1 Title:

- 2 Treatment interruption is a risk factor for sickness presenteeism: a large-scale cross-sectional study
- 3 during the COVID-19 pandemic
- 4

5 Authors:

- 6 Makoto Okawara¹, M.D., Tomohiro Ishimaru¹, M.D., M.P.H., Ph.D., Seiichiro Tateishi², M.D., Ph.D.,
- 7 Ayako Hino³, M.D., Ph.D., Mayumi Tsuji⁴, M.D., Ph.D., Akira Ogami⁵, M.D., Ph.D., Tomohisa
- 8 Nagata⁶, M.D., Ph.D., Shinya Matsuda⁷, M.D., Ph.D., Yoshihisa Fujino¹, M.D., M.P.H., Ph.D., for
- 9 the CORoNaWork project
- 10

11 Affiliations:

- 12 1 Department of Environmental Epidemiology, Institute of Industrial Ecological Sciences,
- 13 University of Occupational and Environmental Health, Japan
- 14 2 Department of Occupational Medicine, School of Medicine, University of Occupational and
- 15 Environmental Health, Japan
- 16 3 Department of Mental Health, Institute of Industrial Ecological Sciences, University of
- 17 Occupational and Environmental Health, Japan
- 18 4 Department of Environmental Health, School of Medicine, University of Occupational and

- 19 Environmental Health, Japan
- 20 5 Department of Work Systems and Health, Institute of Industrial Ecological Sciences, University of
- 21 Occupational and Environmental Health, Japan
- 22 6 Department of Occupational Health Practice and Management, Institute of Industrial Ecological
- 23 Sciences, University of Occupational and Environmental Health, Japan
- 24 7 Department of Preventive Medicine and Community Health, School of Medicine, University of
- 25 Occupational and Environmental Health, Japan
- 26
- 27 Corresponding author:
- 28 Yoshihisa Fujino, M.D., M.P.H., Ph.D.
- 29 Department of Environmental Epidemiology, Institute of Industrial Ecological Sciences, University
- 30 of Occupational and Environmental Health, Japan
- 31 1-1, Iseigaoka, Yahatanishiku, Kitakyushu, 807-8555, Japan
- **32** Tel: +81-93-691-7401
- 33 E-mail: <u>zenq@med.uoeh-u.ac.jp</u>
- 34
- 35 Abstract

- 36 Objective: This study examined the relationship between interruption to routine medical care during
- 37 the coronavirus disease 2019 pandemic and sickness presenteeism in Japan.
- 38 Methods: An internet monitor questionnaire was conducted. Data from 27,036 people were analyzed.
- 39 Interruption to medical care was defined based on the response "I have not been able to go to the
- 40 hospital or receive treatment as scheduled." The number of sickness presenteeism days in the past 30
- 41 days was employed as the primary outcome. A zero-inflated negative binomial model was used for
- 42 analysis.
- 43 Results: The incidence rate ratio was significantly higher among workers who experienced
- 44 interrupted medical care (2.26; 95% confidence interval: 2.03–2.52) than those who did not require
- 45 routine medical care.
- 46 Conclusions: This study suggests the importance of continuing necessary treatment during a
- 47 pandemic to prevent presenteeism.
- 48
- 49 Keywords: occupational health; patient dropouts; presenteeism; COVID-19; regression analysis
- 50

51 Introduction

52	Sickness presenteeism is an increasingly important issue in occupational health. Aronsson
53	defined sickness presenteeism as "people, despite complaints and ill health that should prompt rest
54	and absence from work, still turning up at their jobs" ¹ . Sickness presenteeism is the result of a choice
55	made by a worker with ill-health, disease, or capacity loss between sickness presenteeism and
56	sickness absence ² . This decision is influenced by the individual's personality, values, economic
57	status, workplace "demands for presence" and support for adaptation, and national culture and
58	employment customs ² . Evidence suggests that sickness presenteeism can lead to sickness absence
59	and future worsening of physical and mental health conditions ^{3–9} . In addition, the impact of working
60	while ill on productivity is also gaining attention, especially in the US ^{10,11} . A variety of diseases and
61	health conditions have been found to be associated with sickness presenteeism, suggesting the
62	importance of managing disease and maintaining good condition ^{4,12} .
63	Under the coronavirus disease 2019 (COVID-19) pandemic, there is concern that both
64	organizational and individual factors will increase sickness presenteeism above that observed under
65	normal conditions ^{13–15} . Organizational factors that may lead to more sickness presenteeism include
66	increased workload and working hours per person, increased work pressure due to a manpower
67	shortage in the organization and changes in work demands on short notice during the pandemic. This

68	increased workload on workers can lead to a negative work culture around taking sick leave, such as
69	where workers who choose to work while ill are valued for their loyalty to the company and
70	motivation to work, thus promoting sickness presenteeism ¹⁶ . Examples of individual factors that may
71	increase sickness presenteeism include worsening economic situations and job insecurity; increased
72	telecommuting, which can make it easier for workers to work even while sick; the impact of the
73	pandemic on anxiety and mental health; worsening of health conditions and diseases due to lifestyle
74	changes; and worsening of chronic diseases due to the inability to access medical resources. All of
75	these factors are expected to lead to an increase in sickness presenteeism.
76	Interruption to medical care is an important problem in the COVID-19 pandemic. Access to
77	necessary routine medical care and medical resources is reportedly being affected in many countries
78	around the world ^{17–19} . In Japan, there is data showing that the number of prescriptions issued has
79	decreased ²⁰ . There are multiple reasons for such interruptions to medical care, including fear of
80	being infected with COVID-19 when leaving the house to visit a hospital, worsening personal
81	economic situations, and shortages in medical personnel, all of which affect the treatment schedule
82	for chronic diseases ²¹ . Interruption to medical care can adversely affect management of chronic
83	diseases and delay the detection and treatment of new diseases ²² . In fact, excess deaths unrelated to
84	COVID-19 have been reported ²³ . Thus, interruption to medical care during the COVID-19 pandemic
85	may lead to worsening of non-COVID-19 diseases and health conditions.

86	During the COVID-19 pandemic, the number of people working while ill may increase as a
87	result of worsening health conditions arising from treatment interruptions and delays. This may
88	result in an increase in sickness presenteeism. However, few studies have examined the effect of
89	medical care interruption on sickness presenteeism during the COVID-19 pandemic. We
90	hypothesized that sickness presenteeism has increased among workers who experienced
91	interruptions to their medical care during the COVID-19 pandemic. The purpose of this study was to
92	examine the association between medical care interruption and sickness presenteeism in Japanese
93	workers during the COVID-19 pandemic.
94	

95 **Materials and Methods**

96	We performed a cross-sectional study based on baseline survey data obtained in the
97	Collaborative Online Research on the Novel- Coronavirus and Work (CORoNaWork) project, a
98	prospective cohort study that performed a questionnaire-based survey of Internet monitors to
99	determine the effect of the COVID-19 pandemic on workers' health. Before completing the online
100	survey, participants read a description of the survey's aims and details about the handling of their
101	information. Only participants who agreed with the contents of the description were allowed to

102	participate. Participation was anonymized. This study was approved by the Ethics Committee of the
103	University of Occupational and Environmental Health, Japan (Approval No. R2-079 and R3-006).
104	The baseline survey was conducted from December 22 to 26, 2020. A total of 33,302
105	participants aged from 20 and 65 years who indicated they were working when completing the
106	survey were included. Participants were selected such that sex and occupation (office and non-office
107	workers) were approximately equal among the regions of residence. Regions of residence were
108	categorized according to the cumulative COVID-19 infection rate. Participants who provided
109	fraudulent responses (n=6,266) according to the survey company or a predefined definition of a
110	fraudulent response were excluded. Fraudulent responses included an unusually short response time
111	(below 6 minutes), unusually short height (below 140 cm), unusually low weight (below 30 kg),
112	varying answers to similar questions in the survey (e.g., varying answers to questions about marital
113	status or area of residence), and incorrect answers to tiered questions used to identify inappropriate
114	responses (e.g., choose the third highest number from the following five numbers). After exclusion,
115	responses from 27,036 participants were included in the analysis.

116

117 Assessment of treatment status

118	We assessed the presence of disease and participants' need for medical care using the
119	following question: "Do you have a disease that requires regular visits to the hospital or treatment?"
120	Responses were "I do not have any such disease"; "I am able to go to the hospital or receive
121	treatment as scheduled"; "I have not been able to go to the hospital or receive treatment as
122	scheduled."
123	Those who answered "I do not have any such disease" were defined as workers who did not
124	require routine medical care, and thus did not have any disease that requires hospital visits or
125	treatment. Those who answered "I am able to go to the hospital or receive treatment as scheduled"
126	were defined as workers who used medical care. Those who answered "I have not been able to go to
127	the hospital or receive treatment as scheduled" were defined as workers who experienced interrupted
128	medical care.
129	
130	Assessment of sickness presenteeism and other covariates
131	Respondents' number of sickness presenteeism days was ascertained based on the following
132	question and used as the primary outcome: "In the last 30 days, how many days have you worked
133	(including work from home) despite feeling that you really should have taken sick leave due to your
134	state of health?"

Socioeconomic and work-related factors included sex, age, job type (mainly desk work,
mainly interpersonal communication, mainly physical work), marital status (married,
divorced/deceased, never married), annual household income, education (junior high school, high
school, vocational school/junior college/college of technology, university/graduate school), company
size (total number of employees in the respondent's main place of work [1 for self-employed]), and
the number of days worked per week.
The cumulative infection rate of COVID-19 in the province of residence was employed as a
community-level variable.
To control for potential confounders, we also asked participants to indicate their main
symptoms using the following question: "Which of the following conditions or body parts give you
the most trouble during your work?" The options were "No problem"; "pain"; "movement";
"tightness, loss of energy, appetite, fever, dizziness, or feeling poor"; "toileting or elimination";
"mental health"; "skin, hair, or beauty"; "sleep"; "eyes"; "nose"; "ears"; and "other."

149 Statistical analysis

150	Age and the number of sickness presenteeism days were expressed as continuous variables,
151	with median and interquartile range (IQR). Other covariates were expressed as categorical variables
152	using percentages.
153	We compared the results of linear regression, Poisson regression, Zero-inflated Poisson
154	regression (ZIP), negative binomial regression, and Zero-inflated Negative Binomial regression
155	(ZINB) as statistical models, as they treat the number of sickness presenteeism days as continuous
156	count data. Negative binomial regression can handle over-dispersed data, where the variance is much
157	higher than the mean, which cannot be assumed in Poisson distribution. Further, to handle data with
158	excess zeros, which indicates a population at low risk of sickness presenteeism, we used a
159	zero-inflated model. In addition to dealing with the excess zeros that often occur in count data, a
160	zero-inflated model has also been proposed as a way to handle the difficulty of defining sickness
161	presenteeism cutoffs ^{24,25} . As a measure of model fitness, we compared the Akaike's Information
162	Criterion (AIC), and ultimately adopted the ZINB model.
163	ZINB regression analysis was conducted with the number of continuous sickness
164	presenteeism days as the dependent variable, the respondents' category of treatment status as an
165	independent variable, and the number of days worked per week as an offset variable.

166	We adjusted for the following potential confounders: sex, age, job type, marital status,
167	household income, education, company size, cumulative infection rate by prefecture, and main
168	symptoms.
169	In further analysis, we estimated the margins of sickness presenteeism days for each
170	treatment status and symptom. First, we used the same statistical model as that in the main analysis.
171	Second, we calculated the predictive margins of sickness presenteeism days, substituting measured
172	values for other covariates, dividing the data into 36 groups (3 treatment statuses and 12
173	symptoms) ²⁶ . Preliminarily, we confirmed the simple main effects for each treatment status
174	compared to workers who did not require routine medical care by adding the interaction term
175	between treatment status and symptoms to the model used for the main analysis. For all analyses, the
176	Bonferroni method was used to adjust for multiple comparisons.
177	All comparisons were performed in Stata (Stata Statistical Software: Release 16; StataCorp
178	LLC, TX, USA), with $p < 0.05$ indicating statistical significance.
179	

180 Results

181	Of the 33,302 responses, 6,266 were excluded (215 were deemed fraudulent according to
182	the survey company and 6,051 satisfied the exclusion criteria during data cleaning), leaving a total of
183	27,036 responses for analysis. Because all responses were mandatory, there were no missing data in
184	this study.
185	The demographic and sociological characteristics of the analyzed population are shown in
186	Table 1. A total of 13,814 (51%) were men, with a median age of 48 years (IQR: 39–55). Of the total
187	population, 17,526 (65%) were workers who did not require routine medical care, 8,451 (31%) were
188	using medical care as scheduled, and 1,059 (4%) experienced interrupted medical care. The overall
189	median number of sickness presenteeism days was 0.0 (IQR: 0-2). The distribution of sickness
190	presenteeism is shown for the three treatment statuses in a histogram in Figure 1.
191	The association between the number of sickness presenteeism days and treatment status is
192	shown in Table 2. There was a significant association between the number of sickness presenteeism
193	days and treatment status based on the count model part of ZINB. After adjusting for other
194	covariates in the multivariate model, the incidence rate ratio (IRR) of sickness presenteeism days
195	was significantly higher among workers who used medical care (IRR: 1.15, 95% CI: 1.08–1.22,
196	p<0.001) and workers who experienced interrupted medical care (IRR: 2.26, 95%CI: 2.03–2.52,
197	p < 0.001) compared to workers who did not require routine medical care.

198	The association between the number of sickness presenteeism days and participants' main
199	symptoms is shown in Table 3. There were significant associations between the number of sickness
200	presenteeism days and some symptoms using the model presented in Table 2. The highest IRR of
201	sickness presenteeism days was observed for mental health symptoms (adjusted IRR: 1.67, 95% CI:
202	1.52–1.83, <i>p</i> <0.001).
203	The predictive margins of sickness presenteeism days for each treatment status and
204	symptom are shown in Table 4 and Figure 2. When the analysis was performed based on the three
205	treatment statuses, irrespective of symptom, the predictive margin of sickness presenteeism days
206	among workers who experienced interrupted medical care was 7.06 days (standard error [SE]=0.34),
207	while that among workers who did not require routine medical care was 1.43 days (SE=0.03). When
208	the analysis was performed based on the 36 treatment-symptom groups (3 treatment statuses and 12
209	symptoms), the largest predictive margin of sickness presenteeism days was observed for mental
210	health symptoms AND interrupted medical care (PM: 10.05 days, SE=0.57). The simple effect
211	comparisons test, which included the interaction term between treatment status and symptoms,
212	showed that there were significant differences between workers with the same symptoms who did
213	and did not require routine medical care, and between workers with the same symptoms who
214	experienced interruption to medical care and who did not require routine medical care. For example,
215	the number of sickness presenteeism days significantly differed between those with mental health

216 symptoms who used medical care and those with mental health symptoms who did not require

- 217 routine medical care (p < 0.001).
- 218

219 Discussion

220	This study demonstrated an association between treatment interruption and sickness
221	presenteeism among Japanese workers in the COVID-19 pandemic. Compared to workers who did
222	not require routine medical care, workers who had diseases that required routine medical care
223	reported more days of sickness presenteeism, and those who experienced interrupted medical care
224	reported even more such days. Furthermore, our findings reveal differences in the occurrence of
225	sickness presenteeism depending on workers' symptoms.
226	We found that workers who experienced interrupted medical care had increased sickness
227	presenteeism. This is because appropriate treatment can improve work function and productivity by
228	improving workers' health and subjective symptoms ^{10,27} . This is supported by the fact that workers
229	who used medical care reported fewer sickness presenteeism days than those who experienced
230	interrupted medical care, although workers who used medical care had a higher incidence of
231	sickness presenteeism than workers who did not require routine medical care. Employees who
232	experience interrupted treatment for chronic diseases may be forced to return to work due to fear of

233	being laid off, depending on the financial situation of their workplace during the pandemic. It is thus
234	important to continue regular treatment during the COVID-19 pandemic to manage disease and
235	maintain good condition ²⁸ .
236	We found that the occurrence of sickness presenteeism depends on the type of symptoms
237	experienced by workers. Workers with symptoms related to mental health problems, loss of
238	energy/fever, and body movements reported more sickness presenteeism than those who reported
239	having "no problem." In contrast, workers with symptoms related to sleep, pain, and elimination
240	reported comparable or fewer days of sickness presenteeism to those who reported having "no
241	problem." Sickness presenteeism is the result of a worker's choice to be absent from work or to
242	attend work despite being unwell. Many previous studies have evaluated sickness presenteeism
243	based on whether or not workers "worked one or more days in a certain period of time with a health
244	condition for which they think they really should be absent" ^{2,29} . However, workers experiencing
245	symptoms not typically associated with sickness presenteeism may not consider their symptoms
246	suitable for an absence from work, and thus may not have indicated that they experienced sickness
247	presenteeism. For example, symptoms related to beauty are not directly related to an individual's
248	ability to work; sleep may be considered something that the individual simply needs to get more of
249	on holidays; and chronic pain may be considered an instruction to move rather than rest. However,
250	some symptoms that can pose a health risk are also unlikely to be recognized as contributing to

251	sickness presenteeism. These include symptoms that can lead to delayed detection or worsening of a
252	disease if left untreated when rest or treatment is in fact required. For individuals with insomnia or
253	elimination symptoms, for example, resting or visiting a hospital when feeling unwell can lead to
254	prevention or early diagnosis and treatment of mental health problems or inflammatory bowel
255	disease, respectively. While forcing oneself to work with such symptoms can pose a health risk,
256	workers may not consider this sickness presenteeism due to differences in interpretation of "health
257	conditions that require absence from work." This is an important point when evaluating sickness
258	presenteeism.
259	We also found that the impact of continuing treatment on the prevention of sickness
260	presenteeism varied by symptom. Sickness presenteeism was more frequent in workers who
261	experienced interrupted medical care with symptoms related to tightness and loss of energy, toileting
262	and elimination, sleep, and eyes than those who did not require routine medical care. In contrast, no
263	difference in sickness presenteeism was observed between workers who used medical care and those
264	who did not require routine medical care, suggesting the importance of continuing necessary routine
265	medical care for preventing sickness presenteeism due to these symptoms. Workers who experienced
266	interrupted medical care with these symptoms may be able to reduce the incidence of sickness
267	presenteeism by continuing appropriate treatment to maintain and improve their health condition.
268	Symptoms that led to more sickness presenteeism in both workers who used medical care and

269	workers who experienced interrupted medical care compared to workers who did not require routine
270	medical care were pain and mental health-related symptoms. For these symptoms, sickness
271	presenteeism remained high even with continued treatment, indicating the need to identify
272	appropriate treatment and manage one's daily health condition in addition to continuing treatment. In
273	contrast, symptoms that led to comparable sickness presenteeism in workers who used medical care
274	and workers who experienced interrupted medical care compared to workers who did not require
275	routine medical care were related to movement and mobility; skin, hair, or beauty; nose; ears; and
276	other symptoms, for which treatment is ineffective to prevent sickness presenteeism. The lack of a
277	difference in sickness presenteeism for these symptoms may be due to the fact that individuals do
278	not consider these symptoms sufficiently adverse to require an absence from work. Alternatively,
279	some individuals, such as those with physical movement symptoms, may experience chronic
280	symptoms for which support and adaptive behaviors have already been put into place; thus, whether
281	or not these individuals experience sickness presenteeism may be unrelated to their treatment status.
282	Thus, the impact of continuing treatment on sickness presenteeism may be related to whether an
283	individual considers their symptoms to be sufficiently adverse to require an absence from work, or
284	whether or not the symptoms can be improved with treatment.
285	There are several limitations to this study. First, we did not obtain detailed information
286	related to treatment interruptions, including the type of disease, duration, and reasons for interruption.

287 V	We were thus	unable to detern	nine whether the	e reason for interru	ption to treatment v	vas due to
-------	--------------	------------------	------------------	----------------------	----------------------	------------

- 288 patient-related reasons (e.g., economic situation and anxiety) or hospital-related reasons (e.g.,
- schedule adjustment). Second, interruptions to treatment may be the result of better disease control
- and improved health. It is unclear how these factors would affect the occurrence of sickness
- 291 presenteeism. Finally, we did not consider all possible confounders affecting sickness presenteeism
- because we did not obtain information on some confounders, such as job insecurity, annual leave
- rights, and the culture around employment and sick leave in each company.

294

295 Conclusion

- 296 Interruption to medical care during the COVID-19 pandemic was associated with the
- 297 occurrence of sickness presenteeism. This study demonstrates the importance of maintaining one's
- 298 health condition and continuing necessary treatment even during an infectious disease pandemic.

299

300 References

- Aronsson G, Gustafsson K, Dallner M. Sick but yet at work. An empirical study of sickness
 presenteeism. J Epidemiol Community Health. 2000;54: 502–509.
- Aronsson G, Gustafsson K. Sickness presenteeism: prevalence, attendance-pressure factors, and
 an outline of a model for research. J Occup Environ Med. 2005;47: 958–966.
- 305 3. Skagen K, Collins AM. The consequences of sickness presenteeism on health and wellbeing
 306 over time: A systematic review. Soc Sci Med. 2016;161: 169–177.
- 307 4. Johns G. Presenteeism in the workplace: A review and research agenda. J Organ Behav.
 308 2010;31: 519–542.

309 5. Kivimäki M, Head J, Ferrie JE, Hemingway H, Shipley MJ, Vahtera J, et al. Working while ill
310 as a risk factor for serious coronary events: the Whitehall II study. Am J Public Health.
311 2005;95: 98–102.

- 312 6. Janssens H, Clays E, De Clercq B, De Bacquer D, Braeckman L. The relation between
 313 presenteeism and different types of future sickness absence. J Occup Health. 2013;55: 132–141.
- 314 7. Bergström G, Bodin L, Hagberg J, Aronsson G, Josephson M. Sickness presenteeism today,
 315 sickness absenteeism tomorrow? A prospective study on sickness presenteeism and future
 316 sickness absenteeism. J Occup Environ Med. 2009;51: 629–638.
- 317 8. Gustafsson K, Marklund S. Associations between health and combinations of sickness presence
 318 and absence. Occup Med . 2014;64: 49–55.
- 319 9. Gustafsson K, Marklund S. Consequences of sickness presence and sickness absence on health
 320 and work ability: a Swedish prospective cohort study. Int J Occup Med Environ Health.
 321 2011;24: 153–165.
- 322 10. Schultz AB, Chen C-Y, Edington DW. The cost and impact of health conditions on
 323 presenteeism to employers: a review of the literature. Pharmacoeconomics. 2009;27: 365–378.
- Nagata T, Mori K, Ohtani M, Nagata M, Kajiki S, Fujino Y, et al. Total Health-Related Costs
 Due to Absenteeism, Presenteeism, and Medical and Pharmaceutical Expenses in Japanese
 Employers. J Occup Environ Med. 2018;60: e273–e280.
- 327 12. Burton WN, Pransky G, Conti DJ, Chen C-Y, Edington DW. The association of medical
 328 conditions and presenteeism. J Occup Environ Med. 2004;46: S38-45.

- 329 13. Reuter M, Dragano N, Wahrendorf M. Working while sick in context of regional 330 unemployment: a Europe-wide cross-sectional study. J Epidemiol Community Health. 2021;75: 331 574–580.
- 14. Tilchin C, Dayton L, Latkin CA. Socioeconomic Factors Associated With an Intention to Work
 While Sick From COVID-19. J Occup Environ Med. 2021;63: 363–368.
- Kinman G, Grant C. Presenteeism during the COVID-19 pandemic: risks and solutions. Occup
 Med . 2020. doi:10.1093/occmed/kqaa193
- 336 16. Kinman G. Sickness presenteeism at work: prevalence, costs and management. Br Med Bull.
 337 2019;129: 69–78.
- 338 17. Das AK, Mishra DK, Gopalan SS. Reduced access to care among older American adults during
 339 CoVID-19 pandemic: results from a prospective cohort study. bioRxiv. medRxiv; 2020.
 340 doi:10.1101/2020.11.29.20240317
- 341 18. Czeisler MÉ, Mpp KM, Clarke KEN, Salah Z, Shakya I, Thierry JAM, et al. Delay or
- avoidance of medical care because of COVID-19-related concerns .
 doi:10.1101/2020.04.22.20076141v1
- van Ballegooijen H, Goossens L, Bruin RH, Michels R, Krol M. Concerns, quality of life,
 access to care and productivity of the general population during the first 8 weeks of the
 coronavirus lockdown in Belgium and the Netherlands. BMC Health Serv Res. 2021;21: 227.
- 347 20. Lopresti M Seo T Sato. Pandemics and access to care: use of real-world DATA to examine the
- 348 IMPACT of COVID-19 on pharmacy visits in Japan. Value Health. [cited 28 May 2021].
- doi:10.1016/j.jval.2020.08.1707
- 350 21. Bong C-L, Brasher C, Chikumba E, McDougall R, Mellin-Olsen J, Enright A. The COVID-19
 351 Pandemic: Effects on Low- and Middle-Income Countries. Anesth Analg. 2020;131: 86–92.
- 22. Erol MK, Kayıkçıoğlu M, Kılıçkap M, Güler A, Yıldırım A, Kahraman F, et al. Treatment
 delays and in-hospital outcomes in acute myocardial infarction during the COVID-19
 pandemic: A nationwide study. Anatol J Cardiol. 2020;24: 334–342.
- 355 23. Woolf SH, Chapman DA, Sabo RT, Weinberger DM, Hill L. Excess Deaths From COVID-19

- and Other Causes, March-April 2020. JAMA. 2020;324: 510–513.
- 357 24. Navarro A, Salas-Nicás S, Llorens C, Moncada S, Molinero-Ruíz E, Moriña D. Sickness
 358 presenteeism: Are we sure about what we are studying? A research based on a literature review
 359 and an empirical illustration. Am J Ind Med. 2019;62: 580–589.
- 360 25. Tashiro Y, Nakamura K, Seino K, Ochi S, Ishii H, Hasegawa M, et al. The impact of a
 361 school-based tooth-brushing program on dental caries: a cross-sectional study. Environ Health
 362 Prev Med. 2019;24: 83.
- 363 26. Williams R. Using the Margins Command to Estimate and Interpret Adjusted Predictions and
 364 Marginal Effects. Stata J. 2012;12: 308–331.
- 365 27. Burton WN, Morrison A, Wertheimer AI. Pharmaceuticals and worker productivity loss: a
 366 critical review of the literature. J Occup Environ Med. 2003;45: 610–621.
- 28. Chudasama YV, Gillies CL, Zaccardi F, Coles B, Davies MJ, Seidu S, et al. Impact of
 COVID-19 on routine care for chronic diseases: A global survey of views from healthcare
 professionals. Diabetes Metab Syndr. 2020;14: 965–967.
- 370 29. Hansen CD, Andersen JH. Going ill to work--what personal circumstances, attitudes and
 371 work-related factors are associated with sickness presenteeism? Soc Sci Med. 2008;67:
 372 956–964.

		Workers who did	Workers who	Workers who
	Total (n=27,036)	not require	used medical	experienced
		routine medical		interrupted medical
	(II = 27,030)	care	(n-9, 451)	care
		(n= 17,526)	(11=8,431)	(n=1,059)
	n (%)	n (%)	n (%)	n (%)
Age, median (IQR)	48 (39-55)	46 (38-53)	52 (45-58)	47 (39-54)
Sex, men	13814 (51.1%)	8422 (48.1%)	4885 (57.8%)	507 (47.9%)
Marital status, married	15029 (55.6%)	9627 (54.9%)	4894 (57.9%)	508 (48.0%)
Job type				
Mainly desk work	13468 (49.8%)	8545 (48.8%)	4440 (52.5%)	483 (45.6%)
Mainly interpersonal communication	6927 (25.6%)	4621 (26.4%)	2032 (24.0%)	274 (25.9%)
Mainly physical work	6641 (24.6%)	4360 (24.9%)	1979 (23.4%)	302 (28.5%)
Equivalent income (Japanese Yen)				
550000-2500000	5710 (21.1%)	3636 (20.7%)	1800 (21.3%)	274 (25.9%)
2500000-4250000	7550 (27.9%)	5036 (28.7%)	2227 (26.4%)	287 (27.1%)
4250000-5500000	6625 (24.5%)	4353 (24.8%)	2039 (24.1%)	233 (22.0%)
>5500000	7151 (26.4%)	4501 (25.7%)	2385 (28.2%)	265 (25.0%)
Education				
Junior high school	368 (1.4%)	244 (1.4%)	107 (1.3%)	17 (1.6%)
High school	6953 (25.7%)	4381 (25.0%)	2284 (27.0%)	288 (27.2%)
Vocational school, junior college, or technical college	6544 (24.2%)	4378 (25.0%)	1913 (22.6%)	253 (23.9%)

Table 1. Basic characteristics of the study subjects

University or graduate school	13171 (48.7%)	8523 (48.6%)	4147 (49.1%)	501 (47.3%)
Number of employees				
1	2556 (9.5%)	1625 (9.3%)	848 (10.0%)	83 (7.8%)
2-49	7999 (29.6%)	5378 (30.7%)	2320 (27.5%)	301 (28.4%)
50-999	9703 (35.9%)	6262 (35.7%)	3036 (35.9%)	405 (38.2%)
1000-9999	4719 (17.5%)	2986 (17.0%)	1552 (18.4%)	181 (17.1%)
≥10000	2059 (7.6%)	1275 (7.3%)	695 (8.2%)	89 (8.4%)
Sickness presenteeism days, median (IQR)	0.0 (0-2)	0.0 (0-1)	0.0 (0-2)	4.0 (1-10)

IQR: interquartile range

1

_

Table 2. Association between treatment status and sickness

presenteeism

		Univa	ariate		Multivariate*					
Treatment status	IRR	R 95% C		р	IRR	95% CI		р		
Workers who did not require routine medical care	Reference				Reference					
Workers who used medical care	1.13	1.06	1.21	< 0.001	1.15	1.08	1.22	< 0.001		
Workers who experienced interrupted medical care	2.30	2.06	2.57	< 0.001	2.26	2.03	2.52	< 0.001		

*Adjusted for sex, age, marital status, household income, education, company size, job type,

cumulative infection rate for COVID-19, and main symptoms

Offset variable: number of days worked per week

IRR: incidence rate ratio, CI: confidence

interval

1

Main symptom	IRR	95%	6 CI	р
No problem	Reference			
Pain	1.03	0.92	1.15	0.587
Movement	1.28	1.11	1.48	0.001
Tightness, loss of energy, appetite, fever, dizziness, or feeling poor	1.35	1.21	1.50	< 0.001
Toileting or elimination	0.97	0.81	1.17	0.780
Mental health	1.67	1.52	1.83	< 0.001
Skin, hair, or beauty	0.90	0.75	1.09	0.284
Sleep	1.05	0.95	1.17	0.352
Eyes	0.86	0.75	0.98	0.024
Nose	0.68	0.49	0.95	0.023
Ears	0.85	0.63	1.15	0.299
Other	1.35	1.18	1.54	< 0.001

Table 3. Association between main symptoms and sickness presenteeism

Adjusted for sex, age, marital status, household income, education, company size, job type,

cumulative infection rate for COVID-19, and treatment status

Offset variable: number of days worked per week

IRR: incidence rate ratio, CI: confidence interval

1

Table 4. Predictive margins of sickness presenteeism days for each symptom and

comparison between each treatment status

	Workers who did not require routine medical care				Wo	Workers who used medical care (n=8,451)					Workers who experienced interrupted medical care (n=1,059)				
					woi										
	(n=17,526)														
	n	%	PM	SE	n	%	PM	SE	р	n	%	PM	SE	р	
Total	17526	100	1.43	0.03	8451	100	2.16	0.05	< 0.001	1059	100	7.06	0.34	< 0.001	
Main symptom															
No problem	10938	62.4	0.76	0.02	3642	43.1	0.97	0.04	0.001	160	15.1	4.85	0.35	0.006	
Pain	849	4.8	2.11	0.10	842	10.0	2.53	0.11	0.017	144	13.6	6.19	0.38	< 0.001	
Movement	481	2.7	2.61	0.17	344	4.1	3.09	0.20	1.000	54	5.1	7.11	0.57	1.000	
Tightness, loss of energy, appetite,	715	4 1	2 (7	0.16	592	6.0	2.06	0.17	0.050	122	12.0	0.22	0.52	-0.001	
fever, dizziness, or feeling poor	/15	4.1	3.67	0.16	585	6.9	3.90	0.17	0.056	155	12.0	8.32	0.53	<0.001	
Toileting or elimination	263	1.5	1.91	0.16	201	2.4	2.35	0.20	1.000	40	3.8	5.87	0.56	< 0.001	
Mental health	1143	6.5	4.09	0.15	909	10.8	4.69	0.17	< 0.001	219	20.7	10.05	0.57	< 0.001	
Skin, hair, or beauty	389	2.2	1.62	0.14	160	1.9	1.99	0.17	0.069	29	2.7	5.45	0.54	1.000	
Sleep	997	5.7	2.34	0.10	637	7.5	2.74	0.12	1.000	116	11.0	6.20	0.39	< 0.001	
Eyes	795	4.5	1.46	0.08	512	6.1	1.76	0.10	1.000	65	6.1	4.57	0.33	< 0.001	
Nose	98	0.6	1.29	0.19	71	0.8	1.54	0.23	1.000	9	0.9	4.03	0.67	1.000	
Ears	80	0.5	1.76	0.24	84	1.0	2.14	0.29	1.000	12	1.1	5.25	0.80	0.343	
Other	778	4.4	1.96	0.12	466	5.5	2.51	0.16	1.000	78	7.4	7.86	0.60	0.351	

PM: predictive margins; mean predicted number of sickness presenteeism days for each symptom and treatment status using the model in Table 2 and 3 with substitution of measured values for other covariates (adjusted using the Bonferroni method)

Offset variable: number of days worked per week

IRR: incidence rate ratio, SE: standard error, %: proportion of the total number of respondents for each treatment status

p: p-value for simple main effects for each treatment status compared to workers who did not require routine medical care using a model that included the interaction term for treatment status and main symptoms (adjusted using the Bonferroni method)

1

2

3 *others include loss of energy, appetite, fever, dizziness, or feeling poor