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Abstract: After one pandemic year of remote or hybrid instructional modes, universities in the United States are now planning 

for an in-person fall semester in 2021. However, it is uncertain what the vaccination rate will look like after students, faculty, 

and staff return to campus. To help inform university-reopening policies, we collected survey data on social contact patterns 

and developed an agent-based model to simulate the spread of COVID-19 in university settings. In this paper, we aim to 

identify the immunity threshold that, if exceeded, would lead to a relatively safe on-campus experience for the university 

population. With relaxed non-pharmaceutical interventions, we estimated that immunity in at least 60% of the university 

population is needed for safe university reopening. Still, attention needs to be paid to extreme events that could lead to huge 

infection size spikes. At an immune level of 60%, continuing non-pharmaceutical interventions, such as wearing masks, could 

lead to an 89% reduction in the maximum cumulative infection, which reflects the possible non-negligible infection size from 

extreme events.  
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1. Introduction 
Since March 2020, most U.S. universities have 

suspended in-person operations and employed remote or 

hybrid instructional modes in response to the 

unprecedented restrictions caused by the coronavirus 

disease 2019 (COVID-19). Buoyed by the wider vaccine 

availability, a growing number of universities in the United 

States have announced full reopening with an in-person fall 

semester in 2021. Despite the high effectiveness of COVID-

19 vaccines, many institutions have not required a vaccine 

mandate. In addition, studies have suggested that COVID 

vaccination hesitancy appears to be high in certain 

population subgroups such as young adults [1–3]. For 

example, Sharma et al. [3] reported that 47.5% of 

participants were hesitant to get vaccinated based on 

questionnaires distributed to college students in a Southern 

U.S. University. As there will be people returning to campus 

through out-of-state or international travel, it is hard to 

project the vaccination rate in the coming fall semester, 

which is crucial for the epidemic forecast.   

Facing such challenges, universities struggle with plans 

in resuming normal operations while mitigating the risks of 

severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2). Since the pandemic started, over 700,000 cases have 

been reported concerning American colleges and 

universities [4]. Several agent-based models have been 

developed to guide decision-making on testing frequencies, 

mask usage, social distancing, and class sizes during school 

reopening [5–8]. Asgary et al. developed an agent-based 

simulation tool to evaluate the impact of different testing 

strategies and protective measures such as masking [5]. 

Junge et al. [6] analyzed the herd immunity threshold 

needed for safe university reopening and found that vaccine 

coverage over 80% makes it possible to resume in-person 

instructions safely. Due to data unavailability, many of these 

models simulate contacts based on random mixing or 

assumptions regarding class schedules and common 

locations. Previous studies have shown that contact 

networks could significantly impact the accuracy of 

epidemic predictions and the effectiveness of control 

strategies [9–11], highlighting the importance of data 

collection on real-world contact patterns.  

COVID-19 is still evolving, and researchers are devoted 

to retrieving its epidemiological parameters [12–14]. 

Recent studies have reported non-exponential distributions 

for critical transition times between different disease states, 

such as the infectious period [15,16]. Whereas most 

epidemic models have been developed based on Markovian 

processes with transition times following exponential 

distributions. Such unrealistic assumptions could impair the 

accuracy of model predictions, and non-Markovian models 

that accept arbitrary distributions for the transition times of 

the individual between different compartments have 

started to draw attention from scholars [17–19].  

In this study, we develop an agent-based model to 

examine the mitigation strategies needed for safe university 

reopening in the 2021 fall semester. The model incorporates 

a social contact network based on survey data. Considering 

a highly effective vaccine, we simulate COVID spreading in a 

university population under two scenarios: 1) relaxation of 
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non-pharmaceutical interventions (NPIs) and 2) adoption of 

NPIs, such as wearing masks. The outcomes are valuable to 

understand the impact of initial immune levels on the future 

epidemic spread, thereby helping inform university-

reopening policies.  

The contributions of this paper are summarized as 

follows:  

• We develop an agent-based model incorporating 

non-Markovian transition times and real contact 

networks based on survey data. 

• We estimate that immunity in at least 60% of the 

university population is needed to ensure a healthy 

campus with relaxed NPIs.  

• We observe that the implementation of NPIs can 

dramatically reduce the maximum cumulative 

infection, and continued NPIs are recommended to 

mitigate risks from extreme events. 

 

2. Survey data 
To parametrize the model, we conducted a social 

contact survey administered to all students, faculty, and 

staff at Kansas State University between December 2, 2020, 

and January 25, 2021. We sent emails to 6,196 faculty and 

staff members, and 20,755 students, and received responses 

from 3,581 participants with a success rate of 13.29%. The 

survey data contain information about age segment, role at 

the university, housing status, and number of close contacts 

categorized by duration ranges in a week. We also gathered 

information about visit frequency, duration, and the number 

of contacts at different locations.  

Figure 1 depicts the age, housing status, and the number 

of close contacts in a week by duration ranges. We can see 

that 50.70% of participants reported being in the age 

category 18–24, followed by 15.90% of participants in the 

age category 25–35. Regarding housing status, 9.82% of 

students live in sororities or fraternities, 21.00% live in on-

campus housing, and the remaining students live in off-

campus apartments or houses. The majority of faculty and 

staff (98.91%) choose off-campus housing options. In the 

survey, we explicitly indicate that examples of contacts 

regularly met more than 4 hours per week are roommates, 

family members, or coworkers. Contacts between 1 to 4 

hours per week may refer to friends or classmates, and 

contacts between 15 minutes to 1 hour per week could be 

friends or others that the participant might occasionally 

meet. Overall, the contact patterns categorized by role 

reveal that students living in sororities or fraternities have 

more contacts while faculty and staff have fewer contacts. 

For example, regarding the duration of more than 4 hours 

per week (yellow), the median number of contacts for 

students living at sororities or fraternities is 8 contacts 

compared to faculty and staff with 2 contacts.  More 

statistics about the survey data can be found in the 

supplementary material.

 

       
(a) Age                                               (b) Housing status 
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(c) The number of contacts the survey respondent regularly meets categorized by duration ranges in a week and the role of 

the survey respondent  

Figure 1. Population characteristics and the number of contacts per person differentiated by duration ranges in a week of the 

survey respondent. Faculty_staff, St_on_campus, St_sor_fra, St_off_campus represent the following four types of roles: faculty 

and staff; students living on-campus housing; students living in a sorority or fraternity; and students living-off campus. 

3. Model 
The model developed mainly consists of two types of 

agents, namely person and location agents. During 

initialization, we create 26,000 person-agents, representing 

20,000 students and 6,000 faculty and staff. Each person-

agent is assigned to one role category of a) faculty and staff, 

b) student living on campus, c) student living off campus, or 

d) student living at a sorority or fraternity. With each role 

category, the age attribute is associated with each person-

agent based on the age distribution obtained from the 

survey data. Each location-agent plays one role of: a) 

recreation center or any gym or other shared exercise 

spaces; b) union, dining centers, and coffee shops on campus; 

c) bars, restaurants, and coffee shops off campus; d) stores 

and other types of services off campus; and e) other types of 

social gathering such as sport, religious, and social events.  

Daily activities: Figure 2 depicts the structure of the 

person-agent. Each person-agent has contact with people it 

regularly meets in the three contact lists, and meets other 

people at the five types of locations. More specifically, the 

people within each person’s contact lists are randomly 

selected from the whole population during model 

initialization, and remain unchanged throughout each 

simulation run. By contrast, the people each person meets at 

specific locations are dynamic, as the contact will only occur 

if two agents are within the same location. At different times 

of the day, each person agent visits these locations based on 

the visit frequency, the duration, and the number of contacts, 

which are sampled from exponential distributions with 

parameters retrieved from the survey data.  

Disease transmission: In line with reference [20,21], 

each individual has a state reflecting its health status: 

susceptible (S), exposed (E, infected but not infectious), 

asymptomatic (𝐼𝐴), symptomatic differentiated by mild (𝐼𝑠
1), 

severe (𝐼𝑠
2) and critical illness (𝐼𝑠

3), recovered (R), and dead 

(D). Contacting an infectious individual, a susceptible 

individual could become infected and transition to the 

exposed state based on the transmission probability per 

contact 𝛽. An individual in the exposed state will transition 

to the infectious state 𝐼𝐴  after a period lognormal 

distributed with a mean of 4.6 days and a standard deviation 

of 4.8 days [22–25]. Infected individuals may develop 

symptoms based on age-dependent probabilities [26,27]. 

The probabilities that symptomatic cases develop into mild, 

severe, or critical illness are also age-dependent [27]. The 

length of time for an individual to transition from states 𝐼𝐴 

to symptoms onset ( 𝐼𝑠
1 , 𝐼𝑠

2  or 𝐼𝑠
3 ) follows a lognormal 

distribution with a mean of 1 day and standard deviation of 

0.9 days [16]. The recovery time for asymptomatic cases and 

mild symptomatic cases is a period sampled from a 

lognormal distribution with a mean of 8 days and a standard 

deviation of 2 days [28]. Individuals with severe and critical 

illness recover after a period sampled from a lognormal 

distribution with a mean of 14 days and a standard 

deviation of 2.4 days [26]. Accounting for outside 

transmissions due to non-university contacts, we assume 

the university population has few contacts with local 

communities, and more details can be found in the 

supplementary material. 
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Figure 2. Structure of the person-agent in the model. 

Testing, quarantine, and isolation: When an 

individual has mild symptoms (state 𝐼𝑠
1), it may get a COVID 

test based on a 70% probability. Individuals in the critical or 

moderate symptomatic state (𝐼𝑠
2 or 𝐼𝑠

3) may get tested with a 

95% probability [8]. The delay for returning test results is 

uniformly distributed between 0 and 2 days. An individual 

will be isolated for ten days after being tested positive. If the 

individual shows symptoms, the time spent in isolation will 

count starting from its first day showing symptoms. In 

addition, we assume that 50% of contacts of a confirmed 

case can be identified via contact tracing and thus be 

quarantined. During the quarantine period, the agent will be 

isolated if the person shows symptoms and is tested positive. 

The agent will stop daily activities in both quarantine and 

isolation states. 

Assumptions for estimating the herd immunization 

threshold: We consider a two-dose vaccination allocated to 

susceptible people with a time interval of 28 days. The 

vaccination rollout rate is uniformly distributed between 0 

and 10 doses per day. Vaccine efficacy is 92% for the first 

dose and 95.6% for the second dose [29]. Vaccine efficacy is 

modelled as the probability that a vaccinated susceptible 

agent directly transitions to the recovered state. To initialize 

the epidemics, we randomly select 30 individuals and infect 

them with the transmission probability 𝛽. During scenario 

analyses, the initial immunization level 𝛼 is the percentage 

of people in the recovered state at the start of the simulation, 

representing the presumably achieved immunity either 

through prior infection or vaccination. We perform 500 

simulation runs for each scenario, and record the number of 

active cases and cumulative infected cases in each 

simulation run.  

4 Results and discussions 
In this section, we present and compare simulation 

results under scenarios of NPI relaxation (wearing masks 

and maintaining social distancing are optional) and NPI 

adoption (wearing masks and maintaining social distancing 

are mandatory). In each scenario, we vary the initial 

immunization level, 𝛼 , which refers to the percentage of 

people having immunity at the start of the fall semester.  

4.1 NPI relaxation  
Considering relaxed NPIs, we assume the COVID-19 

transmission probability 𝛽  as 0.03 per contact, following 

relevant studies [20,30,31]. Figure 3 shows the average 

percentage of active cases over time with 95 percent 

confidence intervals given different initial immune levels. 

While our main focus is to examine the epidemic dynamics 

over the fall semester (the grey shaded area in figure 3), we 

depict the simulation results from August 17, 2021 – June 12, 

2022 to provide a relatively complete picture of the 

epidemic curve. For 𝛼 = 40%, the percentage of active cases 

by the end of the semester is 3.20% (95% CI: 3.08% – 

3.32%). In contrast, when more than 60% of the population 

initially has immunity, disease outbreaks can be controlled 

relatively well. At the time of writing, vaccination rates in 

some U.S. states remain to be low. For example, only 36.0% 

of the state’s population is fully vaccinated in Arkansas. The 

simulation results show that such a relatively low 

vaccination rate could lead to a large number of infections, 

under relaxed NPIs.  

Under the same simulation settings as in figure 3, figure 

4 shows more plots with 𝛼 varied between 50% and 64% 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 18, 2021. ; https://doi.org/10.1101/2021.08.13.21261983doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.13.21261983
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

with an interval of 2%. We can see that the epidemic size is 

quite sensitive to the changes in 𝛼. The average percentage 

of active cases by the end of the semester decreases 

dramatically from 1.82% (95% CI: 1.76% – 1.88%) for 𝛼 =

50% to 0.18% (95% CI: 0.16% – 0.20%) for 𝛼 = 60%.

 
Figure 3. The percentage of active cases for scenarios with initial immunization level α varied between 40% and 70%, with 

an interval of 10%. While our main focus is to examine the epidemic dynamics over the coming fall semester (the grey shaded 

area), we provide a relatively complete picture of the epidemic curve from August 17, 2021 – June 12, 2022. 

 
Figure 4. The percentage of active cases for scenarios with initial immunization level α varied between 50% and 64% with 

an interval of 2%. While our main focus is to examine the epidemic dynamics over the coming fall semester (the grey shaded 

area), we provide a relatively complete picture of the epidemic curve from August 17, 2021 – June 12, 2022. 

We also calculate the peak time and height of the peak 

infection for the median number of active cases, and the 

results are listed in Table 1. Interestingly, we can see that as 

α increases from 50% to 60%, the peak of infection reduces 

dramatically from 1.94% to 0.15% of the total population, 

and slightly declines after α=60%.  When the initial immune 

level is above 60%, the peak occurs at day 8 – 10 and the 

epidemic is well contained.  
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Table 1. The peak infection and the peak time for the median 

number of active cases. The beginning of the simulation 

corresponds to the start of the fall semester. Peak time is the 

number of days elapsed after the initial infection. 

Initial immune level 𝛼 Peak value Peak time (days)  

40% 5.90% 90 

50% 1.94% 116 

52% 1.41% 125 

54% 0.93% 125 

56% 0.56% 147 

58% 0.26% 122 

60% 0.15% 10 

62% 0.14% 9 

64% 0.14% 9 

70% 0.13% 8 

As additional information, figure 5 displays boxplots for 

the cumulative infected cases and active cases by the end of 

the fall semester. Though the median percentages of active 

cases for α=62% and α=64% range from 0.02% – 0.05%, 

there are multiple outliers over 0.50% a day. Similarly, the 

cumulative infections at α=62% and α=64% have median 

values of 1.22% and 0.91%, respectively, but have multiple 

outliers over 5.00% of the university population. For α=70%, 

at which the median value for the active cases equals 0, the 

maximum cumulative infected cases can reach up to 3.09% 

of the population. Though such undesired outcomes rarely 

happen, it suggests that superspreading events might result 

in large outbreaks if NPIs are not put in place. 

 

 
Figure 5. Distributions of the cumulative infected cases and active cases in the percentage of the total population by the 

end of the fall semester with the relaxation of NPIs. 

4. 2 NPI adoption 
As reported in [32–34], NPIs such as wearing masks 

could reduce the infection likelihood by at by at least 50%. 

Accordingly, we set β = 0.015  for scenarios with NPIs. 

Figure 6 displays the percentage of active cases given 

different initial immune levels, 𝛼. Compared to simulation 

results with relaxed NPIs, we observe that NPIs cause a 

dramatic reduction in the epidemic size. Over 30% of the 

population initially immune could ensure relatively safe 

university reopening, but extra care should still be paid 

attention to extreme events. If more than 35% of the 

population initially has immunity, the median percentage of 

active cases falls below 0.02%. The median percentages of 

active cases for 50% – 70% all equal 0, while the median 

percentages of cumulative infected cases range from 0.20% 

– 0.37%. Compared to scenarios with relaxed NPIs, 

continuing NPIs can substantially reduce risks from large 

outbreaks. For instance, the maximum cumulative infected 

cases reduce from 9.82% (figure 5) to 1.07% (figure 6) for 

𝛼 = 60%. 
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Figure 6. Distributions of cumulative infected cases and active cases in the percentage of the total population by the 

end of the fall semester with the adoption of NPIs. 

5. Conclusions 
As the fall semester is approaching, many universities 

have announced the plan for an in-person semester, with 

relaxed COVID-19 related guidelines. Without a vaccination 

mandate policy, the exact immune level of the university 

population is largely unknown, considering that many 

students, faculty, and staff are coming back through out-of-

state or international travel. Our simulation results suggest 

that, on average, a vaccination rate at 60% of the university 

population can lead to safe university reopening with social 

distancing policies lifted. However, it should note that 

attention still needs to be paid to the superspreading events 

that may lead to large infections, even with an immune level 

of 70%. However, an immune level below 60% may pose 

significant risks to the public health of the university 

population with the relaxation of NPIs.  

Since the COVID outbreak, studies have shown that 

encouraging people to get vaccinated and continuing non-

pharmaceutical control policies are effective ways to 

suppress the disease spread [35–37]. Consistently, we 

conclude that it is possible to ensure a healthy campus 

community associated with NPIs even at a lower immune 

level of 30%. At the same initial immune level of 60%, 

reducing the infection rate by half could lead to an 89.10% 

reduction concerning the maximum cumulative infections, 

which reflects the possible non-negligible infection from 

extreme events. Therefore, it is recommended that people 

continue to exercise social distancing measures for the 

coming fall semester.  

In this study, we developed an agent-based disease 

transmission model based on a real contact network 

structure and non-Markovian transition time distributions. 

We draw our conclusions based on the early estimations of 

transmission probabilities during the pandemic. Sustaining 

NPIs will become even more critically important, given the 

highly contagious delta variant, which could lead to worse 

scenarios. One limitation of our model lies in the difficulty in 

setting the parameters due to data unavailability. Therefore, 

we make several assumptions and conduct more 

simulations, the results of which can be found in the 

supplementary material. We find that the number of 

infections used to initialize the outbreak and vaccination 

rollout rate has only a minimal impact on the initial immune 

level needed for a safe reopening. Nonetheless, we believe 

that the outcome from this study provides important 

messages for universities planning for a full reopening, 

especially those located in the states with low vaccination 

rates.  
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