1	Nanopore Metagenomic Sequencing for Detection and Characterization of SARS-CoV-2 in Clinical
2	Samples
3	
4	Nick P.G. Gauthier ¹ , Cassidy Nelson ² , Michael B. Bonsall ² , Kerstin Locher ^{3,4} , Marthe Charles ^{3,4} ,
5	Clayton MacDonald ^{3,4} , Mel Krajden ^{4,5} , Samuel D. Chorlton ^{4,6*} , Amee R. Manges ^{5,7*}
6	¹ Department of Microbiology and Immunology, University of British Columbia, Vancouver, British
7	Columbia, Canada
8	² Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford, United
9	Kingdom
10	³ Division of Medical Microbiology, Vancouver General Hospital, Vancouver, British Columbia, Canada
11	⁴ Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British
12	Columbia, Canada
13	⁵ British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
14	⁶ BugSeq Bioinformatics Inc, Vancouver, British Columbia, Canada
15	⁷ School of Population and Public Health, University of British Columbia, Vancouver, British Columbia,
16	Canada
17	
18	*Denotes equal contribution
19	Corresponding authors:
20	Samuel D. Chorlton, MD, sam@bugseq.com
21	Amee R. Manges, MPH, PhD, amee.manges@ubc.ca
22	
23	Running Title: Nanopore Metagenomic Sequencing of SARS-CoV-2
24	
25	Key words: Nanopore, Metagenomic, SARS-CoV-2, Coronavirus, Molecular epidemiology, Diagnostic,
26	Sequence-independent single-primer amplification, NGS

27 Abstract

28

29	The COVID-19 pandemic has underscored the need for rapid novel diagnostic strategies to detect and
30	characterize pathogens from clinical specimens. The MinION sequencing device allows for rapid, cost-
31	effective, high-throughput sequencing; useful features for translation to clinical laboratory settings.
32	Metagenomic Next-Generation Sequencing (mNGS) approaches provide the opportunity to examine the
33	entire genomic material of a sample; allowing for detection of emerging and clinically relevant pathogens
34	that may be missed in targeted assays. Here we present a pilot study on the performance of Sequence-
35	Independent Single Primer Amplification (SISPA) to amplify RNA randomly for the detection and
36	characterization of SARS-CoV-2. We designed a classifier that corrects for barcode crosstalk between
37	specimens. Our assay yielded 100% specificity overall and 95.2% sensitivity for specimens with a RT-
38	qPCR cycle threshold value less than 30. We assembled 10 complete (>95% coverage at 20x depth), and
39	one near-complete (>80% coverage at 20x depth) genomes from 20 specimens that were classified as
40	positive by mNGS. We characterized these genomes through phylogenetic analysis and found that 10/11
41	specimens from British Columbia had a closest relative to another British Columbian specimen. Of five
42	samples that we had both assembled genomes, as well as Variant of Concern (VOC) PCR results, we
43	found 100% concordance between these results. Additionally, our assay was able to distinguish between
44	the Alpha and Gamma variants, which was not possible with our VOC PCR technique. This study
45	supports future work examining the broader feasibility of SISPA as a diagnostic strategy for the detection
46	and characterization of viral pathogens.
47	

48 Introduction

49

The global COVID-19 pandemic and ensuing public health emergency has underscored the need for
rapid, comprehensive, and cost-effective viral testing strategies to respond effectively to outbreaks and
implement public health policy. COVID-19 disease is caused by severe acute respiratory syndrome

53	coronavirus 2 (SARS-CoV-2); a positive-sense RNA virus from the family Coronaviridae (1,2). The
54	current standard for the diagnosis of many viral infections, including SARS-CoV-2, is based on real-time
55	qualitative reverse transcription polymerase chain reaction (RT-PCR) assays (3). Due to its low cost,
56	reliability, and ability to diagnose infection known pathogens, RT-PCR has been at the forefront of viral
57	diagnostics before and during the COVID-19 pandemic (4). However, this method still requires many
58	hours of hands-on time by skilled laboratory technicians and is limited in that it only detects a
59	predetermined number of pathogens that its primers are designed to identify; unknown or unexpected
60	infectious agents will be missed (5). This is a strong rationale for exploring alternative diagnostic
61	strategies that can detect known and novel pathogens.
62	
63	Metagenomic next generation sequencing (mNGS) allows all genetic material recovered directly from a
64	sample to be sequenced and analyzed in a culture-free manner. Sequence-independent single primer
65	amplification (SISPA) (6) is one such mNGS approach. SISPA enables non-selective reverse transcription
66	of all extracted RNA in a sample into cDNA and amplifies the reverse transcribed cDNA using random
67	nonamers tagged to a known primer sequence. This method has been successfully used to detect and
68	assemble genomes of avian RNA viruses (7), canine distemper virus (8), human enterovirus (9),
69	chikungunya virus, Ebola virus, hepatitis C virus (10), influenza virus (11), as well as SARS-CoV-2 for a
70	small number of samples (12,13). Therefore, there is a strong justification for using this approach to
71	enable detection of pathogenic agents in diagnostic laboratories.
72	
73	SISPA and mNGS have several clear advantages over targeted molecular approaches. mNGS enables
74	detection of multiple pathogens and co-infection in a clinical sample, as well as potentially providing
75	information on antimicrobial resistance, virulence, and microbiota-associated dysbiosis at a particular

76 body site (14,15). Despite the potential advantages of this approach for clinical applications, mNGS

techniques have not yet been widely adopted due to their high-cost, time-intensive sample preparation,

78 limited access to sequencing infrastructure and lack of robust, easy-to-use and interpret bioinformatics

79	systems (14). Furthermore, the FDA has provided no specific requirements for validation of mNGS-based
80	diagnostic assays; which has made validation and translation of mNGS tools for detection of
81	microorganisms challenging for routine clinical microbiology laboratories (15).
82	
83	The Oxford Nanopore Technologies' (ONT) MinION sequencing platform provides a method for high-
84	throughput, and cost-effective long-read sequencing in a device that fits in the palm of a hand.
85	Sequencing on the MinION device is also less time-intensive than the Illumina sequencing platform
86	(14,16). The portability and cost-effectiveness of MinION sequencing makes Nanopore mNGS uniquely
87	tailored for clinical applications. Despite these advances in long-read clinical sequencing applications, the
88	field of nanopore clinical metagenomics has been largely unexplored. To date, there are only a few
89	studies that examine the use of nanopore-based metagenomics for clinical applications (10,11,17,18).
90	
91	Bioinformatic analysis is also a considerable barrier to adoption of mNGS for clinical diagnostics. The
92	majority of available tools require command line knowledge, significant computing infrastructure, and
93	experience translating bioinformatic results into actionable results (15,19). As well, traditional short read
94	analysis services, such as One Codex and IDseq, were not designed or evaluated with third-generation
95	data (20,21). Several tools have been developed recently to facilitate analysis specifically of nanopore
96	mNGS data, including BugSeq and EPI2ME (22, https://epi2me.nanoporetech.com). BugSeq is a
97	bioinformatics solution designed for clinical microbiology labs, enabling the end-to-end analysis of
98	nanopore sequencing data with a graphical user interface and cloud-based data processing. Its analytical
99	method has been shown to have superior sensitivity and specificity compared to EPI2ME (22), and will
100	be the primary analysis pipeline used in this study.
101	
102	In this pilot study, we examine the feasibility and performance of a SISPA-based Nanopore mNGS assay
103	to detect and characterize SARS-CoV-2 from two distinct study populations using the MinION

104 sequencing device.

105

106 Materials & Methods

107 *Study population and specimen collection:*

108 Clinical specimens were collected from two different populations. First, oropharyngeal swabs were 109 collected in 2 mL of a guanidinium-based inactivation agent (Prestige Diagnostics) as part of a study 110 conducted to estimate SARS-CoV-2 infection prevalence in a UK community from April to June 2020. 111 Swab samples from 2714 individuals from around the greater Oxford area were collected to compare 112 PCR, serology, and Nanopore sequencing for SARS-CoV-2 infected versus uninfected subjects. A set of 113 eight SARS-CoV-2 PCR positives or indeterminate samples from this population were included in the 114 current study. Second, nasopharyngeal swab specimens collected in 3 mL viral transport medium (Yocon 115 Bio-technology Co. Ltd) were obtained from routine SARS-CoV-2 community testing at Vancouver 116 General Hospital (VGH) or the BC Centre for Disease Control (BCCDC) (Vancouver, British Columbia, 117 Canada) (n = 35). RT-PCR testing for COVID-19 was performed for all samples at either the BCCDC 118 Public Health Laboratory or the medical microbiology laboratory at VGH using either the Roche MagNA 119 Pure extraction system (Roche Diagnostics, Laval, Canada) in combination with detection of E-gene and 120 RdRp gene targets, or the Panther Fusion SARS-CoV-2 assay (Hologic Inc., San Diego, CA) detecting 121 two targets in ORF1ab. Primers for the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) were 122 developed in-house by the BCCDC Public health laboratory and primers for the E gene were based on the 123 World Health Organization RT-qPCR protocol (3). The human RNaseP gene was used as an internal 124 control as suggested by the World Health Organization 125 (https://www.who.int/csr/resources/publications/swineflu/CDCRealtimeRTPCR SwineH1Assay-

126 2009 20090430.pdf?ua=1). A table containing primers and probes used for these assays can be found in

127 Supplementary Table 1. Additionally, PCR screening for potential variants of concern (VOCs) (Ex.

128 Alpha, Beta, Gamma, Delta variants) was performed on 11 of the positive swabs obtained from VGH that

- 129 were collected during May 2021. Primers and probes were designed to target the N501Y and E484K
- 130 mutations (Supplementary Table 2). Swabs were stored at either -80°C for the oropharyngeal swabs or -

131 20°C for the nasopharyngeal swabs. Specimens were chosen to obtain test performance metrics for

133

134 RNA Extractions:

- 135 Prior to extraction, samples were vortexed and 200 uL of each sample was centrifuged at 16,000g for 3
- 136 minutes to pellet host cells. 140 uL of supernatant was aspirated and viral RNA was extracted from the
- 137 supernatant using the QIAmp Viral RNA kit (Qiagen) as previously described (11), and eluted in 30 uL
- 138 nuclease-free water. Samples were treated with TURBO DNase (Thermo Fisher Scientific) and incubated
- 139 at 37°C for 30 minutes, followed by concentration and clean-up with the RNA Clean & Concentrator-5 kit
- 140 (Zymo Research); finally, eluting in 8 uL nuclease-free water.
- 141
- 142 SISPA Amplification:
- 143 SISPA amplification was performed as described previously (9-13). Briefly, concentrated RNA was
- 144 incubated with primer A (100pmol/uL; 5' GTTTCCCACTGGAGGATA(N₉) 3') and then reverse
- 145 transcribed using SuperScript IV Reverse Transcriptase (Thermo Fisher Scientific). Second strand
- 146 synthesis was performed using Sequenase Version 2.0 (Thermo Fisher Scientific), following which,
- 147 RNase H was performed to digest any remaining RNA. Random amplification was performed on each
- 148 using AccuTaq LA DNA polymerase (Thermo Fisher Scientific) and SISPA primer B (5' -
- 149 GTTTCCCACTGGAGGATA 3'). This reaction underwent PCR using the following conditions: initial
- denaturation for 30 seconds at 98°C, followed by 30 cycles of 94°C for 15 seconds, 50°C for 20 seconds,
- 151 and 68°C for 2 minutes. A final elongation step of 68°C for 10 minutes was added, prior to a final hold at
- 152 4°C. Amplified cDNA was purified using a 1:1 ratio of PCR Clean DX beads (Aline Biosciences) and
- 153 eluted in 50 uL nuclease-free water. Amplified cDNA was quantified using a Qubit 4 Fluorometer
- 154 (Thermo Fisher Scientific) and fragment lengths were assessed using the TapeStation 2200 automated
- 155 electrophoresis platform (Agilent).

157 *Library Preparation and MinION Sequencing:*

158 Library preparation was performed using ONT's ligation sequencing kit (SQK-LSK109 or SQK-159 LSK110). Multiplexing was performed using the native barcoding expansion 96 kit (EXP-NBD196). 160 Library preparation was performed according to the manufacturer's instructions, with several key 161 modifications. DNA repair and end-prep was performed with 1000 fmol of input cDNA and the 162 incubation times were increased to 30 minutes at 20°C, followed by 30 minutes at 65°C. For the 163 barcoding reaction 200 fmol of input cDNA was incubated with the native barcodes and Blunt/TA Ligase 164 Master Mix (New England Biolabs) for 20 minutes at room temperature (15-25°C), followed by 10 165 minutes at 65°C to improve barcode ligation efficiency with smaller fragments. Up to four clinical 166 samples (90 fmol/sample) were multiplexed on each minION flowcell, with the addition of a blank viral 167 transport medium negative control sample to each pooled library. Samples were sequenced on FLO-168 MIN106 flowcells on MinION MK1b sequencing devices for 72 hours using MinKNOW (Version 4.2.8, 169 Oxford Nanopore Technologies) with live basecalling disabled.

170

171 Sequence Data Analysis:

172 Raw fast5 files were basecalled using Guppy (Version 5.0.7, Oxford Nanopore Technologies) using the --173 device cuda:0 flag to enable GPU basecalling. Output fastq files were uploaded to BugSeq (version 1.1, 174 database version: RefSeq on Jan 28, 2021) for metagenomic classification (22), and results classification 175 results were visualized in Recentrifuge (23). A representative html file containing an example 176 visualization output can be found in the supplemental material (Supplementary Data). In brief, reads were 177 demultiplexed with qcat using default run parameters (enforcing barcodes on both ends, which we have 178 defined as stringent demultiplexing), followed by quality control with prinseq-lite. Reads shorter than 179 100bp or those deemed low quality (DUST score less than 7) were discarded. Reads were then classified 180 against all of the microbial genomes in RefSeq, as well as the human genome and a library of common 181 contaminants (see 22 for details). Reads classified as SARS-CoV-2 were extracted and used to build a 182 consensus sequence with Medaka. Bases with less than 20X coverage were masked in accordance with

183	public SARS-CoV-2 sequencing guidelines ((https://www.aphl.org/programs/preparedness/Crisi	s-
-----	---	---	----

- 184 <u>Management/Documents/APHL-SARS-CoV-2-Sequencing.pdf</u>). SARS-CoV-2 lineages were assessed
- using Pangolin (Version 3.1.5, github.com/cov-lineages/pangolin), and phylogenetic analysis was
- 186 performed with UShER (24) (Database: GISAID, GenBank, COG-UK and CNCB [2021-07-11]).
- 187 Phylogenetic trees were constructed using augur (25), rooted at the SARS-CoV-2 reference sequence, and
- 188 visualized in iTOL (26). Antimicrobial resistance genes were detected by aligning reads against the
- 189 Resfinder database (27) with minimap2, disabling secondary alignments. Analysis from BugSeq outputs
- and visualizations were performed in RStudio (R version 4.1.0) and Python, with all code available at
- 191 <u>https://gitlab.com/bugseq/sars-cov-2-nanopore-mngs-performance</u> (28).
- 192
- 193 *Ethics Approval:*
- 194 This study obtained research ethics board approval from the University of British Columbia (H20-02152).
- 195 Approval for collection of participant data was obtained by the Central University Research Ethics
- 196 Committee at the University of Oxford (R69035). Specimens collected as part of routine testing at VGH
- 197 and the BCCDC were de-identified and only contained a sample ID number, collection date, C_t , and VOC
- 198 screening result.
- 199
- 200 Data Availability:

201 Raw FASTQ data has been uploaded to NCBI Bioproject Accession PRJNA752146. Raw reads were

- 202 mapped against the human reference genome and transcriptome (Ensembl hg38) using minimap2 (2.20)
- 203 (29) and any human reads were removed.

- 205 Results:
- 206 Sequence data & Sample Descriptions:
- 207 Amplified cDNA from a total of 43 patient swabs were sequenced on MinION sequencing devices. Of
- these samples, 38 were either positive or had indeterminate results based on SARS-CoV-2 RT-PCR and 5

209	samples had negative RT-PCR results. The 38 positive and indeterminate samples had a mean C_t value of
210	27.6 and ranged from 14.7-38.7 (Supplementary Figure 1). Sample collection dates, sample type, total
211	read counts, as well as dual barcode reads, percent human reads, and SARS-CoV-2 reads per million
212	reads sequenced (RPM) are present in Table 1. On average, negative controls exhibited a 29.7-fold
213	decrease in dual barcode reads compared to the average number of dual barcode specimen reads (Mean
214	dual barcode reads = 20,013, Q1: 158.5, Q3: 17556). SARS-CoV-2 was detected in similar abundance
215	across our six positive control samples (Mean RPM Dual Barcode: $103,521 \pm 21,070$)
216	
217	Sensitivity, Specificity, & Limit of Detection:
218	We evaluated the test performance of our mNGS assay for detecting SARS-CoV-2. A sample was
219	considered positive if one or more reads were assigned to SARS-CoV-2. Across all clinical samples, we
220	detect SARS-CoV-2 with 78.4% (95%CI 62.8%-88.6%) sensitivity and 100% specificity (95%CI 56.6%-
221	100%) (Table 2). Previous literature has demonstrated decreased sensitivity of mNGS assays above C_t 30
222	for other viruses (11,30). To assess the dependence of the mNGS assay on C_t value, we performed a
223	subgroup analysis on samples above and below SARS-CoV-2 Ct 30. For samples with SARS-CoV-2 Ct <
224	30, sensitivity was 100% (95% CI 84.5%-100%), while for samples with SARS-CoV-2 C_t greater than 30,
225	sensitivity was 50% (95%CI 27.8%-72.0%).
226	
227	We note that two of 11 negative control samples had a single read assigned to SARS-CoV-2. We
228	investigated these reads (further denoted as read one and two) to identify reasons for false positivity. Both
229	reads had the expected barcode on both ends of the read as identified by BLAST. The first read exhibited
230	100% identity over the 24 nucleotide barcode on both ends, and the second read had 100% and 83%
231	identity over the 24 nucleotide barcode on both ends. We next search these reads against the NCBI
232	nucleotide database using megaBLAST to assess whether a BugSeq classification error occurred.
233	However, both reads had top hits that exclusively matched SARS-CoV-2 with greater than 95% identity

over more than 90% of their total length (923 and 1752 bases, respectively). SARS-CoV-2 was detected,

235	despite strict dual barcode demultiplexing and removal reads with improper barcode insertions. Previous
236	studies have identified barcode crosstalk, ranging from 0.2% to 0.3% of total classified reads, on
237	Nanopore MinION flowcell results (31,32). When we examined the total SARS-CoV-2 read counts for a
238	given flowcell on flowcells with false positive negative controls, we saw that one of those flowcells has
239	the highest total SARS-CoV-2 read count of all flowcells in this study, therefore, we would expect higher
240	levels of barcode crosstalk for that flowcell (Supplementary Figure 2).

241

242 We adjusted for barcode crosstalk by controlling for the total number of dual-barcoded SARS-CoV-2 243 reads on each flowcell. If we assume 0.2% of reads have incorrect barcodes ligated on both ends, and that 244 these misclassified reads are evenly distributed across all barcodes on the flowcell, we can subtract the 245 estimated number of misclassified reads from each sample. This correction yielded an acceptable 246 threshold for classifying specimens as positive or negative. After adjusting for barcode crosstalk in this 247 manner, we find that seven samples and two negative controls with SARS-CoV-2 reads detected would be 248 re-classified as negative, and all negative controls are therefore classified correctly. The overall sensitivity 249 and specificity on clinical samples after adjusting for barcode crosstalk are estimated to be 59.5% (95%CI 250 43.5%-73.7%) and 100% (56.6%-100%), respectively. Grouping by C_t value, the sensitivity estimates are 251 95.2% (95% CI 77.3%-99.2%) and 12.5% (95% CI 3.5%-36.0%%) for samples below and above Ct 30, 252 respectively (Table 3).

253

254 RT-qPCR/SISPA Correlation, Genome Coverage, & SARS-CoV-2 Phylogeny:

255 We assessed the relationship between SARS-CoV-2 RT-PCR Ct value and SARS-CoV-2 RPM for dual

barcode reads, using stringent demultiplexing analysis parameters. SARS-CoV-2 log-RPM showed a

strong linear association with RT-qPCR C_t value ($R^2 = 0.71$), with lower C_t values having a higher RPM

258 on average (Figure 1). This relationship did not differ by RT-qPCR gene target (E-gene, ORF1ab, or

259 RdRp) (Supplementary Figure 3). SARS-CoV-2 genome coverage depth showed a similar relationship,

260 with decreasing coverage depth across the entire genome being associated with increasing C_t value

(Figure 2, Table 4). We produced logistic regression models to assess the probability of attaining greater
than 95% genome coverage at 1X, 20X, or 50X depth of coverage. We found that for every one unit
increase in Ct value, the odds of recovering a 95% complete genome were 0.765 (95% CI: 0.519, 0.961),
0.263 (95% CI: 0.023, 0.666), or 0.263 (95% CI 0.023, 0.666) on average for coverage depths of 1X,
20X, or 50X, respectively (Figure 3). Interestingly, we did not see any difference in the likelihood of
obtaining 95% coverage for 20X or 50X, despite slight differences in coverage depth for both of these
thresholds (Table 4; Figure 3).

268

269 SARS-CoV-2 metagenomic reads were used to reconstruct viral genomes. We produced ten complete 270 (greater than 95% unambiguous bases) and one near-complete consensus genome sequence (greater than 271 80% unambiguous bases) from our 20 SISPA-positive clinical specimens, masking any bases with less 272 than 20X coverage. Two partial viral genomes were constructed with 20-25% unambiguous bases. 273 Pangolin lineage assignment was successful to all complete or near complete genomes; of these five 274 underwent SARS-CoV-2 VOC PCR testing. All five whole or partial viral genomes were classified as 275 SARS-CoV-2 lineages concordant with PCR results (Table 5). We also detected an additional VOC in a 276 sample that did not undergo VOC PCR testing. We also assessed our complete or near-complete 277 genomes in the context of global SARS-CoV-2 transmission by placing them in a phylogenetic tree 278 containing over two million publicly available SARS-CoV-2 genomes. The ten complete genomes could 279 be placed in the global phylogeny with high confidence (only one maximally parsimonious placement), 280 and the near-complete genome could be placed with lower confidence (nine maximally parsimonious 281 placements). For ten of 11 genomes derived from metagenomic data, the nearest neighbor in this tree was 282 a genome derived from the same province of sample collection, British Columbia. Additionally, for 9/11 283 study genomes, 80% or more of the nearest 50 genomes were derived from British Columbia; for the 284 remaining two study genomes, 90% or more of the nearest 50 genomes were derived from Canada (Figure 285 4; Supplementary Figure 4). The UK samples did not yield well covered genomes. Subtrees with nearest 286 neighbors for all study samples are available in the supplementary material (Supplementary Figure 4).

287

288 Universal Microbial Detection & Antimicrobial Resistance:

289 We searched the BugSeq metagenomic output of our clinical specimens for alternative respiratory viruses 290 or viral or bacterial co-infections. We did not identify any other pathogenic viruses or atypical bacteria 291 such as *Chlamydia pneumoniae* or *Mycoplasma pneumoniae*. We did identify several members of the 292 normal nasopharyngeal microbiota, which when found in the lower respiratory tract, may cause disease; 293 these included two samples with Moraxella catarrhalis, seven samples with Haemophilus influenzae or 294 Haemophilus parainfluenzae, three samples with Neisseria meningitidis, three samples with 295 Staphylococcus aureus, two samples with Streptococcus pneumoniae and two samples with Klebsiella 296 pneumoniae (Supplementary Table 3). These results are consistent with other metagenomic sequencing 297 results from the nasopharynx (30). We searched our data for genes conferring antimicrobial resistance, 298 and identified 10 genes across 6 samples. We found two beta-lactamases in our dataset: blaTEM-234, a 299 class A beta-lactamase which has undetermined spectrum and derived from *Escherichia coli* in sample 300 P22, as well as *blaOXA-85*, which confers resistance to amoxicillin and amoxicillin-clavulanate, that 301 derived from Fusobacterium psuedoperiodonticum (P9).

302

303 Discussion:

304 Here, we present a robust analysis detailing the performance of SISPA coupled with Nanopore mNGS to 305 detect and characterize SARS-CoV-2 from clinical samples. Clinical specimens exhibiting a $C_t < 30$ 306 performed well. However, test performance declined in specimens exhibiting a $C_t \ge 30$ from 96.3% 307 sensitivity for samples below C_t 30 to 12.5% for samples above this cycle threshold. We found an 308 exponentially declining relationship between RPM and C_t value, such that the instantaneous change in 309 read performance was fixed as illustrated in the linear relationship between Log(RPM) and C_t value 310 (Figure 1). This finding is consistent with other reports on the use of SISPA and Nanopore mNGS for 311 respiratory infections (11,33). However, our results are not consistent with SISPA and mNGS results 312 from blood and serum viral diagnostics, where C_t value did not drastically impact genome coverage (34).

These inconsistent results may have been influenced by sample type, sample preparation and the relativeabundance of host nucleic acid in different sample types.

316 Despite limitations in SISPA and Nanopore metagenomic sequencing sensitivity, this approach remains a 317 valuable technique for the detection of pathogens that are novel, unexpected or uncharacterized, and 318 therefore unsuitable for targeted approaches such as RT-qPCR or emerging CRISPR-Cas-based 319 diagnostics, which focus only on known pathogens (35). Unlike these existing diagnostic methods, 320 Nanopore mNGS can theoretically detect any pathogen and co-infections, characterize changes in the site-321 specific microbiota, and capture the carriage of critical virulence or antibiotic-resistant organisms or 322 genes, all of which can impact patient outcomes. Our approach identified several organisms in the 323 nasopharyngeal microbiota that may cause disease in the lower respiratory tract, consistent with 324 sequencing results from a recent study (30). We also did not detect any viral or atypical bacterial co-325 infections (Supplementary Table 3), concordant with previous reports of a low prevalence of respiratory 326 co-infection in COVID-19 positive samples (36-38). In support of this finding, our study regions saw a 327 dramatic reduction in incidence of other respiratory viruses (eg., influenza and RSV) and bacterial 328 pathogens over our collection period, thought to be secondary to public health interventions. 329 330 We additionally assessed the ability of SISPA-based mNGS to classify and assemble complete or partial 331 SARS-CoV-2 genomes from RT-qPCR positive specimens. This method can perform dual diagnostic and 332 molecular epidemiology functions. Reliably, we were able to assemble near-complete genomes 333 (minimum 20X coverage) up to C_t 25, underscoring the ability of this approach not only to detect 334 emerging pathogens, but also to characterize them without *a priori* knowledge of a pathogen's genome 335 sequence. This ability contrasts to amplicon-based sequencing methods, which require the viral sequence 336 to develop primers (39). We performed lineage typing on metagenomic-derived SARS-CoV-2 genomes 337 and found perfect concordance with VOC PCR on a small subset of our samples. Moreover, with the 338 complete and partial genomes we were able to distinguish the P.1 variant from the B.1.351 variant, which

the PCR assay was unable to do, as both variants contain the E484K and N501Y mutations in their spike
genes targeted by the PCR assay. Our reconstructed viral genomes were further validated through
phylogenetic analyses, where 10/11 samples that were of British Columbian origin were most closely
related to another British Columbia genome sequence. This highlights the potential of mNGS sequencing
to be an all-in-one assay which detects and characterizes pathogens of interest in near real-time, providing
critical information for clinical care, infection prevention and control and public health interventions .

345

346 This study examined the methodological feasibility and validity of Nanopore mNGS. We observed false 347 positive SARS-CoV-2 reads in our negative control samples despite meticulous laboratory preparation, 348 including performing nucleic acid extractions in a biological safety cabinet, using freshly aliquoted 349 reagents, decontamination of all surfaces with ethanol and RNaseZap (Thermo Fisher Scientific), and 350 performing pre-amplification steps in a dedicated PCR area. After investigating these reads, we attribute 351 them to barcode crosstalk, in accordance with previous studies (30,31). While BugSeq implements 352 methods to minimize barcode crosstalk from Nanopore sequencing, including requiring barcodes to be 353 present at both ends of each read and removal of reads with barcodes integrated elsewhere, we developed 354 a method to adjust the total read counts on a flowcell for barcode crosstalk. These enhancements 355 improved assay specificity; however, sensitivity is negatively impacted by this read count adjustment. 356 Interestingly, using the estimated 0.2% expected crosstalk between barcodes based on existing reports in 357 the literature, we find far fewer false positive reads in our negative controls than would be expected (1 358 read found in each versus 3 and 107 reads expected). We do note that native barcoding on the Nanopore 359 platform is not fully optimized, leading to a significant portion of reads with only a single barcode in our 360 sequencing datasets. This results in a decreased sensitivity, when requiring that barcodes be present on 361 both read ends. Future advances in sequencing chemistry may reduce the prevalence of barcode crosstalk 362 while preserving assay sensitivity.

364	In addition to employing automated demultiplexing and minimizing barcode crosstalk for Nanopore
365	mNGS, we validated the BugSeq as a potentially powerful clinical bioinformatics platform and workflow,
366	including quality control, data visualization, taxonomic classification, consensus sequence generation,
367	data aggregation, and results reporting. Although a lack of straight-forward and user-friendly
368	bioinformatics pipelines has long been a deterrent for clinical laboratories implementing NGS and mNGS
369	methods, our use of BugSeq as a rapid and robust bioinformatics tool has demonstrated the utility of user-
370	friendly platforms for clinical diagnostics and public health service. Indeed, other groups adopting
371	MinION sequencers in clinical microbiology laboratories have reached similar conclusions (40,41).
372	
373	Our pilot study has several limitations. Despite the MinION sequencing device providing high-throughput
374	sequencing data in real-time, this protocol is still significantly more time intensive than RT-PCR as a
375	diagnostic method, requiring a minimum of 12 hours from sample collection to prepared library, and
376	another 72 hours of sequencing to reach maximal pathogen detection sensitivity (although results could be
377	available in as little as 1-2 hours for high viral load samples). The use of liquid handling robots for
378	automated sample extraction, nucleic acid amplification, and library preparation may aid in
379	standardization. Additionally, examining the feasibility of a less time intensive library preparation
380	protocol such as the Rapid Barcoding Kit (Oxford Nanopore Technologies) for this approach will aid in
381	the optimization and translation of Nanopore mNGS for routine clinical use. The SISPA approach is also
382	limited in that it performs random amplification of both host and microbial nucleic acids. The high
383	percentage of host RNA in nasopharyngeal/oropharyngeal swabs limits our ability to rapidly detect
384	viruses with comparable sensitivity to PCR, requiring deeper sequencing than what is currently feasible
385	on a MinION. Therefore, this sequencing strategy may not be optimal for samples expected to have very
386	few viral or bacterial nucleic acids where sensitivity is paramount. We note that while assay sensitivity
387	has played an important role in public discourse surrounding SARS-CoV-2 testing, there is some data to
388	suggest that lower viral loads cannot be cultured and are less likely to be transmissible
389	(https://www.idsociety.org/globalassets/idsa/public-health/covid-19/idsa-amp-statement.pdf). This issue

390	is further complicated by the difficulty of employing host nucleic acid removal techniques on low-
391	biomass samples. Interestingly, the detection of host nucleic acids via mNGS may be useful, as samples
392	with lower host nucleic acid content have been shown to be associated with higher rates of false-negative
393	COVID-19 RT-PCR tests, presumably due to sample quality (42). Regardless, methods to enrich for
394	pathogen sequences or deplete host DNA to increase sensitivity have been examined (43-45), and may
395	prove useful for future clinical metagenomics studies.
396	
397	Our pilot study represents the first analysis of performance and feasibility of SISPA-based Nanopore
398	mNGS for the detection and characterization of SARS-CoV-2. We were able to successfully detect
399	SARS-CoV-2 with 100% specificity and near perfect sensitivity for samples below C_t 30 when adjusting
400	for barcode crossover. We were also able to assemble SARS-CoV-2 genomes and characterize viral
401	lineages reliably in 10/13 of samples below C_t 25. This assay has the ability not only to detect known
402	pathogens and co-infections, but can also detect emerging pathogens, assess microbiota states, and
403	capture resistance and virulence genes. This approach holds promise as a tool for clinical diagnostics and
404	public health surveillance.
405	
406	
407	
408	
409	
410	
411	
412	
413	
414	
415	

416 **References:**

417	1.	Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML,
418		Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ. 2020. A new
419		coronavirus associated with human respiratory disease in China. Nature 579:265–269.
420	2.	Tavares R de CA, Mahadeshwar G, Pyle AM. 2020. The global and local distribution of RNA
421		structure throughout the SARS-CoV-2 genome. J Virol https://doi.org/10.1101/2020.07.06.190660.
422	3.	Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, Bleicker T, Brünink S,
423		Schneider J, Luisa Schmidt M, GJC Mulders D, Haagmans BL, van der Veer B, van den Brink S,
424		Wijsman L, Goderski G, Romette J-L, Ellis J, Zambon M, Peiris M, Goossens H, Reusken C,
425		Koopmans MP, Drosten C, Victor CM, Olfert L, Marco K, Richard M, Adam M, Daniel CK, Tobias
426		B, Sebastian B, Julia S, Marie Luisa S, Daphne GJC M, Bart HL, der Veer Bas V, den Brink Sharon
427		V, Lisa W, Gabriel G, Jean-Louis R, Joanna E, Maria Z, Malik P, Herman G, Chantal R. 2020.
428		Detection of 2019 -nCoV by RT-PCR. Euro Surveill 25:1–8.
429	4.	Li X, Geng M, Peng Y, Meng L, Lu S. 2020. Molecular immune pathogenesis and diagnosis of
430		COVID-19. J Pharm Anal 10:102–108.
431	5.	Esbin MN, Whitney ON, Chong S, Maurer A, Darzacq X, Tjian R. 2020. Overcoming the bottleneck
432		to widespread testing: A rapid review of nucleic acid testing approaches for COVID-19 detection.
433		Cold Spring Harb Lab Press 26:771–783.
434	6.	Reyes GR, Kim JP. Sequence-independent, single-primer amplification (SISPA) of complex DNA
435		populations. Mol Cell probes 5:473–481.
436	7.	Chrzastek K, Lee D hun, Smith D, Sharma P, Suarez DL, Pantin-Jackwood M, Kapczynski DR.
437		2017. Use of Sequence-Independent, Single-Primer-Amplification (SISPA) for rapid detection,
438		identification, and characterization of avian RNA viruses. Virology 509:159–166.

439	8.	Peserico A, Marcacci M, Malatesta D, Di Domenico M, Pratelli A, Mangone I, D'Alterio N,
440		Pizzurro F, Cirone F, Zaccaria G, Cammà C, Lorusso A. 2019. Diagnosis and characterization of
441		canine distemper virus through sequencing by MinION nanopore technology. Sci Rep 9:1-9.
442	9.	Wollants E, Maes P, Merino M, Bloemen M, Van Ranst M, Vanmechelen B. 2020. First genomic
443		characterization of a Belgian Enterovirus C104 using sequence-independent Nanopore sequencing.
444		Infect Genet Evol 81:104267.
445	10.	Greninger AL, Naccache SN, Federman S, Yu G, Mbala P, Bres V, Stryke D, Bouquet J, Somasekar
446		S, Linnen JM, Dodd R, Mulembakani P, Schneider BS, Muyembe-Tamfum JJ, Stramer SL, Chiu
447		CY. 2015. Rapid metagenomic identification of viral pathogens in clinical samples by real-time
448		nanopore sequencing analysis. Genome Med 7:1–13.
449	11.	Lewandowski K, Xu Y, Pullan ST, Lumley SF, Foster D, Sanderson N, Vaughan A, Morgan M,
450		Bright N, Kavanagh J, Vipond R, Carroll M, Marriott AC, Gooch KE, Andersson M, Jeffery K, Peto
451		TEA, Crook DW, Sarah Walker A, Matthews PC. 2020. Metagenomic nanopore sequencing of
452		influenza virus direct from clinical respiratory samples. J Clin Microbiol 58:1–15.
453	12.	Moreno GK, Braun KM, Halfmann PJ, Prall TM, Riemersma KK, Haj AK, Lalli J, Florek KR,
454		Kawaoka Y, Friedrich TC, O'Connor DH. 2020. Limited SARS-CoV-2 diversity within hosts and
455		following passage in cell culture. bioRxiv 2020.04.20.051011.
456	13.	Moore SC, Penrice-randal R, Alruwaili M, Dong X, Pullan ST, Carter DP, Bewley K, Zhao Q, Sun
457		Y, Hartley C, Zhou E, Solomon T, Beadsworth MBJ, Bogaert D, Crook DW, Matthews DA,
458		Andrew D, Mahmood Z, Aljabr W, Druce J, Vipond RT. 2020. Amplicon based MinION
459		sequencing of SARS-CoV-2 and metagenomic characterisation of nasopharyngeal swabs from
460		patients with COVID-19. medRxiv 2020.03.05.20032011.
461	14.	Petersen LM, Martin IW, Moschetti WE, Kershaw CM, Tsongalis GJ. 2020. Third-Generation
462		Sequencing in the Clinical Laboratory : Exploring the Advantages and Challenges of Nanopore
463		Sequencing. J Clin Microbiol 58:1–10.

464	15.	Chiu CY, Miller SA. 2019. Clinical metagenomics. Nat Rev Genet 20:341–355.
465	16.	Forbes JD, Knox NC, Peterson C, Reimer AR. 2018. Highlighting Clinical Metagenomics for
466		Enhanced Diagnostic Decision-making : A Step Towards Wider Implementation. Comput Struct
467		Biotechnol J 16:108–120.
468	17.	Charalampous T, Kay GL, Richardson H, Aydin A, Baldan R, Jeanes C, Rae D, Grundy S, Turner
469		DJ, Wain J, Leggett RM, Livermore DM, O'Grady J. 2019. Nanopore metagenomics enables rapid
470		clinical diagnosis of bacterial lower respiratory infection. Nat Biotechnol 37:783–792.
471	18.	Schmidt K, Mwaigwisya S, Crossman LC, Doumith M, Munroe D, Pires C, M. Khan A, Woodford
472		N, Saunders NJ, Wain J, O'Grady J, Livermore DM. 2017. Identification of bacterial pathogens and
473		antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing. J
474		Antimicrob Chemother 72:104–114.
475	19.	Chiang AD, Dekker JP. 2020. From the pipeline to the bedside: Advances and challenges in clinical
476		metagenomics. J Infect Dis 221:S331–S340.
477	20.	Minot S, Krumm N, Greenfield N. 2015. One Codex: A Sensitive and Accurate Data Platform for
478		Genomic Microbial Identification. bioRxiv 027607.
479	21.	Kalantar KL, Carvalho T, De Bourcy CFA, Dimitrov B, Dingle G, Egger R, Han J, Holmes OB,
480		Juan YF, King R, Kislyuk A, Lin MF, Mariano M, Morse T, Reynoso L V., Cruz DR, Sheu J, Tang
481		J, Wang J, Zhang MA, Zhong E, Ahyong V, Lay S, Chea S, Bohl JA, Manning JE, Tato CM, DeRisi
482		JL. 2021. IDseq-An open source cloud-based pipeline and analysis service for metagenomic
483		pathogen detection and monitoring. Gigascience 9:1-14.
484	22.	Fan J, Huang S, Chorlton SD. 2021. BugSeq: a highly accurate cloud platform for long-read
485		metagenomic analyses. BMC Bioinformatics 22:1–12.
486	23.	Martí JM. 2019. Recentrifuge: Robust comparative analysis and contamination removal for
487		metagenomics. PLoS Comput Biol 15:1–24.

488	24.	Turakhia Y, Thornlow B, Hinrichs AS, De Maio N, Gozashti L, Lanfear R, Haussler D, Corbett-
489		Detig R. 2021. Ultrafast Sample placement on Existing tRees (UShER) enables real-time
490		phylogenetics for the SARS-CoV-2 pandemic. Nat Genet 53:809–816.
491	25.	Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, Sagulenko P, Bedford T, Neher
492		RA. 2018. NextStrain: Real-time tracking of pathogen evolution. Bioinformatics 34:4121–4123.
493	26.	Letunic I, Bork P. 2016. Interactive tree of life (iTOL) v3: an online tool for the display and
494		annotation of phylogenetic and other trees. Nucleic Acids Res 44:W242-W245.
495	27.	Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon A, Allesoe RL,
496		Rebelo AR, Florensa AF, Fagelhauer L, Chakraborty T, Neumann B, Werner G, Bender JK, Stingl
497		K, Nguyen M, Coppens J, Xavier BB, Malhotra-Kumar S, Westh H, Pinholt M, Anjum MF, Duggett
498		NA, Kempf I, Nykäsenoja S, Olkkola S, Wieczorek K, Amaro A, Clemente L, Mossong J, Losch S,
499		Ragimbeau C, Lund O, Aarestrup FM. 2020. ResFinder 4.0 for predictions of phenotypes from
500		genotypes. J Antimicrob Chemother 75:3491–3500.
501	28.	RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL
502		http://www.rstudio.com/.
503	29.	Li H. 2018. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34:3094–3100.
504	30.	Xu Y, Lewandowski K, Downs L, Kavanagh J, Hender T, Lumley S, Jeffery K, Foster D, Sanderson
505		N, Vaughan A, Morgan M, Vipond R, Carroll M, Peto T, Crook D, Walker AS, Matthews P, Pullan
506		S. 2021. Nanopore metagenomic sequencing of influenza virus directly from respiratory samples:
507		diagnosis, drug resistance and nosocomial transmission. Eurosurveillance 26:1–12.
508	31.	Xu Y, Lewandowski K, Lumley S, Pullan S, Vipond R, Carroll M, Foster D, Matthews PC, Peto T,
509		Crook D. 2018. Detection of viral pathogens with multiplex nanopore MinION sequencing: Be
510		careful with cross-Talk. Front Microbiol 9:1–7.

511	32.	Wick RR, Judd LM, Holt KE. 2018. Deepbinner: Demultiplexing barcoded Oxford Nanopore reads
512		with deep convolutional neural networks. PLoS Comput. Biol.doi.org/10.1371/journal.pcbi.1006583
513	33.	Klaudia Chrzastek, Chandana Tennakoon, Dagmara Bialy, Graham Freimanis JF and HS. 2021. A
514		random priming amplification method for whole genome sequencing of SARS-CoV-2 and H1N1
515		influenza A virus. bioRxiv 2021.06.25.449750.
516	34.	Kafetzopoulou LE, Efthymiadis K, Lewandowski K, Crook A, Carter D, Osborne J, Aarons E,
517		Hewson R, Hiscox JA, Carroll MW, Vipond R, Pullan ST. 2018. Assessment of metagenomic
518		Nanopore and Illumina sequencing for recovering whole genome sequences of chikungunya and
519		dengue viruses directly from clinical samples. Eurosurveillance 23:1–13.
520	35.	Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO, Zhang F. 2019. SHERLOCK: nucleic acid
521		detection with CRISPR nucleases. Nat Protoc 14:2986–3012.
522	36.	Langford BJ, So M, Raybardhan S, Leung V, Westwood D, MacFadden DR, Soucy JPR, Daneman
523		N. 2020. Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid
524		review and meta-analysis. Clin Microbiol Infect 26:1622–1629.
525	37.	Lansbury L, Lim B, Baskaran V, Lim WS. 2020. Co-infections in people with COVID-19: a
526		systematic review and meta-analysis. J Infect 81:266–275.
527	38.	Karaba SM, Jones G, Helsel T, Smith LL, Avery R, Dzintars K, Salinas AB, Keller SC, Townsend
528		JL, Klein E, Amoah J, Garibaldi BT, Cosgrove SE, Fabre V. 2021. Prevalence of co-infection at the
529		time of hospital admission in COVID-19 Patients, A multicenter study. Open Forum Infect Dis 8:1-
530		7.
531	39.	Quick J, Grubaugh ND, Pullan ST, Claro IM, Smith AD, Gangavarapu K, Oliveira G, Robles-
532		Sikisaka R, Rogers TF, Beutler NA, Burton DR, Lewis-Ximenez LL, Jesus JG de, Giovanetti M,
533		Hill S, Black A, Bedford T, Carroll MW, Nunes M, Jr LCA, Sabino EC, Baylis SA, Faria N, Loose
534		M, Simpson JT, Pybus OG, Andersen KG, Loman NJ. 2017. Zika and other virus genomes directly
535		from clinical samples. Nat Protoc 12:1261–1276.

536	40.	Chorlton SD, Ritchie G, Lawson T, McLachlan E, Romney MG, Matic N, Lowe CF. 2021. Next-
537		generation sequencing for cytomegalovirus antiviral resistance genotyping in a clinical virology
538		laboratory. Antiviral Res 192:105123.
539	41.	Matic N, Lowe CF, Ritchie G, Stefanovic A, Lawson T, Jang W, Young M, Dong W, Brumme ZL,
540		Brumme CJ, Leung V, Romney MG. 2021. Rapid detection of SARS-CoV-2 variants of concern,
541		including B.1.1.28/P.1, British Columbia, Canada. Emerg Infect Dis 27:1673–1676.
542	42.	Kinloch NN, Ritchie G, Brumme CJ, Dong W, Dong W, Lawson T, Brad Jones R, Montaner JSG,
543		Leung V, Romney MG, Stefanovic A, Matic N, Lowe CF, Brumme ZL. 2020. Suboptimal
544		biological sampling as a probable cause of false-negative COVID-19 diagnostic test results. J Infect
545		Dis 222:899–902.
546	43.	Deng X, Achari A, Federman S, Yu G, Somasekar S, Bártolo I, Yagi S, Mbala-Kingebeni P,
547		Kapetshi J, Ahuka-Mundeke S, Muyembe-Tamfum JJ, Ahmed AA, Ganesh V, Tamhankar M,
548		Patterson JL, Ndembi N, Mbanya D, Kaptue L, McArthur C, Muñoz-Medina JE, Gonzalez-Bonilla
549		CR, López S, Arias CF, Arevalo S, Miller S, Stone M, Busch M, Hsieh K, Messenger S, Wadford
550		DA, Rodgers M, Cloherty G, Faria NR, Thézé J, Pybus OG, Neto Z, Morais J, Taveira N, R. Hackett
551		J, Chiu CY. 2020. Metagenomic sequencing with spiked primer enrichment for viral diagnostics and
552		genomic surveillance. Nat Microbiol 5:443–454.
553	44.	Yap M, Feehily C, Walsh CJ, Fenelon M, Murphy EF, McAuliffe FM, van Sinderen D, O'Toole
554		PW, O'Sullivan O, Cotter PD. 2020. Evaluation of methods for the reduction of contaminating host
555		reads when performing shotgun metagenomic sequencing of the milk microbiome. Sci Rep 10:1–11.
556	45.	Ji XC, Zhou LF, Li CY, Shi YJ, Wu ML, Zhang Y, Fei XF, Zhao G. 2020. Reduction of Human
557		DNA Contamination in Clinical Cerebrospinal Fluid Specimens Improves the Sensitivity of
558		Metagenomic Next-Generation Sequencing. J Mol Neurosci 70:659–666.
559		

561	Table 1:	Study	sample	descriptions	and s	sequencing	results
-----	----------	-------	--------	--------------	-------	------------	---------

Study ID	Collection Location	Swab Type	Collection Date	Ct Value	Gene	Kit	Reads	Dual Barcode	% Human	RPM (Dual Barcode)
P1	VGH	NPS	Fall 2020	37.1	ORF1ab	SQK-	2,592,365	580,829	90	3,030.15
P2	VGH	NPS	Fall 2020	24.1	ORF1ab	SQK-	2,196,488	425,936	50	62,401.39
P3	VGH	NPS	Fall 2020	14.7	ORF1ab	SQK-	1,480,039	268,331	8	889,826.37
P4	Oxford	OPS	Spring 2020	25.4	E-gene	SQK- LSK109	1,681,970	194,567	62	3,135.17
P5	Oxford	OPS	Spring 2020	29.9	E-gene	SQK-	1,487,346	369,374	81	2.71
P6	Oxford	OPS	Spring 2020	34.1	E-gene	SQK- LSK109	1,484,871	224,739	39	0
P7	Oxford	OPS	Spring 2020	35.4	E-gene	SQK-	1,871,165	315,162	88	0
P8	Oxford	OPS	Spring 2020	38.7	E-gene	SQK-	4,892,596	1,648,997	79	0
P9	Oxford	OPS	Spring 2020	31.7	E-gene	SQK- LSK109	3,095,244	853,190	54	0
P10	Oxford	OPS	Spring 2020	Indeterminate	E-gene	SQK- LSK109	3,195,376	1,209,061	65	0
P11	Oxford	OPS	Spring 2020	Indeterminate	E-gene	SQK- LSK109	2,642,491	758,333	28	0
P12	BCCDC	NPS	Fall 2020	36.13	E-gene	SQK- LSK110	1,894,335	425,729	91	2.35
P13	BCCDC	NPS	Fall 2020	35.21	E-gene	SQK- LSK110	2,612,555	636,570	0.2	0
P14	BCCDC	NPS	Fall 2020	33.33	E-gene	SQK- LSK110	3,335,378	794,876	16	1.26
P15	BCCDC	NPS	Fall 2020	33.73	E-gene	SQK- LSK110	3,689,514	897,886	98	0
P16	BCCDC	NPS	Fall 2020	33.63	E-gene	SQK- LSK110	2,301,355	593,209	80	5.06
P17	BCCDC	NPS	Fall 2020	Indeterminate	NA	SQK- LSK110	1,412,609	384,971	10	38.96
P18	BCCDC	NPS	Fall 2020	Indeterminate	NA	SQK- LSK110	1,269,020	256,134	92	0
P19	BCCDC	NPS	Fall 2020	36.33	E-gene	SQK- LSK110	2,588,988	744,812	82	0
P20	VGH	NPS	Spring 2021	35.6	ORF1ab	SQK- LSK110	1,535,450	431,421	48	2.32
P21	VGH	NPS	Spring 2021	34.3	ORF1ab	SQK- LSK110	1,553,510	411,279	37	2.43
P22	VGH	NPS	Spring 2021	33.7	ORF1ab	SQK- LSK110	1,206,439	328,369	47	3.05
P23	VGH	NPS	Spring 2021	21.4	ORF1ab	SQK- LSK110	1,584,504	499,025	7	17,462.05
P24	VGH	NPS	May 2021	15.5	ORF1ab	SQK- LSK110	2,875,078	728,905	84	58,192.77
P25	VGH	NPS	May 2021	16.1	ORF1ab	SQK- LSK110	2,184,440	484,358	87	68,748.74
P26	VGH	NPS	May 2021	16.1	ORF1ab	SQK- LSK110	968,712	301,091	49	493,422.25
P27	VGH	NPS	May 2021	17	ORF1ab	SQK- LSK110	2,550,631	737,603	81	60,411.90
P28	VGH	NPS	May 2021	17.7	ORF1ab	SQK- LSK110	2,151,872	503,298	87	22,088.31
P29	VGH	NPS	May 2021	20	ORF1ab	SQK- LSK110	993,047	212,823	77	47,057.88
P30	VGH	NPS	Dec 2020	22	E-gene	SQK- LSK110	707,288	253,025	81	171,129.34
P31	VGH	NPS	May 2021	22.8	ORF1ab	SQK- LSK110	2,009,926	456,803	98	1,136.16
P32	VGH	NPS	May 2021	23.5	ORF1ab	SQK- LSK110	3,173,498	687,623	99	373.75
P33	VGH	NPS	May 2021	24.4	ORF1ab	SQK- LSK110	1,597,376	239,837	85	1,054.88
P34	VGH	NPS	May 2021	25.5	ORF1ab	SQK- LSK110	1,103,117	283,010	99	38.87
P35	VGH	NPS	May 2021	27.3	ORF1ab	SQK- LSK110	3,325,162	1,042,089	95	2.88
P36	VGH	NPS	May 2021	27.7	ORF1ab	SQK- LSK110	1,374,869	322,646	87	27.89
P37	VGH	NPS	July 2020	28	E-gene	SQK- LSK110	1,365,733	278,532	86	240.55
P38	VGH	NPS	May 2021	30.6	ORF1ab	SQK- LSK110	4,458,073	1,335,187	98	49.43
N1	VGH	NPS	May 2021	NA	NA	SQK- LSK110	1,803,891	521,584	96	0
N2	VGH	NPS	May 2021	NA	NA	SQK- LSK110	1,932,656	645,041	96	0
N3	VGH	NPS	May 2021	NA	NA	SQK- LSK110	3,421,518	1,053,199	98	0
N4	VGH	NPS	May 2021	NA	NA	SQK- LSK110	4,947,322	1,539,940	75	0
N5	VGH	NPS	May 2021	NA	NA	SQK- LSK110	1,386,059	722,140	90	0

562	Table 2: (Overall	sample of	classification,	before	adjustment	for	barcode cr	osstalk
-----	------------	---------	-----------	-----------------	--------	------------	-----	------------	---------

		Positive by mNGS	Negative by mNGS	Sum
True positive	Ct≤30	21	0	21
	Ct>30	8	8	16
True negative		0	5	5
Sum		29	13	

Table 3: Overall sample classification, after adjustment for barcode crosstalk

		Positive by mNGS	Negative by mNGS	Sum
True positive	Ct≤30	20	1	21
	Ct>30	2	14	16
True negative		0	5	5
Sum		22	20	

- 0.2

575 Table 4: Percent SARS-CoV-2 genome coverage for samples classified as mNGS SARS-CoV-2 positive

576 following 0.2% crosstalk correction

		RPM (Dual	50X	20X	1X
Study ID	Ct Value	Barcode)	Coverage	Coverage	Coverage
P1	37.1	3,030.15	26.25	80.09	99.85
P2	24.1	62,401.39	99.85	99.94	100
P3	14.7	889,826.37	99.98	100	100
P4	25.4	3,135.17	1.57	23.71	100
P23	21.4	17,462.05	98.85	99.78	99.95
P24	15.5	58,192.77	99.8	99.91	100
P25	16.1	68,748.74	99.85	99.97	100
P26	16.1	493,422.25	99.99	100	100
P27	17	60,411.90	99.81	99.89	100
P28	17.7	22,088.31	99.78	99.79	100
P29	20	47,057.88	99.59	99.75	100
P30	22	171,129.34	99.8	99.85	100
P31	22.8	1,136.16	0	20.01	99.99
P32	23.5	373.75	0	3.87	98.94
P33	24.4	1,054.88	0	0	98.74
P34	25.5	38.87	0	0	15.25
P35	27.3	2.88	0	0	3.63
P36	27.7	27.89	0	0.3	3.85
P37	28	240.55	0	0.07	47.25
P38	30.6	49.43	0	0	72.79

592 Table 5: SARS-CoV-2 Variant of Concern PCR and Pangolin classification results

	RPM (Dual		
Study ID	Barcode)	VOC PCR Result	Pangolin Lineage (Scorpio Call)
P1	3,030.15	Not Performed	B.1.2
P2	62,401.39	Not Performed	B.1.128
P3	889,826.37	Not Performed	B.1.2
P4	3,135.17	Not Performed	None
P23	17,462.05	Not Performed	B.1.2
P24	58,192,77	Not Performed	P.1 (Gamma)
	,	Presumptive Positive Variant of	
		Concern. Spike gene N501Y and	
		E484K mutations DETECTED by	
P25	68.748.74	NAT.	P.1 (Gamma)
		Presumptive Positive B.1.1.7 Variant of	()
		Concern Spike gene N501Y mutation	
		DETECTED by NAT No F484K	
P26	493 422 25	mutation detected	B 1 1 7 (Alpha)
120	775,722.25	Presumptive Positive B 1 1 7 Variant of	
		Concern Spike gene N501V mutation	
		DETECTED by NAT No E484K	
D77	60 / 11 00	mutation detected	B = 1 + 7 (Alpha)
127	00,411.70	Presumptive Positive Variant of	D .1.1.7 (Aipita)
		Concorn Spike gang N501V and	
		EASAK mutations DETECTED by	
D79	22 088 21	NAT	$\mathbf{P} 1 (\mathbf{Commo})$
P28	22,088.51	NAL. Drogumenting Desitive D 1 1 7 Variant of	P.1 (Gamma)
		Concern Spile conc N501X mutation	
		DETECTED by NAT, No E494K	
D2 0	47 057 00	DETECTED by NAT. NO E484K	D = 1 = 1 = 7 (A + 1 + 1 + 1)
P29	47,057.88	mutation detected.	B.1.1./ (Alpha)
P30	1/1,129.34	Not Performed	B.1.36.36
		Presumptive Positive Variant of	
		Concern. Spike gene N501 Y and	
D21	1 10 6 1 6	E484K mutations DETECTED by	N
P31	1,136.16	NAI.	None
Daa	070 75	Negative. No Spike gene N501 Y or	N.
P32	373.75	E484K mutations detected by NAT.	None
		Presumptive Positive B.1.1.7 Variant of	
		Concern. Spike gene N501Y mutation	
		DETECTED by NAT. No E484K	
P33	1,054.88	mutation detected.	None
		Presumptive Positive Variant of	
		Concern. Spike gene N501Y and	
		E484K mutations DETECTED by	
P34	38.87	NAT.	None
P35	2.88	Not Performed	None
		Presumptive Positive Variant of	
		Concern. Spike gene N501Y and	
		E484K mutations DETECTED by	
P36	27.89	NAT.	None
P37	240.55	Not Performed	None
		Negative. No Spike gene N501Y or	
P38	49.43	E484K mutations detected by NAT.	None

593

597 Figure 1: Log SARS-CoV-2 reads per million reads sequenced across Ct value (E gene or ORF1ab) for
598 all RT-qPCR positive samples. 95% confidence intervals for the linear regression line are shaded in grey.
599 Coefficient of determination = 0.71.

Figure 2: Coverage depth for samples classified as positive by our classifier with log depth of coverage

605 on the y-axis and SARS-CoV-2 reference genome position on the x-axis

Figure 3: Probability of obtaining greater than 95% genome coverage (1 = Yes, 0 = No) for RT-qPCR
positive study samples across Ct value for a. 1x, b. 20x, and c. 50x genome coverage. Logistic regression
models are represented in blue.

Tree scale (substitutions per nucleotide site): 0.0001	
	P2
	Canada/BC-BCCDC-7899/2020 2020-11-09 2021-02-11
	Canada/BC-BCCDC-9189/2020 2020-11-19 2021-02-11
	Canada/BC-BCCDC-7569/2020 2020-11 2020-12-29
	P30
	Canada/BC-BCCDC-38110/2021 2021-01-27 2021-06-14
	Canada/BC-BCCDC-39333/2021 2021-02-06 2021-06-14
	Canada/BC-BCCDC-35632/2021 2021-01-12 2021-06-11
	P1
	P3
	Canada/BC-BCCDC-7180/2020 2020-11-02 2021-02-11
	Canada/BC-BCCDC-6750/2020 2020-10-29 2021-02-11
	Canada/BC-BCCDC-10435/2020 2020-11-20 2021-02-11
	P23
	Canada/BC-BCCDC-35614/2021 2021-01-27 2021-06-11
	Canada/BC-BCCDC-36157/2021 2021-01-13 2021-06-11
	Canada/BC-BCCDC-35736/2021 2021-01-06 2021-06-11
	P28
	P25
	Canada/BC-BCCDC-78695/2021 2021-05-03 2021-06-29
	Canada/BC-BCCDC-77904/2021 2021-05-01 2021-06-29
	Canada/AB-ABPHL-13736/2021/2021-04-13/2021-06-10
	P24
	Canada/BC-BCCDC-59199/2021 2021-04-11 2021-06-23
	Singapore/582/2021 2021-04-17 2021-05-05
	P26
	Canada/BC-BCCDC-88614/2021 2021-05-04 2021-06-29
	Canada/BC-BCCDC-88547/2021 2021-05-05 2021-06-29
	Canada/BC-BCCDC-88629/2021 2021-05-04 2021-06-29
	P29
	Canada/BC-BCCDC-77288/2021 2021-04-26 2021-06-29
	Canada/BC-BCCDC-77729/2021 2021-05-02 2021-06-29
	Canada/BC-BCCDC-87761/2021/2021-05-04/2021-06-23
	Canada/BC-BCCDC-76950/2021/2021-04-21/2021-06-23
	Canada/BC-BCCDC-56789/2021/2021-03-28/2021-06-14
	Canada/ABPHL-13018/2021 2021-04-12 2021-05-19

624 Figure 4: Study samples (marked as P1, P2, etc.) and their nearest three neighbors from all publicly

available SARS-CoV-2 sequences