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Abstract: During the initial stages of the COVID-19 pandemic, many workplaces and
universities implemented institution-wide proactive testing programs of all individuals, ir-
respective of symptoms. These measures have proven effective in mitigating outbreaks. As
a greater fraction of the population becomes vaccinated, we need to understand what con-
tinued benefit, if any, proactive testing can contribute. Here, we address this problem with
two distinct modeling approaches: a simple analytical model and a more simulation using
the SEIRS+ platform. Both models indicate that proactive testing remains useful until a
threshold level of vaccination is reached. This threshold depends on the transmissibility of
the virus and the scope of other control measures in place. If a community is able to reach
the threshold level of vaccination, testing can cease. Otherwise, continued testing will be
an important component of disease control. Because it is usually difficult or impossible
to precisely estimate key parameters such as the basic reproduction number for a specific
workplace or other setting, our results are more useful for understanding general trends
than for making precise quantitative predictions.
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1 Introduction

The SARS-CoV-2 virus responsible for COVID-19 is particularly difficult to control because transmis-
sion often occurs in individuals who are pre-symptomatic or entirely asymptomatic (1–3). Throughout
the COVID-19 pandemic, proactive testing has been a valuable tool for mitigating the spread of SARS-
CoV-2 in workplaces, academic institutions, and other settings (4–7). The aim of proactive testing is
to head off transmission from individuals who are not showing symptoms, by detecting infection early
and isolating infected persons from the rest of the community.

Widespread COVID-19 vaccination is now underway in many parts of the world, ushering in the
prospect of a full return to in-person work. As more individuals become vaccinated, can we afford to
reduce or eliminate SARS-CoV-2 proactive testing from our disease control programs? Here we aim
to address two aspects of this question. First, what level of vaccination and/or naturally-acquired
immunity is required to render proactive testing programs unnecessary (8)? Second, as we transition
from present conditions to that point, what are best practices for tapering off testing efforts?

2 Methods

To address the questions above, we use two distinct modeling approaches. First, we adapt a simple
analytic approximation developed by Bergstrom et al. (9) to examine how testing and vaccination
interact to reduce transmission. We illustrate these interactions as isoclines, or indifference curves,
that indicate how increased vaccination coverage can compensate for reduced testing in a population.

Second, we deploy the SEIRS+ modeling framework (10) used in our workplace testing (11) and
return-to-school (7) models to consider workplaces or other groups in which vaccination efforts are
underway. SEIRS+ is a stochastic, network-based epidemiological simulation model that accounts for
the specific details of SARS-CoV-2 transmission and for the structure of social contact networks along
which most infections are spread. We use the SEIRS+ model to simulate the dynamics of COVID-19
spread through a group of 1,000 individuals, following a single introduction from the community. We
consider how the fraction of the population vaccinated and the extent of pre-existing natural immunity
play into COVID-19 transmission dynamics.

The exposure ratio model

To better understand the benefit of proactive SARS-CoV-2 testing in a partially vaccinated workplace
or university setting, we adapt the Bergstrom et al. analytic model (9) to explore how vaccines and
testing interact to reduce opportunities for COVID-19 transmission.

The model estimates how much the effective reproduction number Re—the average number of
secondary cases generated by each primary case under current conditions—is reduced by a given level
of vaccine uptake and a given cadence of proactive testing. While in practice this depends on the
complex biology of the virus and the social dynamics in the host population, we can derive a simple
approximation as follows. We envision that during each day of the infectious period, an infected
individual is either “at-large” in the community or isolated at home. We assume that at-large individuals
transmit at a constant rate corresponding to the effective reproduction number, while individuals
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isolated at home do not transmit. Testing serves to identify pre-symptomatic, asymptomatic, or
paucisymptomatic individuals who would not have otherwise self-isolated. After testing positive, these
individuals remove themselves from the population at large and isolate at home, which reduces the
number of days they may expose others in the community. Suppose that testing the population every
n days reduces the average amount of time that infectious individuals are at large by the exposure ratio
Q(n). The effective reproduction number is then reduced by a comparable fraction (Appendix A).

We now add vaccination and immunity from previous infection. Suppose that the basic reproductive
number for the disease is R0, a fraction γ of the population is effectively vaccinated, and a fraction η
is immune due to previous infection. If vaccination occurs independent of prior infectious status, the
reproductive number with vaccination, testing, and previous immunity is given by

Re = R0Q(n) (1− γ) (1− η). (1)

In words, the equation states that the effective reproduction number is equal to the product of the
basic reproduction number, the fraction of exposure days that remain despite testing, the fraction
of the population not yet effectively vaccinated, and the fraction of the population not yet naturally
immune. In the Appendix A, we sketch out the analytic approach used to develop this equation, and
provide a mathematical expression for the exposure ratio Q. Further details and a full derivation are
provided in ref. (9).

The SEIRS+ model

Our open source Python framework SEIRS+ implements stochastic network models of infectious disease
transmission (https://github.com/ryansmcgee/seirsplus). This model extends the classic SEIRS model
in a number of ways: it accounts for pre-symptomatic and asymptomatic disease states, it incorporates
a process of quarantine or self-isolation, it accounts for individual heterogeneity in disease parameters,
it allows an arbitrary distribution of residence times in each disease state, and it models transmission
as occurring along a social contact network. We will briefly describe each of these aspects in turn. The
SEIRS+ model has been used by a number of research groups (7, 12–14), and detailed documentation
for can be found on the SEIRS+ github wiki (https://github.com/ryansmcgee/seirsplus/wiki).

Classic SEIR models of infectious disease are compartment models with compartments for suscep-
tible (S), exposed (E), infectious (I), and removed (R) individuals. The SEIRS+ platform extends
this framework to reflect the biology of SARS-CoV-2. In particular, the infectious class is divided into
separate compartments for individuals who are in pre-symptomatic, asymptomatic, and symptomatic
disease states. This allows us to model the decisions that some individuals make to self-isolate based
on symptoms.

Because an important component of COVID-19 control involves isolating individuals in response
to symptoms or testing, the SEIRS+ model introduces quarantine compartments that represent indi-
viduals in self-isolation (Figure 1). An individual may be quarantined in any disease state, and every
disease state has a corresponding quarantine compartment. Quarantined individuals follow the same
progression through the disease states, but their set of close contacts is defined by a reduced contact
network. The transitions into quarantined states occur as the result of a positive test or self-diagnosis
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Figure 1: The SEIRS+ model extends the structure of a basic SEIR compartment model. In
addition to the traditional S, E, and R states, the I state is split into three separate compartments: presymp-
tomatic Ipre, asymptomatic Iasym, and symptomatic Isym. In addition, each primary compartment (shaded)
has a parallel compartment Q (unshaded) representing individuals at the same disease stage but in quarantine.

of symptoms. Individuals remain in the quarantine set of compartments until the designated isola-
tion period is completed—ten days in this model. Thereafter they are moved into the non-quarantine
compartment corresponding to their current disease state.

In the SEIRS+ model, each individual in the model is independently assigned model parameters:
for example, infectiousness, symptomaticity if infected, and the duration of time spent in each com-
partment if infected. This allows us to explicitly represent heterogeneity in disease characteristics
(15, 16).

Traditional SEIR models assume that individuals transition among compartments at fixed rates,
resulting in exponentially distributed residence times in each compartment. In reality, the distribu-
tion of residence times can be very different—and these differences can matter for modeling purposes
(17, 18). The SEIRS+ model allows residence times drawn from gamma distributions based on em-
pirical data. The dynamics governing disease transmission are proportional to contact rates between
susceptible and infectious individuals, accounting for variation in infectiousness, and are described in
detail in refs. (7) and (10).

Contact networks

In their standard form, epidemic compartment models assume mass-action dynamics of disease trans-
mission, equivalent to assuming that each individual in the population is equally likely to interact with
any other individual. In practice, interactions are highly structured according the physical layout of
workplaces as well as by the social contact networks that individuals inhabit (19, 20), and this can have
important consequences for the dynamics of disease spread (21, 22). To account for this, the SEIRS+
model specifies a contact network of individuals who are prone to have “close contact” with one another.
Those in one’s network might include family members, close friends, coworkers, roommates, romantic
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partners, and so forth. The model assumes that much—though not all—disease transmission occurs
among the close contacts represented in the contact network. In the model, SARS-CoV-2 can also be
transmitted among “casual” contacts, individuals who make infrequent, brief, and incidental contact
such as might occur when passing through the same hallway or shopping in the same store. Here, we
assume that 80% of transmission occurs along the network of close contacts, and the remaining 20%
is casual in that it occurs at random among all members of the population (23).

The probability that a susceptible individual becomes infected depends on how susceptible they are
to infection, how many of their contacts become infected, and how transmissible those infected contacts
are. In a network transmission model, some individuals have numerous connections with others, and
some have few. People with large numbers of contacts are unlikely to interact as closely with each
one of them individually. To account for this, we assume a logarithmic rather than linear scaling of
transmission opportunity as a function of network degree (7).

Model parameters

In modeling the effects of testing and vaccination, we face multiple sources of uncertainty. Among
these, the value of the basic reproduction number R0 looms largest. Under the traditional definition,
R0 is the mean number of secondary infections generated by an index case in a susceptible population.
For our purposes, the relevant value of R0 is the expected number of transmissions that occur within
the institutional setting we are modeling—the number of transmissions that occur at work, for example.
This value will depend on the physical structure of the workplace and the interaction patterns therein.
Specifically, it will depend on the non-pharmaceutical interventions (NPIs) in place, including masking,
ventilation, basic hygiene, and distancing procedures. And it will depend on the strains of SARS-CoV-2
circulating in the community. Because all of these factors vary from workplace to workplace and from
week to week, obtaining a precise estimate of workplace R0 is seldom feasible. As such, the results
of this model are more useful for understanding general trends than for making precise quantitative
predictions.

The vaccines currently available in the US have demonstrated efficacy of around 65–95% against the
wild-type form of SARS-CoV-2 (24–30). The most widely-distributed vaccines—the mRNA-based ones
produced by Pfizer and Moderna—fall at the high end of that efficacy range. Thus far, these vaccines
show comparable effectiveness against most circulating variants of concern as well (31–34). Available
evidence increasingly suggests that these vaccines block SARS-CoV-2 symptoms and transmission at
similar rates (35). Here we assume an average effectiveness of 90% against symptoms and transmission
alike, intended to represent the mixture of vaccines available to the populations we are modeling.
Appendix C shows model results when effectiveness is reduced to 70%.

3 Results

Analytic approximation

Chance plays an important role in the dynamics of COVID-19 outbreaks. Even if two workplaces have
very similar conditions, the introduction of an infected individual may seed a large outbreak in one
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Figure 2: Effects of NPIs, vaccination, and testing. Contour plots of the effective reproduction number
Re show how mitigation efforts depend on NPIs via their effects on Re, on vaccination coverage (horizontal axis),
and on testing cadence (vertical axis). The dashed line in each panel shows the combinations of vaccination
and testing that are sufficient to drop Re to unity for a given R0 value. (a) When R0 = 2.0, as we might expect
for less transmissible variants with active NPIs, the effective reproduction number can be brought below unity
with semi-weekly testing, by vaccinating half of the population, or some combination of those interventions. (b)
With more transmissible variants and NPIs relaxed so that R0 rises to 4.0, broad vaccination coverage is an
essential component to any control strategy and testing can help get down below the Re = 1 threshold when
vaccinate rates are in the range of 50-80%. (c) With highly transmissible variants and minimal NPIs, reducing
Re below one is impossible without very high levels of vaccination. In all three panels, we illustrate a situation
in which 10% of the population has been previously infected and vaccines average 90% effectiveness. Additional
parameters are summarized in Table B.2.

and lead to no new cases in the other. But as a rule of thumb, an index case is unlikely to seed a
sizeable and protracted outbreak when Re < 1. Thus one prerequisite for safely operating a workplace
is that mitigation measures therein are sufficient to drop Re below unity.

To understand how non-pharmaceutical interventions, vaccination adoption, and proactive testing
cadence contribute to reducing the likelihood of an outbreak, in Figure 2 we examine contour plots
of the effective reproduction number Re for three different R0 values. The horizontal axis in each
panel represents the fraction of the population that have been vaccinated against COVID-19. The
vertical axis indicates the cadence of proactive testing across the same population. Along each of the
isoclines (solid black lines), the combined effect of proactive testing and vaccination is constant, i.e.,
each isocline corresponds to a fixed Re value. Once Re falls below unity, as indicated by the dashed
line, substantial outbreaks are unlikely.

Panel 2a illustrates an R0 value of 2.0, reflecting a situation in which NPIs such as masks and
distancing remain in place and in which the predominant SARS-CoV-2 strain is the original non-
variant virus. Panel 2b illustrates an R0 value of 4.0, as might be the case in a workplace where more
transmissible variants are circulating yet NPIs have been relaxed. Panel 2c illustrates an R0 of 6.0, as
we might see where the Delta strain is predominant and NPIs are limited or lacking entirely (36, 37).

Taken together, these three plots illustrate the synergistic effects of NPIs, vaccination, and testing.
The more stringent the NPIs, the further the effective reproduction number Re is reduced. Frequent
testing and broad vaccination coverage also reduce Re. The higher the initial level of transmission, the
greater the amount of testing and vaccination required to mitigate the risk of outbreaks.

When vaccine coverage is insufficient on its own to reduce the effective reproductive number Re
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Figure 3: Maximum controllable R0 depends on vaccination and testing rates. Contour plot illus-
trates the highest R0 for which Re can be brought down below 1.0 by means of the specified combination of
vaccination coverage (horizontal axis) and testing cadence (vertical axis). Here 10% of the population has been
previously infected and vaccines average 90% effectiveness.

below one, a combination of proactive testing and NPIs can help considerably. For example, we see
in Figure 2a that semiweekly testing has a comparable impact to vaccinating half the population. As
vaccine coverage becomes more extensive, the effect of testing on Re declines and eventually the benefit
of testing becomes marginal.

In each of the three panels in Figure 2, R0 was fixed at a specific value and we looked at how
a combination of proactive testing and vaccination reduces Re. Another way to look at the same
mathematical expression is to fix the target level of Re at 1, the level below which a sustained outbreak
is unlikely, and then plot what value of R0 can be tolerated for a given vaccination level and testing
rate (Figure 3). This graph allows a number of useful comparisons. For example, a vaccination rate
of 60% might be enough to control the original SARS-CoV-2 strains even without supplementing with
proactive testing. However, if more highly transmissible strains become established, driving the basic
reproduction number upward toward 4 or even higher, vaccinating 60-70% of the population will not be
sufficient to control disease on its own. Stronger NPIs and/or frequent, broad-scale proactive testing
will be necessary.

Stochastic network-based simulation

The analytical model above relies on a highly simplified picture of disease dynamics. To account for
many of the complexities of the real world—superspreading, social contact networks, variation from
person to person in disease progression, and the role of chance in disease outbreaks—we turn to the
SEIRS+ simulation model.

Using this model, we consider the consequences of a single introduction into a workplace or other
congregate setting of 1,000 individuals. Figure 4 illustrates the distribution of outbreak sizes resulting
directly from this single introduction, at various testing cadences, as vaccine adoption increases. For
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Figure 4: Outbreak sizes in the stochastic network simulation model. Here we illustrate the outcome
of 1,000 simulations for each combination of testing cadence and vaccination uptake, when 10% of the population
have previously been infected, vaccines are on average 90% effective at preventing infection and transmission,
and R0 = 4.0. Each colored dot represents the outcome of a single simulation run. Solid black lines mark
the mean outbreak sizes and dashed black lines mark the 95th percentile outbreak sizes for each parameter
combination.

each combination of parameters, we run 1,000 replicate simulations and depict the outbreak sizes as
jitter plots where each dot represents the outcome of a single simulation run. The mean and 95th
percentile outbreak sizes are indicated by the solid and dashed bars, respectively.

At lower levels of vaccine adoption and testing, we see a bimodal distribution of outcomes. In some
simulation runs, large outbreaks occur, while in other runs with the same parameter settings, little
or no transmission takes place at all. This is the consequence of chance events that contribute to the
trajectory of disease spread. This figure also reveals that when less than two thirds of the population
has been vaccinated, testing is a powerful tool for reducing both the mean number of cases and the
95th percentile outbreak size.

Figure 5 illustrates how the average benefit of testing declines as more of the population becomes
vaccinated. The benefit of testing is measured as the reduction in the mean number of individuals in-
fected after a single introduction. In the absence of vaccination and with R0 = 4.0, for example, weekly
proactive testing prevents on average about 140 cases after a single introduction into a population of
1,000 people. By the time 70% of the population have been vaccinated, weekly testing prevents only a
few cases. In general, we see that (1) when vaccination is limited, more frequent testing confers greater
benefits, and (2) once vaccination becomes very common, the benefits of testing are substantially
diminished.

Because Figures 4 and 5 illustrate the consequences of a single introduction, a combination of
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Figure 5: Value of testing in the stochastic network simulation model, as more of the population
becomes vaccinated. Here we show how many cases per 1000 individuals are prevented on average when using
a given testing cadence relative to not testing, where R0 = 4.0, 10% of the population have previously been
infected, and vaccines are on average 90% effective at preventing infection and transmission.

vaccine coverage and testing rate that poses an acceptable risk when community prevalence is low and
introductions are rare may nonetheless be intolerably risky when community prevalence is high and
frequent introductions are likely to occur.

Figures 4 and 5 illustrate the results of simulations for a single set of parameters: R0 = 4.0, prior
incidence of disease 10%, and an average vaccine effectiveness of 90%. While these may be reasonable
approximations of the situation in many locales, the general patterns that we observe are robust to
changes in the precise parameter values. To illustrate, we have developed an interactive web application
that displays results from the SEIRS+ model across a wide range of parameters (38). This application
allows the user to select values of R0, vaccine efficacy, prior disease incidence, and testing cadence, and
presents a jitter plot akin to Figure 4 for the chosen values.

4 Discussion

In this report, we have presented the results from two different modeling approaches: an analytic ap-
proximation and a stochastic network-based simulation. These approaches generate concordant results.
Both indicate that testing is valuable at lower levels of vaccine adoption, regardless of R0. When R0 is
high, either due to more transmissible strains or relaxation of non-pharmaceutical interventions, high
levels of vaccination or a combination of vaccination and proactive testing will be necessary to achieve
the Re ≤ 1 threshold. Once the effective reproduction number Re drops below 1 without testing,
proactive testing offers little additional value and can be suspended if preventing outbreaks is the sole
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objective (see also ref. (8)).
This is not to say that proactive testing is useless in even more highly vaccinated populations.

One-off transmission events are still possible even when the effective reproductive number Re < 1

and a substantive outbreak is unlikely to occur. Proactive testing can reduce the probability of such
transmissions occurring. Thus in addition to surveillance use, proactive testing can be helpful in
situations where any transmission event whatsoever is considered unacceptable.

In previous modeling work, we found that testing generally offers a high return-on-investment in an
unvaccinated workplace population ( https://www.color.com/covid-19-outbreak-model). Here we find
that the benefits of testing decline as vaccine adoption increases, but can be sizeable even in partially
vaccinated cohorts.

In principle, one could adjust the testing cadence in real time, slowing the cadence as increasing
fractions of the population become vaccinated. Given the inevitable uncertainties about the exact value
of Re, and the logistical complexity of adjusting testing cadence in real time, it is likely to be difficult
to fine-tune testing cadence by reducing the testing rate gradually as more people are vaccinated. As
such, it may be logistically simpler to continue at testing at the original pre-vaccination testing cadence
until there is good reason to believe that Re < 1. At that point, the proactive testing program can be
halted entirely.

Acknowledgements The authors thank Ted Bergstrom and Haoran Li for their part in developing
the analytical model presented here. In part, this work was facilitated by the Hyak supercomputer
system and funded by the STF at the University of Washington.

Author contributions Conceived of the models: CTB, RSM. Reviewed the literature: HEW, AYZ.
Parameterized the models: CTB, RSM. Implemented the analytic model: CTB. Implemented the
network-based model and ran the simulations: RSM. Analyzed the results: CTB, JRH, RSM, HEW,
AYZ. Developed the interactive web app: JRH, HEW, AYZ. Drafted the manuscript: CTB, AYZ.
Edited the manuscript: CTB, JRH, RSM, HEW, AYZ.

Funding This work was supported in part by the Rockefeller foundation’s COVID-19 Modeling
Accelerator

Competing interests CTB and RSM consult for Color Health. CTB has received honoraria from
Novartis. HEW and AYZ are currently employed by and have equity interest in Color Health. JRH is
currently employed and has an equity interest in Maze Therapeutics; he was previously employed by
and holds an equity stake in Color Health.

Availability of data and material (data transparency) The data from the SEIRS+ simulations
are available at https://github.com/ryansmcgee/covid-testing-vaccinated-population

Code availability Mathematica code for the analytical model is included as supplementary material.
The SEIRS+ codebase is open source and available at https://github.com/ryansmcgee/seirsplus. The

10

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 18, 2021. ; https://doi.org/10.1101/2021.08.15.21262095doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.15.21262095


specific code for the simulations here is available at https://github.com/ryansmcgee/covid-testing-
vaccinated-population.

References

[1] Rivett L, et al. (2020) Screening of healthcare workers for SARS-CoV-2 highlights the role of
asymptomatic carriage in COVID-19 transmission. eLife 9:e58728.

[2] He X, et al. (2020) Temporal dynamics in viral shedding and transmissibility of COVID-19. Nature
Medicine 26(5):672–675.

[3] Kimball A, et al. (2020) Asymptomatic and presymptomatic SARS-CoV-2 infections in residents
of a long-term care skilled nursing facility—King County, Washington, March 2020. Morbidity
and Mortality Weekly Report 69(13):377.

[4] Black JR, Bailey C, Przewrocka J, Dijkstra KK, Swanton C (2020) COVID-19: The case for
health-care worker screening to prevent hospital transmission. The Lancet 395(10234):1418–1420.

[5] Denny TN, et al. (2020) Implementation of a pooled surveillance testing program for asymptomatic
SARS-CoV-2 infections on a college campus - Duke University, Durham, North Carolina, August
2-October 11, 2020. Morb. Mortal. Wkly. Rep. 69(46):1743–1747.

[6] Larremore DB, et al. (2021) Test sensitivity is secondary to frequency and turnaround time for
COVID-19 screening. Science Advances 7(1):eabd5393.

[7] McGee RS, Homburger JR, Williams HE, Bergstrom CT, Zhou AY (2021) Model-driven mitigation
measures for reopening schools during the COVID-19 pandemic. Proceedings of the National
Academy of Sciences USA. In Press.

[8] Motta FC, et al. (2021) Benefits of surveillance testing and quarantine in a SARS-CoV-2 vaccinated
population of students on a university campus. medRxiv.

[9] Bergstrom T, Bergstrom CT, Li H (2020) Frequency and accuracy of proactive testing for COVID-
19.

[10] McGee R (2020) SEIRS+ model framework. Online at https://github.com/ryansmcgee/seirsplus.

[11] Color Health (2020) Return to on-site SARS-CoV-2 testing protocols, v. 2.0. Online at
https://www.color.com/covid-19-outbreak-model.

[12] Patil R, et al. (2021) Assessing the interplay between travel patterns and SARS-CoV-2 outbreak
in realistic urban setting. Applied network science 6(1):1–19.

[13] Ross C, et al. (2021) BNT162b2 mRNA vaccinations in israel: understanding the impact and
improving the vaccination policies by redefining the immunized population. medRxiv.

[14] Karin O, et al. (2020) Cyclic strategies to suppress COVID-19 and allow economic activity.

11

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 18, 2021. ; https://doi.org/10.1101/2021.08.15.21262095doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.15.21262095


[15] Ball F (1985) Deterministic and stochastic epidemics with several kinds of susceptibles. Advances
in Applied Probability 17(1):1–22.

[16] Hickson R, Roberts M (2014) How population heterogeneity in susceptibility and infectivity in-
fluences epidemic dynamics. Journal of Theoretical Biology 350:70–80.

[17] Krylova O, Earn DJD (2013) Effects of the infectious period distribution on predicted transitions
in childhood disease dynamics.

[18] Feng Z, Xu D, Zhao H (2007) Epidemiological models with non-exponentially distributed disease
stages and applications to disease control. Bull. Math. Biol. 69(5):1511–1536.

[19] Potter GE, Smieszek T, Sailer K (2015) Modeling workplace contact networks: The effects of
organizational structure, architecture, and reporting errors on epidemic predictions. Network
Science 3(3):298–325.

[20] Weeden KA, Cornwell B (2020) The small-world network of college classes: Implications for
epidemic spread on a university campus. Sociological Science 7:222–241.

[21] Bansal S, Grenfell BT, Meyers LA (2007) When individual behaviour matters: homogeneous and
network models in epidemiology. Journal of the Royal Society Interface 4(16):879–891.

[22] Keeling M (2005) The implications of network structure for epidemic dynamics. Theoretical Pop-
ulation Biology 67(1):1–8.

[23] Mossong J, et al. (2008) Social Contacts and Mixing Patterns Relevant to the Spread of Infectious
Diseases. PLOS Medicine 5:e74.

[24] Baden LR, et al. (2020) Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. New
England Journal of Medicine.

[25] Dagan N, et al. (2021) BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination
Setting. New England Journal of Medicine 384(15):1412–1423.

[26] Haas EJ, et al. (2021) Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2
infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination
campaign in Israel: an observational study using national surveillance data. The Lancet (0).

[27] Oliver SE, et al. (2021) The advisory committee on immunization practices’ interim recommen-
dation for use of Janssen COVID-19 vaccine — United States, February 2021. Morbidity and
Mortality Weekly Report 70(9):329.

[28] Polack FP, et al. (2020) Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. New
England Journal of Medicine 383(27):2603–2615.

[29] Swift MD, et al. (2021) Effectiveness of mRNA COVID-19 vaccines against SARS-CoV-2 infection
in a cohort of healthcare personnel. Clinical Infectious Diseases (ciab361).

12

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 18, 2021. ; https://doi.org/10.1101/2021.08.15.21262095doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.15.21262095


[30] Thompson MG, et al. (2021) Interim estimates of vaccine effectiveness of BNT162b2 and mRNA-
1273 COVID-19 vaccines in preventing SARS-CoV-2 infection among health care personnel, first
responders, and other essential and frontline workers — eight US locations, December 2020–March
2021. Morbidity and Mortality Weekly Report 70(13):495.

[31] Abu-Raddad LJ, Chemaitelly H, Butt AA (2021) Effectiveness of the BNT162b2 Covid-19 vaccine
against the B.1.1.7 and B.1.351 variants. New England Journal of Medicine.

[32] Charmet T, et al. (2021) Impact of original, B.1.1.7, and B.1.351/P.1 SARS-CoV-2 lineages on
vaccine effectiveness of two doses of COVID-19 mRNA vaccines: Results from a nationwide case-
control study in france. The Lancet Regional Health—Europe 8:100171.

[33] Chemaitelly H, et al. (2021) mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and
B.1.351 variants and severe COVID-19 disease in qatar. Nature Medicine pp. 1–8.

[34] Lopez Bernal J, et al. (2021) Effectiveness of covid-19 vaccines against the b. 1.617. 2 (delta)
variant. New England Journal of Medicine.

[35] COVID C, et al. (2021) COVID-19 vaccine breakthrough infections reported to CDC—United
States, January 1–April 30, 2021. Morbidity and Mortality Weekly Report 70(21):792.

[36] Davies NG, et al. (2021) Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in
england. Science.

[37] Public Health England (2021) SARS-CoV-2 variants of concern and variants under investigation
in england. Technical Briefing 12.

[38] Color Health (2021) Testing & vaccines modeling tool. Online at https://www.color.com/testing-
and-vaccines-model.

[39] Levine-Tiefenbrun M, et al. (2020) Association of COVID-19 RT-qPCR test false-negative rate
with patient age, sex and time since diagnosis. medRxiv.

13

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 18, 2021. ; https://doi.org/10.1101/2021.08.15.21262095doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.15.21262095


A An analytic approximation for the effects of testing and vaccination

In the absence of vaccination, we define the exposure ratio Q(n) as the ratio of the mean exposure
days when testing every n days, Ē(n), to the mean exposure days without any testing E∅:

Q(n) =
Ē(n)

E∅
. (2)

We calculate this quantity as follows. Even without testing, some individuals will choose to self-
isolate after showing symptoms. If a fraction 1−u of infected people develop symptoms and a fraction
v of these isolate once symptomatic, the fraction who are symptomatic and choose to isolate is given
by v(1 − u). The fraction of infected people who are asymptomatic or choose not to self-isolate is
1 − v(1 − u). Suppose that the presymptomatic infectious period is y days and the total infectious
period is C days. In the absence of testing, the average number of exposure days is

E∅ =
(
1− v(1− u)

)
C + v(1− u) y. (3)

Let E(t, n) be the expected number of infectious days spent at large for a person who is infectious for
t days when testing occurs every n days. For an individual who would not otherwise self-quarantine,
testing reduces the number of infectious days at large from C to E(C, n). For an individual who would
have self-quarantined anyway, testing can still pick up the infection before symptoms appear and thus
reduces infectious days at large from y to E(y, n). The mean number of exposure days when testing
every t days is then

Ē(n) =
(
1− v(1− u)

)
E(C, n) + v(1− u)E(y, n). (4)

Now all we need is a way of calculating E(t, n). When the testing cadence is slower than the infectious
period C minus the reporting delay d for the disease, an individual will be tested and results returned
at most once during the course of infection. Bergstrom et al. (9) show that in this case, i.e. when
n > C − d,

E(C, n) = C − (1− q)(C − d)2

2n
. (5)

When an individual may be tested twice or more during the course of a single infection, the correspond-
ing equation is somewhat more complicated. Denote the standard floor function by b·c, let x̄ =

⌊
C−d
n

⌋
,

and let r = C − d − n x̄. When the testing cadence is faster or equal to infectious period minus the
reporting delay, n ≤ C − d,

E(C, τ) =

(
n

2
+ d+

n q

1− q

)
+ qx̄

(
1

2n

(
qr2 − (n− r)2

)
− n q

1− q

)
. (6)

If infectiousness is constant throughout the duration of infection, testing every n days reduces
the expected number of individuals infected by an index case by a fraction Q(n). Thus if the basic
reproduction number without testing is R0, testing every n days would reduce this to R̃ = Q(n)R0

Next we incorporate vaccination and natural immunity. We assume that individuals who have
been effectively vaccinated or who have recovered from previous COVID infection will not transmit
COVID. If a fraction γ of the population has been effectively vaccinated, a fraction η have recovered
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from previous infection, and vaccination occurs independently of past infection status, the effective
reproductive number with testing, vaccination, and previous infectious is given by

Re = R0Q(n) (1− γ) (1− η). (7)

B Overview of parameter values

Here we summarize the parameter values used in the analytic model (Table B.1) and in the SEIRS+
simulations (Tables B.2–B.4).

In the analytic model, we assume that test sensitivity is constant at 90% throughout the infectious
period. In the SEIRS+ model we assume RNA-based testing with test sensitivities that change over the
course of infection, as in ref. (7). Test sensitivity is 0% during the exposed period and non-infectious
period, then climbs to 75% sensitivity for individuals in the first 2 days of their pre-symptomatic
period and 80% sensitivity for any pre-symptomatic days beyond that. After the presymptomatic
period ends, sensitivities for symptomatic and asymptomatic individuals alike follow the time course
shown in Figure B1, with values based upon Levine-Tiefenbrun et al. (39). We assume there are no
false positives.

Figure B1: Test sensitivity in the SEIRS+ model. The probability of returning a positive test results
when testing an infected, symptomatic individual as a function of the number of days since entering that state.
The test sensitivity is equivalent to 1 minus the false negative rate.
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Table B.1 Parameter values for the analytical approximation

Parameter Value or values

Basic reproduction number R0 2.0, 4.0, and 6.0 as indicated in figure captions

Test sensitivity 90% during the infectious period irrespective
of sympaticity. 0% prior to beginning of infec-
tious period.

Delay between testing and quarantine 1 day for those who test positive.

Infectious period 6.2 days (irrespective of symptomaticity)

Presymptomatic period 2.2 days (among those who eventually show
symptoms)

Presymptomatic transmissibility 100% relative to symptomatic transmissibility

Asymptomatic transmissibility 100% relative to symptomatic transmissibility

Fraction of asymptomatic cases 30%

Compliance with isolation upon symptoms 30%

Compliance with testing 100%

Vaccine effectiveness 90%

Rate of disease with effective vaccine 0%

Rate of transmission with effective vaccine 0%

Fraction immune due to prior infection 10%
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Table B.2 Overview of parameter values for the SEIRS+ model

Parameter Value or values

Basic reproduction number R0

(mean individual reproduction number R(i)
0 )

4.0

Individual R(i)
0 coefficient of variation 2.0 (overdispersed)

Fraction of asymptomatic cases 30%

Compliance with isolation upon symptoms 30%

Compliance with testing 100%

Disease state periods See Table B.4

Network structure See Table B.3

Proportion of global (off-network) transmission 20%

Test sensitivity Time-varying: see figure B1

Vaccine effectiveness 90% in main text, 70% in Appendix C.

Rate of disease with effective vaccine 0%

Rate of transmission with effective vaccine 0%

Fraction immune due to prior infection 10%
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Table B.3 Network property statistics averaged across 1,000 replicate randomly generated contact networks
and the degree distribution histogram for a representative random contact network.

Network properties Degree distribution

Degree mean: 9.9
Degree std: 5.0
Degree CV2: 0.25
Degree assortativity: 0.25
Clustering coeff.: 0.44
Average path length: 3.7
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Table B.4 A representative distribution of period values drawn for population of 1,000 individuals is shown
for each parameter in the center column below. Statistics across all replicate distributions in our analysis are
shown in the rightmost column.

Disease state period Distribution Statistics

Latent period
(time in E state)

gamma(mean=3.0, CV=0.6)

mean 3.0 days
std 1.8 days
95% CI (0.6, 7.4)

Pre-symptomatic period
(time in Ipre state)

gamma(mean=2.2, CV=0.5)

mean 2.2 days
std 1.1 days
95% CI (0.6, 4.8)

Symptomatic period
(time in Isym or Iasym state)

gamma(mean=4.0, CV=0.4)

mean 4.0 days
std 1.6 days
95% CI (1.5, 7.7)

Total infectious period
(total time in Ipre, Isym, and
Iasym states)

gamma(mean=2.2, CV=0.5)

mean 6.2 days
std 1.9 days
95% CI (3.0, 10.5)
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C Lower vaccine efficacy

The SEIRS+ simulation results shown in Figures 4 and 5 of the main text are based on an average
vaccine effectiveness of 90%. In some areas, the vaccines used may have lower effectiveness. To provide
a sense of how that changes the results, here we show SEIRS+ simulation results for the case in which
vaccine effectiveness is 70%. In this situation, testing remains valuable at higher vaccination fractions,
but the overall patterns are qualitatively similar.
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Figure C1: Outbreak sizes when vaccine effectiveness is 70% Here we illustrate the outcome of 1000
simulations for each combination of testing cadence and vaccination uptake, when 10% of the population have
previously been infected, vaccines are on average 70% effective at preventing infection and transmission, and
R0 = 4.0. Solid black lines mark the mean outbreak sizes and dashed black lines mark the 95th percentile
outbreak sizes for each parameter combination.
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Figure C2: Value of testing when vaccine effectiveness is 70%. Here we show how many cases per
1000 individuals are prevented on average when using a given testing cadence relative to not testing, where
R0 = 4.0, 10% of the population have previously been infected, and vaccines are on average 70% effective at
preventing infection and transmission. As vaccination uptake increases, the benefits of testing here, with 70%
effectiveness, decline less rapidly than the benefits with 90% effectiveness as shown in Figure 5. Differences
between the values for 0% vaccine uptake here and those in Figure 5 are merely stochastic.
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