fixation, slides were incubated with primary antibody 
at 37˚C for 1hr and Discovery multimer detection system (Discovery OmniMap HRP, Discovery 
DAB, Roche) was used to detect and amplify immuno-signals. Primary antibodies:  Ki67 (Thermo 
Fisher 14-5698-82), 1:500 dilution; Pan-CK (Novus Bio NBP1-48348H), 1:100 dilution; TREM2 
(Proteintech 13483-1-AP), 1:150 dilution. 
 
Tumor in situ hybridization 
 
Staining was performed using the RNAscope platform (ACD), according to the manufacturer’s 
protocol for the RNAscope 2.5 HD Detection Reagent (red, 322360) and technical note for fresh-
frozen tissue (320536). Tissue sections were fixed with 4% PFA for 15 mins at 4°C, and dehydrated 
with a series of ethanol washes (50%, 70%, 100%, 100%) for 5 minutes each. The sections were 
pretreated with hydrogen peroxide for 10 min, washed once with distilled water, pretreated with 
Protease IV for 30 min at RT and washed with 1X PBS. Sections were then individually hybridized 
for two hours at 40°C, with probes targeting either TREM2 (404111, ACD), DapB (negative 
control; 310043, ACD) or PPIB (positive control; 313911, ACD). After hybridization, sections were 
washed twice with 1X PBS for 2 minutes and subject to 6 amplification steps (30 min at 40°C, 15 
min at 40°C, 30 min at 40°C, 15 min at 40°C, 30 min RT, 15 min RT) prior to detection. Signal was 
detected using Fast Red reagent (322360, ACD) for 10 minutes at RT, and briefly washing with 
tap water prior to counterstaining with hematoxylin. Slides were mounted using xylene and 
EcoMount. Images were scanned using a Leica-Aperio Versa slide scanner. 
 
Quantification and statistical analysis 
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Cohort genomic data quality control (QC) 
 
UK Biobank (UKB) 
 
UKB-provided measured genotype, imputed genotype (GRCh37, imputed data release 3) and 
phenotype data1 was accessed as part of application 58510. We selected subjects with available 
imputed genomic data (field 22028) and at least one paired creatinine (field 30700) and CyC 
measurement (field 30720), and excluded subjects with sex chromosome aneuploidy (field 
22019), discordant genetic sex (fields 31 and 22001), excess heterozygosity and missing rate (field 
22027). To classify genetic ancestry, we lifted over directly genotyped and linkage disequilibrium 
(LD)-pruned high-quality variants (bi-allelic SNPs, MAF > 0.1%, call rate > 99%) to GRCh38 and 
merged with variants available from an integrated callset (call rate > 95%) derived from 1000 
Genomes and Human Genome Diversity Project (HGDP, gnomAD). LD pruning was implemented 
using PLINK1.9 with parameters ‘--indep-pairwise 50 5 0.2’. Principal components (1-10) were 
computed using the unrelated reference subjects (PC-relate kinship coefficient < 0.05) then 
projected onto all reference and UKB subjects. Next, a random forest classifier was trained using 
ancestry data from the reference cohort, implemented in the gnomAD package for Hail. This 
classifier was applied to the UKB subjects, and genetic ancestry was assigned with a minimum 
probability of 70% (Table S1). Relatedness data was extracted from the UKB-provided kinship 
matrix, generated using KING software. For the EUR ancestry group, subjects were split into a 
discovery cohort (n=381,764 subjects) and validation cohort (n=50,000 subjects), with the 
validation cohort comprising a random selection from unrelated UKB subjects (KING kinship 
coefficient < 0.0442). For all other ancestry groups, all subjects were used as discovery cohort. 
For all analyses using imputed data, we filtered to variants with INFO score > 0.8 and MAF > 1% 
across whole cohort. 
 
Genotype-Tissue Expression (GTEx) project 
 
Whole-genome sequencing data (GRCh38) and controlled-access metadata (including time of 
death) was accessed through dbGaP (phs000424.v8.p2) as part of application 26811. The 
provided imputed data had already undergone extensive quality control, however, we removed 
an additional 9 subjects with a PC-relate kinship coefficient > 0.05. We identified EUR ancestry 
subjects (n=678) as above using 1000G/HGDP reference data to train a random forest classifier 
that was applied to GTEX subjects, using high-quality LD-pruned common variants (bi-allelic SNPs, 
MAF > 0.1%, call rate > 99%, r2<0.1), LD pruning was implemented using the ‘ld_prune’ function 
in Hail, subsequent to removal of high-LD regions100. In this smaller cohort, ancestry was defined 
using a minimum probability of 50% followed by removal of PCA outliers with a PCA Z-score > 5. 
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The Cancer Genome Atlas (TCGA) 
 
Germline array data (Birdseed format, GRCh37) was downloaded from the GDC Legacy archive 
as part of dbGaP application 26811, before conversion to VCF format. For sample QC, we started 
with a sample list defined by Sayaman et al101, which selected one germline sample per subject, 
prioritizing blood-derived or high call-rate samples, while removing samples with excess 
heterozygosity or hematological malignancies. For additional sample QC, we removed samples 
with discordant sex (using the impute_sex function in Hail), excess hetero- or homo-zygosity (Z-
score > 3, using agg.inbreeding function in Hail), related subjects (PC-relate kinship coefficient > 
0.05) and called genetic ancestry as described for the GTEX cohort (n=7260 EUR patients). For 
imputation in the unrelated EUR population, we selected variants with call rate > 95% and MAF 
> 0.1%. Imputation was performed using the TOPMED server, which automatically lifts over 
variants to GRCh38. For the final cleaned dataset, we selected autosomal variants imputed with 
r2 > 0.6 and MAF > 0.1%.  
 
Stockholm Tartu Atherosclerosis Reverse Networks Engineering Task (STARNET) 
 
STARNET is a cohort of 600 Caucasian patents of Eastern European origin, with a confirmed 
diagnosis of coronary artery disease. Genomic data quality control has been described 
previously51. Briefly, array-based genotyping was performed on germline DNA from blood, 
followed by imputation against the 1000 Genomes phase 1 SNPs. Comparison of population 
structure with 1000 Genomes cohort confirmed that all STARNET subjects had European genetic 
ancestry. 
 
Immunotherapy meta-cohort (panIO) 
 
We requested access to 8 cohorts of patients treated with CPI (anti-PD-1, anti-PD-L1 and/or anti-
CTLA4) with available germline exome sequencing and clinical outcome (Table S2a-b). Clinical 
annotations were downloaded from the supplemental data from associated manuscripts or 
requested directly from principal investigators. Samples were excluded if there was insufficient 
data to report at least one outcome measure (overall survival, progression-free survival, durable 
clinical benefit). Durable clinical benefit (binary) was defined by patients with no radiological 
progression > 6 months or overall survival > 1 year. Harmonized germline short variant calling 
was implemented using nf-core/sarek pipeline, with Strelka mutation caller102 and GRCh38 
reference genome. gVCFs were merged using Illumina gvcfgenotyper tool and imported into Hail 
for processing. Samples with discordant sex (n=13) were identified by comparison of sex reported 
in clinical metadata and genetic sex determined from integration of X chromosome 
heterozygosity and Y chromosome genotype counts (via PLINK 1.9 impute-sex function). For the 
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small minority of patients without supplied sex (n=4), sex was genetically imputed. For variant 
QC, calls filtered by Strelka were removed, SNPs calls required a minimum depth of 7 while indel 
calls required a minimum depth of 10. Each variant required a call rate >90% and at least one 
‘high-quality’ call defined as one homozygous ALT call or one heterozygous ALT call (with allele 
balance >15% for SNP or >20% for indel). Samples with a call rate <90% or excess hetero- or 
homozygosity (Z score > 3) were removed. No subjects had >3rd degree relatedness, which also 
excludes the possibility of duplicates samples in the cohort. EUR ancestry subjects were identified 
as for GTEX cohort. Imputation of EUR population was performed using the TOPMED server. For 
the final cleaned dataset, we selected autosomal variants imputed with r2 > 0.6 and MAF > 0.1%.  
 
Computation of principal components 
 
We computed 20 principal components (PCs) on all subjects (including related) and all genotyped 
variants, as per the BOLT-LMM manual, implemented in PLINK2 (--pca function). Due to 
computational complexity, the PLINK2 PCA approximation (--approx) was used for the EUR 
population. To account for genetic ancestry in downstream analyses, PCs (1-4) were computed 
on high-quality linkage disequilibrium (LD)-pruned variants (bi-allelic SNPs, MAF > 0.1%, call rate 
> 99%, r2<0.1), with SNPs in known high-LD regions removed100. For UKB, high-quality SNPs were 
derived from the ‘in_PCA’ field from the UKB-provided SNP QC file. In the UKB cohort, PCs were 
computed with related subjects removed (approach described above), and then projected onto 
all remaining samples, using the ‘run_pca_with_relateds’ function in the gnomAD package for 
Hail. In other cohorts (where related subjects were removed), PCs were computed using the 
‘hwe_normalized_pca’ function in Hail. 
 
Genome-wide association analysis (GWAS) 
 
eGFR-CyC and eGFR-Cr were calculated using CKD-EPI equations54 implemented in the nephro 
package for R, with race term set to 0 for all subjects. For subjects we more than 1 paired 
creatinine and CyC measurement, we selected the earliest complete datapoint. Genome-wide 
association analyses (GWAS) in the discovery cohorts (for eGFR-CyC and eGFR-Cr were performed 
in each ancestry group, including related subjects, using BOLT-LMM8 with covariates including 
age (field 21003), age2, sex (field 31), genotyping array (binarized from field 22000), recruitment 
centre (field 54), and genetic PCs 1-20 (described above).  LD score matrices for each ancestry 
group were downloaded from the Pan-UK Biobank project 
(https://pan.ukbb.broadinstitute.org/). To assess for confounding we determined the 
attenuation ratio of each trait via LD score regression, which was within the expected range for 
polygenic traits (Table S3)103. 
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Structural equation modelling 
 
Structural equation modelling of eGFR-Cr and eGFR-Cy summary statistics was implemented in 
the Genomic-SEM package for R33 and performed as per the GWAS-by-subtraction tutorial 
(https://rpubs.com/MichelNivard/565885). Briefly, for EUR, AFR and CSA populations, we 
performed LD score regression using LD matrices from the Pan-UK Biobank Project 
(https://pan.ukbb.broadinstitute.org/). We designed a structural equation model (summarized 
in Figure 1c), with latent traits estimated using the userGWAS function parallelized across each 
chromosome. Summary statistics for each latent trait (renal function, CyC-production) were 
extracted and effective sample sizes were estimated using the script provided by the Genomic-
SEM authors (https://github.com/GenomicSEM/GenomicSEM/wiki/5.-User-Specified-Models-
with-SNP-Effects).  CyC-production summary statistics were standardized by setting A1 as the 
GRCh37 ALT allele and A2 as the GRCh37 REF allele, and multiplying the effect size of CyC-
production by -1 so a higher effect size reflects increased CyC production. 
 
Processing of summary statistics 
 
Clumping was performed in the EUR eGFR-CyC summary statistics, implemented in PLINK 1.9 with 
parameters clump-r2 0.001, clump-p1 5e-8, clump-p2 5e-8 and clump-kb 10000 using 1000 
Genomes reference data (derived from European subjects). For each clump, the index SNP (SNP 
with lowest p value) was annotated using the OpenTargets Genetics 
(https://genetics.opentargets.org/) variant-to-gene pipeline104, which integrates both proximity 
and functional genomics data. For the small minority of variants (n=2) not represented in the 
OpenTargets database, the index SNP was annotated to the nearest coding gene. Partitioned 
heritability analysis was performed using the LDSC package for R105 using the provided datasets, 
as per the tutorial by the package authors (https://github.com/bulik/ldsc/wiki/Cell-type-specific-
analyses). For each trait and tissue-sample pair, we extracted the t-statistic as the ratio of the 
coefficient and standard error. To compare cell type-specific enrichment between renal function 
and CyC-production latent traits, we computed the absolute difference in t-statistic between 
eGFR-CyC and each latent trait, for each tissue sample. Colocalization analysis was performed 
using the coloc package for R50, using the single-variant assumption. Gene set enrichment 
analysis of CyC-production latent trait was performed using MAGMA106, implemented in the 
FUMA web server (https://fuma.ctglab.nl/) with a 0kb gene window. Mendelian randomization 
analysis, using cis-eQTLs probes for CST3, was implemented in GCTA-SMR107 using SMR-
formatted eQTL data from the eQTLGen Consortium58.  
 
Derivation and application of polygenic scores 
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CyC-production polygenic scores (PGS) were derived using LDpred244 (automatic model) 
according to the package vignette (https://privefl.github.io/bigsnpr/articles/LDpred2.html). For 
the genome-wide score, HapMap3 variants were intersected with high-quality genomic variants 
available for all of UKB (array), TCGA (array) and GTEX (WGS) cohorts (n=1,031,527). For the 
exome-wide score, HapMap3 variants were intersected with high-quality exonic variants from 
the panIO cohort (n=352,549). The provided UKB LD reference was used for PGS derivation. 
Model fitting was confirmed by visual inspection of chain convergence for each PGS. The PLINK2 
linear scoring function (--score) was used to apply the PGS to each cohort and to avoid exclusion 
of duplicate dbSNP IDs, the source data was filtered to the PGS variants according to position and 
alleles. The sample-level PGS was normalized by Z-scoring in each cohort. To generate a patient-
level surrogate for CyC production, we modelled eGFR-CyC as a function of eGFR-Cr and sex, with 
intercept set as 0. We computed the residual of this model, termed CyC-residual, which is 
multiplied by -1 so that increasing CyC-residual reflects increased serum CyC relative to 
creatinine. 
 
Functional genomics 
 
ChIP-seq (for GR/NR3C1, timeseries accession: ENCSR210PYP) and ATAC-seq (timeseries 
accession: ENCSR385LRX) data for A549 cells treated with dexamethasone was downloaded from 
the ENCODE data portal (https://www.encodeproject.org/). Data was processed using the 
ENCODE data analysis pipeline, generating a p-value for each signal peak that reflects enrichment 
of DNA sequences. Data at the CST3 locus was plotted using the karyoploteR package108 for R. 
Enhancer activity scores (‘ABC scores’) derived from the validated activity-by-contact model93, 
applied to 131 biosamples, was downloaded from 
ftp://ftp.broadinstitute.org/outgoing/lincRNA/ABC/Nasser2021-Full-ABC-Output/. Scores for 
the distal enhancer element at the CST3 locus reflecting analysis of data derived THP-1 cells were 
extracted, and data from THP-1 cells treated with PMA was compared to data from naïve THP-1 
cells. 
 
Gene expression profiling 
 
For GTEX and ENCODE gene expression profiling, gene-level counts derived from STAR-aligned 
RNA sequencing (RNA-seq) reads were downloaded from the GTEX 
(https://GTExportal.org/home/datasets) and ENCODE (timeseries accession: ENCSR897XFT) data 
portals respectively. TMM and library size normalization were applied using the edgeR package109 
for R, generating TMM-normalized log-counts per million (CPM) expression values that can be 
compared between samples. For TCGA gene expression profiling, batch- and expression quantile-
normalized data (RNA-seq) was downloaded from the PanCancer Atlas repository 
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(https://gdc.cancer.gov/about-data/publications/pancanatlas). For STARNET gene expression 
profiling was performed as previously described108 – briefly, gene counts were adjusted for GC 
content, library size and quantile-normalized implemented in EDAseq110, prior to log-
transformation. For digital cytometry analysis implemented in CIBERSORTx67 (for STARNET and 
GTEX cohorts), gene expression was normalized to gene length to generate transcripts per million 
(TPM) expression values. CIBERSORTx was run in absolute mode with LM22 reference set, 100 
permutations and B-mode batch correction. 
 
Expression quantitative loci (eQTL) analysis 
 
eQTLs were identified in the STARNET51 cohort using the Kruskal Wallis test statistic (additive 
model), as implemented by the tool kruX111, using individual-level genotype and gene expression 
data (data processing described above). To identify associations between CST3 and SNPs present 
at the SERPINA6/ SERPINA1 loci, we carried out this association analysis using 72 SNPs previously 
shown to be significantly associated with plasma cortisol49. This approach was applied to all non-
vascular tissues (n=5) in the STARNET cohort (subcutaneous fat, visceral abdominal fat, skeletal 
muscle, liver, blood). As the 72 SNPs reflecting 4 independent LD blocks, we modelled this 
analysis as 20 (4 LD blocks, 5 tissues) independent hypotheses and so the Bonferroni-corrected 
significance threshold was 0.0025. For independent validation of the significant eQTL 
associations in GTEX, we performed Kruskal Wallis tests in two tissues (visceral adipose fat, liver) 
using the ‘kruskal.test’ function for R, using individual-level genotype and gene expression data 
(data processing described above). For further characterization of significant eQTLs, we 
constructed a recessive linear model of CST3 gene expression as a function of genotype (binarized 
to 0/1 versus 2), using the ‘lm’ function for R. 
 
Single-cell RNA sequencing (scRNA-seq) analysis 
 
For analysis of scRNA-seq profiles of human skin tumors, scRNA-seq expression matrices and 
metadata for Jerby-Anon et al.97 and Yost et al.77 were downloaded from Single Cell Portal 
(accession SCP109) and GEO (accession GSE123813), respectively. For analysis of scRNA-seq 
profiles of spleen and PBMCs, scRNA-seq expression matrices were downloaded from For Yost et 
al. the peritumoral T cell-specific samples were excluded from the analysis. Count or normalized 
expression data was imported into Seurat112 (version 4.0), filtered (according to number of 
features, <10,000, and mitochondrial content, <7.5%, per cell), log-normalized (if applicable) and 
scaled. Highly variable features (n=2000) were used for principal component analysis followed by 
clustering (Louvain algorithm). Immune clusters were annotated by comparison to reference 
PBMC data, implemented in clustifyR package for R91. Unannotated clusters (presumed to reflect 
one of tumor, cancer-associated fibroblast or endothelial cells) were manually annotated via 
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established marker gene expression98 and clonal copy number variation profiles, examined using 
the inferCNV113 package for R. Patient-level pseudobulk cluster-specific expression data was 
extracted using the ‘AverageExpression’ function in Seurat. 
 
For analysis of scRNA-seq profiles of murine Mm1 tumors, cellranger-processed data was 
imported into Seurat112 (version 4.0). Quality control steps included removal of putative doublet 
cells (implemented in DoubletFinder114) and removal of cells with >20% mitochondrial genome-
aligned reads or fewer than 200 features (UMIs). Data processing in Seurat included 
normalization, scaling (regressing out the effect of cell cycle genes), integration, Louvain 
clustering, dimensionality reduction and visualization. Each cluster was annotated as one of 14 
cellular populations according to expression of validated marker genes (summarized in Table S7, 
and Figure S7a) Differential gene expression was identified from pseudobulk data, implemented 
in the Libra package for R115. Differentially enriched/depleted cell populations were identified by 
modeling logit-transformed cell proportions as a function of tumor genotype, implemented in 
the speckle package for R71.  
 
To assess changes in the monocyte population following dexamethasone, we reanalyzed whole 
blood scRNA-Seq datasets from ICU-admitted COVID-19 patients treated with or without 
dexamethasone64. Initial data pre-processing and cell identity annotations were performed as 
described previously. Briefly, cell identity annotations were generated by mapping single-cell 
transcriptomes to the PBMC scRNA/CITE-seq multi-omic reference (Azimuth)112. To identify a 
high-confidence TREM2+ monocyte population, we extracted cells annotated as CD14+ 
monocytes and repeated batch effect correction (implemented using the 
‘FindIntegrationAnchors’ function in Seurat), dimensionality reduction, and clustering. High-
confidence Trem2+ monocytes were identified by expression of known TREM2+ monocyte 
markers (TREM2, APOE, CSF1R76,85), identified by gene-weighted density estimation 
implemented in the Nebulosa package for R73. Differentially enriched/depleted cell populations 
were identified as above. 
 
Cosinor regression 
 
Cosinor regression for blood markers (bilirubin, CyC-residual) and gene expression (FKBP5, CST3) 
as a function of time was performed using the cosinor package for R. A cosinor model has 4 
parameters – MESOR (intercept), period (assumed as 24 hours), amplitude and acrophase (timing 
of activity peak). Bilirubin was extracted from UKB field 30840 and CyC-residual was derived as 
above; both metrics were standardized with Z-scoring stratified by age (decade) and sex. Gene 
expression was derived from TMM-normalized TPM data (implemented in edgeR), to facilitate 
intra- and inter-sample comparisons. For UKB, time referred to time of sampling and for GTEX, 
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time referred to time of death; both rounded to the nearest hour in 24-hour clock. Amplitude 
coefficients were extracted from the transformed coefficients table. 
 
UK Biobank cancer cohort 
 
To identify patients who were treated with non-topical exogenous GCs, we reviewed field 20003 
for coded medications bio-equivalent to dexamethasone or prednisolone. Subject lifespan was 
extracted from analysis of fields 40007 and 34.  Parental lifespan was extracted from analysis of 
fields 2946, 1845, 1797, 1835, 1807 and 3526. Using cancer registry data (fields 40005, 40012, 
40008, 40011), ICD10-coded cancer diagnoses were extracted and mapped to Phecodes 
(https://phewascatalog.org/). Using a curated list of operation codes (OPCS-4) reflecting curative 
procedures for 13 main tumor groups (Table S4), we mapped each cancer diagnosis to matched 
surgeries that occurred no more than 90 days prior to the coding entry. To account for variation 
in operation data availability prior to 2000, we filtered the data to cancers that were diagnosed 
after the year 2000. In cases where a patient was coded with a cancer of the same primary type 
more than once, the entries were merged. Patients with more than one discrete cancer diagnosis 
were excluded (n=2435 subjects) due to the difficulty in defining the time since diagnosis. For 
recruited patients who had died, we manually reviewed details from the death certificate (field 
40010) to identify descriptions that were consistent with cancer-specific mortality. 
 
Survival analyses 
 
For Cox regression of overall and cancer-specific survival against CyC-residual, the time variable 
used was time from blood sampling to death or last follow-up date (nominally June 2020). For 
subjects with multiple CyC-residual datapoints over time, each datapoint was annotated with 
survival time relative to blood sampling and treated independently. Model covariates included 
age (at blood sampling), sex, body mass index (BMI), hemoglobin, eGFR-Cr, C-reactive protein. 
For Cox regression of lifespan (for subject and parents) against CyC-production PGS in the UKB 
validation cohort, we used age at death or age at most recent follow-up as the time variable. 
Model covariates included year of birth (of subject, as parental birth years are not recorded) to 
account for historical increases in mean lifespan. 
 
For Cox regression of cancer-specific survival against CyC-production PGS, it was necessary to 
consider bias from left truncation, where patients who died between diagnosis and the 
recruitment period would not be recruited. To account for this, the time interval used for Cox 
regression of overall and cancer-specific survival against CyC-production PGS in UKB referred to 
time from recruitment to death or data cut-off (June 2020). In contrast, TCGA patients were 
generally recruited close to the time of cancer diagnosis, prior to surgical resection of tumor and 
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so time from diagnosis to death or last-follow-up date was used. Cancer-specific survival was 
extracted from the ‘DSS’ and ‘DSS.time’ fields in the TCGA clinical data resource available as part 
of the PanCancer Atlas (https://gdc.cancer.gov/about-data/publications/pancanatlas). Cancer-
specific survival analyses with respect to CyC-production PGS were adjusted for age of diagnosis, 
genetic ancestry (PC1-4), sex (except sex-specific cancers), and a term reflecting whether curative 
surgery was performed. For UKB this term was derived from matching with curative operation 
codes as described above, for TCGA this term was derived from the field ‘residual_tumor’ in the 
clinical data resource. UKB-specific PGS-cancer survival analyses were additionally adjusted for 
recruitment center (to account for regional heterogeneity in cancer outcomes) and genotyping 
array. Pan-cancer inverse variance-weighted meta-analysis in each cohort (UKB, TCGA) was 
implemented in the meta package for R92 using both fixed and random effects models. 
 
For phenome-wide time-to-event analysis in UKB, all UKB ‘first occurrence’ fields and cancer 
registry data (fields 40005 and 40006) were extracted, with ICD10 codes mapped to Phecodes. If 
multiple ICD10 codes mapped to a single Phecode, the earliest date of diagnosis was selected. 
For each time-to-event Phecode, the time variable was defined as time from birth to first 
occurrence of diagnosis or most recent follow-up date. To account for region-specific variability 
in health record linkage, this date was determined by either the most recent coded diagnosis or 
most recent UKB center visit. Each phenotype-specific Cox regression was adjusted for sex, 
genetic ancestry (PC1-4) and year of birth (to account for historical variation in disease risk).  
 
Digital pathology analyses 
 
Digital image analysis of H+E stains as well as Trem2, panCK and Ki67 IHC were performed using 
HALO™ digital image analysis software version v3.4.2986.151 (Indica Labs, Corrales, NM, USA). 
All H&E scans were reviewed by two pathologists (DL and VHK), and the regions of viable 
respectively necrotic tissue was determined and computed. Necrotic tissue was excluded for 
further analysis. In order to analyze the tumor/stroma interaction, a deep neural network 
algorithm was trained on the panCK scans to recognize epithelial and non-epithelial 
compartments. Graphical overlays for both compartments simplified the quality control of the 
tissue classifier. The total area of the two compartments was then calculated automatically.  
 
The ‘Multiplex IHC v3.1.4’ algorithm of HALO™ was implemented for analysis of Ki67 and Trem2 
IHC. The nuclei and the chromogens were detected by color deconvolution with thresholds 
determined by internal controls. For Ki67 IHC, a proliferation index (Ki67+ cells / total cells) was 
calculated. For Trem2 IHC, the proportion of Trem2+ per unit tissue area was calculated, and the 
distance of each Trem2+ cell from the tumor border was measured using the proximity analysis 
tool of HALO™.  
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Statistical analysis 
 
Significance testing refers to two-tailed unpaired t-tests with the assumption of unequal variance 
unless stated otherwise. For bi-flank tumor experiments, differences were assessed using two-
tailed paired t-tests. For statistical and computational analyses, we used R (version 4.0.2) and 
Python (version 3.7.4) implemented as a Jupyter Notebook. 
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