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ABSTRACT 

Introduction: Genetic association analysis of key Alzheimer’s disease (AD) endophenotypes 

may provide insight into molecular mechanisms and genetic contributions. 

Methods: Major AD endophenotypes based on the A/T/N (Amyloid-β, Tau, and 

Neurodegeneration) biomarkers and cognitive performance were selected from Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) in up to 1,565 subjects. Genome-wide association 

analysis of quantitative phenotypes was performed using a main SNP effect and a SNP by 

Diagnosis interaction (SNPxDX) model to identify stage specific genetic effects. 

Results: Sixteen novel or replicated loci were identified in the main effect model, with six 

(SRSF10, MAPT, XKR3, KIAA1671, ZNF826P, and LOC100507506) meeting study significance 

thresholds with the A/T/N biomarkers. The SNPxDX model identified three study significant 

genetic loci (BACH2, EP300, PACRG-AS1) associated with a neuroprotective effect in later AD 

stage endophenotypes. 

Discussion: An endophenotype approach identified novel genetic associations and new insights 

into the associations that may otherwise be missed using conventional case-control models. 

 

KEY WORDS 

Genetics, GWAS, endophenotype, APOE, Genetic Interaction, Cerebrospinal Fluid Biomarkers, 

Magnetic Resonance Imaging, Amyloid-PET, FDG-PET  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 18, 2021. ; https://doi.org/10.1101/2021.08.13.21261887doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.13.21261887


3 
 

1 BACKGROUND 

The complex nature of Alzheimer’s disease (AD) has instigated multiple studies that have 

identified genetic risk factors and potential contributors to the disease, but the underlying drivers 

for the disease are not yet completely understood. The known genetic risk factors do not fully 

explain the genetic heritability of AD. As such, new approaches are needed to further identify the 

underlying genetic players in AD. 

One such approach is the use of biomarker endophenotypes to increase statistical detection 

power and to provide valuable insight into the molecular mechanisms underlying AD [1]. An ideal 

phenotype lies downstream of the genetics and upstream of the “observable” phenotype, in this 

case cognitive changes in AD. They provide quantifiable measures of the pathology of the disease 

for genetic association. 

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) provides a wide variety of biomarkers 

highly associated with AD, and a number of studies have utilized this dataset for genetic analysis 

[2]. The completion of ADNI phases, ADNI1, GO, and ADNI2, provide an opportunity to evaluate 

multiple endophenotypes together in a shared dataset, allowing a comprehensive analysis of 

genetic associations with AD endophenotypes. 

In this study, two models were used to evaluate genetic associations with AD endophenotypes: 

A main effect model of overall genetic associations with baseline measures of endophenotypes 

and a SNP by Diagnosis (SNPxDX) interaction model of genetic associations within diagnostic 

stages of AD. The main effect model follows a traditional linear regression approach applied to 

the individual biomarkers, and has the power to identify overall genetic effects on endophenotypic 

measures across all subjects and diagnostic classification groups.  

The SNPxDX model analyzes the relation between genetic variation and endophenotype in the 

context of stage specific clinical diagnostic classification: cognitively normal (CN), early mild 
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cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and AD. Progression along 

the stages of the clinical syndrome of AD is not uniform across patients, with evidence suggesting 

that genetic factors influence this disease heterogeneity [3, 4]. Past work in the ADNI genetic core 

has suggested an interaction with specific known AD genes and diagnostic group, but a robust 

genome wide analysis across multiple phenotypes has not been performed [5]. The main effect 

model is well suited for identifying genetic effects that influence endophenotype change across 

all subjects and diagnostic groups, providing a contrast between individuals that are cognitively 

normal and those that are on the AD spectrum of diagnosis. With the heterogenous nature of AD 

and pathophysiological changes that occur over the course of the disease genetic effects that are 

stronger or only occur in specific stages of disease progression may be reduced in the analysis. 

We propose that introducing an interaction term between genetic marker and the diagnostic 

classification provides more power to identify genetic effects that occur in a stage specific manner. 

There is increasing evidence that late onset AD is largely determined by multiple, small effect and 

low penetrance genetic factors [6, 7]. Identifying genetic effects that influence AD disease risk is 

important for developing an understanding of the disease. Applying alternative models to identify 

genetic risk factors that influence the disease in a complex manner contributes to our overall 

understanding of the disease and helps pave the path toward therapeutic approaches. 

Furthermore, identifying how and where, through an endophenotype approach, as well as when, 

through stage specific interactions, a genetic variant is affecting disease risk enables more 

focused research in understanding disease mechanisms. 

2 METHODS 

2.1 Study Participants 

Participants from the Alzheimer’s Disease Neuroimaging Initiative Phase 1 (ADNI-1) and its 

subsequent extensions (ADNI-GO/2) [8] were included in this study. Further information about 
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these studies, participant enrollment, protocols, and other information can be found at 

http://adni.loni.usc.edu/study-design/. Written informed consent was obtained from each 

participant, and all protocols were approved by each site’s Institutional Review Board. 

2.2 Genotyping and Imputation 

Whole blood samples from the ADNI participants were genotyped on the Illumina Human 610-

Quad BeadChip, the Illumina HumanOmniExpress Beadchip, or the Illumina Omni 2.5M platform 

(Illumina, Inc., San Diego, CA). After sample and SNP standard quality control procedures of 

GWAS data [9], genotype imputation and calling was performed over each data set separately 

using the Haplotype Reference Consortium Panel r1.1. APOE genotype for rs429358 and rs7412, 

described as APOE ε2/ε3/ε4 status, were genotyped separately as described previously [5]. To 

avoid population stratification confounding, non-Hispanic Caucasian ADNI participants (N=1565) 

were selected for this analysis by genetic clustering using HapMap 3 genotype data and 

multidimensional scaling (MDS) analysis. 

2.3 Selected Phenotypes 

Biomarkers were selected based on previous studies for association with AD pathology [10]. 

Baseline measures of 17 phenotypes were selected to represent the key markers of AD 

represented by A/T/N and C: Amyloid-β (A), Tau (T), Neurodegeneration (N) [11], and an 

additional Cognitive Performance (C) category. Amyloid-β (A) measures are represented by 1 

meta region of interest (ROI) for [18F]Florbetapir amyloid PET and CSF amyloid-β 1-42 peptide 

(Aβ1-42), Tau (T) measures by CSF total tau (t-tau) and phosphorylated tau (p-tau), 

Neurodegeneration (N) by MRI atrophy measures (8 ROIs) and FDG PET (3 ROIs), and Cognitive 

Performance (C) as composite scores developed by Crane et al. [12] for memory (MEM) and 

executive function (EF). MRI and FDG ROIs were selected based on previous studies of AD 
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pathology and progression and selected to cross-sectionally represent the disease across stages 

[13, 14]. Table 1 presents the full list of phenotypes and sample sizes. 
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Intracranial Volum
e 

M
R

I Field Strength†
 Selected Endophenotype N 

Baseline Memory Composite Score 1565 • • • • • •    

Baseline Executive Function Composite Score 1565 • • • • • •    

Baseline bilateral mean hippocampus volume 1555 • • • • • • • • 
Baseline bilateral mean entorhinal cortex thickness  1555 • • • • • • • • 
Baseline bilateral mean frontal lobe thickness 1555 • • • • • • • • 
Baseline bilateral mean cingulate thickness 1555 • • • • • • • • 
Baseline bilateral mean parietal lobe thickness 1555 • • • • • • • • 
Baseline bilateral mean temp. lobe thickness 1555 • • • • • • • • 
Baseline bilateral mean medial temp. lobe thickness 1555 • • • • • • • • 
Baseline bilateral mean lateral temp. lobe thickness 1555 • • • • • • • • 
Baseline Mean FDG PET SUVR in Angular Gyrus 1158 • • • • •      

Baseline Mean FDG PET SUVR in Cingulate 1158 • • • • •      

Baseline Mean FDG PET SUVR in Bilateral Mean Temp. Lobe 1158 • • • • •      

Baseline [18F]Florbetapir amyloid PET  791 • • • • •      

Baseline Roche CSF amyloid-β 1-42 peptide  981 • • • • •      

Baseline Roche CSF Total Tau 1103 • • • • •      

Baseline Roche CSF Phosphorylated Tau 1103 • • • • •      
 

Table 1: List of selected endophenotypes, their N, and covariates applied during regression 

analysis indicated by •. * Analysis performed with and without APOE covariate. † Values 

were pre-adjusted for MRI-Field strength where applicable. 
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2.4 Genetic Association Analysis 

The main effect genome wide association analysis was performed separately for each phenotype 

in PLINK v1.9 [15]. Association was evaluated across 5,406,480 genotyped and imputed variants 

for each phenotype. All phenotypes were adjusted for age, sex, and the first two principal 

components of the genetic population by inclusion in the linear model. MRI and cognitive 

measures were additionally adjusted for education, and MRI measures were adjusted for 

intracranial volume. 

The analysis was performed with and without the APOE e2/e3/e4 genotype as a covariate to 

account for the effects of the APOE allele on genetic effects. In order to fully account for an APOE 

genotypic effect, the APOE genotype was coded as dummy variables indicating 1 = e2e2, 2 = 

e2e3, 3 = e3e3, 4 = e2e4, 5 = e3e4, 6 = e4e4. 

MRI field strength was identified as an additional covariate for MRI phenotypes; however, MRI 

field strength was directly tied to ADNI phase with ADNI Phase 1 participants and ADNI 2/GO 

participants receiving 1.5 Tesla and 3 Tesla MRI, respectively.  No significant effect from the ADNI 

phase was identified in non-MRI measures. Due to different proportions of diagnostic groups 

within ADNI 1 and 2/GO, a significant over correcting effect was seen in some individuals due to 

these proportional differences. To address this issue, a regression analysis was run using only 

individuals identified as cognitively normal, with the MRI phenotype as the dependent variable 

and age, sex, education, ICV, and MRI field strength as covariates. The resulting Beta coefficient 

of the MRI Field Strength was then used to adjust the MRI phenotype across all subjects using 

the following formula: 

Field Strength Adjusted MRI Phenotype = MRI Phenotype – (BMRI Field Strength * (MRI Field 

Strength – Mean CN MRI Field Strength)) 
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The Field Strength Adjusted MRI Phenotype variable was then treated the same as the remaining 

phenotypes and run in the linear model with the remaining selected covariates. 

Principal component analysis of the 17 selected phenotypes identified 6 principal components, 

explaining 85% of the variance across phenotypes. An adjusted study wide significance threshold, 

based on the conventional 5x10-8, was set at P≤8.33x10-9 (5x10-8 divided by 6 components). 

Additional consideration was given to the conventional genome wide threshold of P≤5x10-8 and a 

suggestive association threshold P≤1x10-5 for the purpose of comparison across phenotypes and 

for additional analyses. 

To identify the peak SNPs for a genetic region, SNPs meeting at least the suggestive association 

threshold were trimmed based on Linkage Disequilibrium (LD) analysis. SNPs were sort ordered 

by p-value, and those in LD with R2 greater than 0.2 were considered to be in the same gene 

region for the purposes of identifying top SNPs for a genetic region.  

While the dataset is highly AD specific, a separate analysis was performed with diagnosis as a 

covariate in order to distinguish SNP-phenotype associations not specific to AD (data not shown). 

Diagnosis was categorized as cognitively normal (CN), early mild cognitive impairment (EMCI), 

late mild cognitive impairment (LMCI), and AD. 

2.5 Interaction Association with SNP and Diagnosis 

The SNPxDX interaction analysis was performed through linear regression computed in R, with 

a phenotype as the dependent variable and SNP, diagnosis variable, and the interaction between 

the SNP and diagnosis variable as independent variables. The same covariates as before were 

applied (Table 1). Analysis was run with diagnosis coded as an ordinal logistic variable. Diagnosis 

was interpreted in four groups: CN, EMCI, LMCI, and AD. Ordinal coding interpreted these groups 

as having linear relationships between them with unknown spacing (CN < EMCI < LMCI < AD). 
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The same thresholds and trimming methods as the main effect analysis above were applied on 

the interaction term of the model to determine significant interaction effects. 

2.6 Functional Analysis 

Variants were annotated for variant position and nearest gene using ANNOVAR (Version 2017-

07-17). Study wide significant results were submitted to the Genotype-Tissue Expression (GTEx) 

Portal to determine cis expression quantitative trait locus (eQTL) effects. ADNI blood expression 

data was used to generate eQTL results within the dataset using the MatrixEQTL R package [16]. 

RegulomeDB [17] was referenced for potential regulatory effects for SNPs of interest. 

3 RESULTS 

3.1 Genome Wide Association Results 

After LD trimming, a total of 27 genetic regions were identified as having study wide significance 

with at least one endophenotype. Figure 1 provides an overview of these top SNPs and their 

association with each endophenotype. The majority of findings are associated with the aggregate 

cognitive measures of Memory or Executive Function, with nine being study wide significant in 

other measures. Many associations showed effect directions suggesting a neuroprotective effect, 

with four findings apart from APOE showing a risk direction in association with the minor allele: 

rs2501374 and rs2506085 in an intergenic region on chromosome 1, rs9503939 intergenic on 

chromosome 19, and rs116622204 intronic to pseudogene ZNF826P. 

Including the APOE e2/e3/e4 allele as a covariate reduced the 27 study wide significant genetic 

regions to 16. Six SNPs maintained study wide significance in a non-cognitive measure, 

rs5748614 (near XKR3), rs2501374 (near SRSF10), rs9503939 (near LOC100507506), 

rs9608356 (near KIAA1671), rs8076152 (within MAPT), and rs116622204 (within ZNF826P). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 18, 2021. ; https://doi.org/10.1101/2021.08.13.21261887doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.13.21261887


11 
 

Including diagnosis as a covariate identified only one SNP that retained study wide significance, 

rs8076152, which is intronic to MAPT and associated with MRI measures of Parietal Lobe cortical 

thickness. A suggestive association was also found in Frontal and Lateral Temporal Lobe cortical 

thickness measures. 

3.2 Known AD Associated Genetic Regions 

Association analysis identified rs429358 (APOE e4 allele) on chromosome 19 as strongly 

associated with 13 of the 17 endophenotypes, with suggestive influence on two others. APOE e4 

was most strongly associated with measures of amyloid-β, followed by measures of tau, glucose 

metabolism, and overall cognitive memory score. Strong associations were observed for 

surrounding SNPs in LD with APOE e4 in and near TOMM40, APOC1, and NECTIN2 genes on 

chromosome 19. 

Associations were also observed for regions in or near HLA-DQA1, HLA-DPA1, and HLA-DRB1, 

which have been identified in large-scale AD case/control studies [18]. 
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Figure 1: Matrix of main effect analysis results. Each row indicates the top SNP for a genetic region after 

LD trimming, and each column represents an AD endophenotype. Ordered based on minimum p-value 

across the row. The asterisks represent the P-value of the association with [***] indicating meeting the study 

wide significant threshold (P≤8.33x10-9), [**] the conventional genome wide threshold (P≤5x108), and [*] the 

suggestive association threshold (P≤1x105). The color and box size relates to the beta value effect size for 

a given association, with larger box size relating to distance from zero in either positive effect (blue, 

suggesting neuroprotective) or negative (red, suggesting neuropathological effect) direction. † indicates the 

identified SNP retained significance with diagnosis as a covariate. 
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3.3 SNPxDiagnosis Results 

The SNPxDX model identified three study wide significant interaction SNPs. The first two were 

primarily associated with Parietal Lobe Cortical Thickness, rs1065272 located in the 3’ 

untranslated region of BACH2 on Chromosome 6 and rs35823862 intronic to EP300 on 

Chromosome 22. The BACH2 SNP also showed suggestive associations with the Frontal Lobe 

and Lateral Temporal Lobe cortical thickness measures. A study wide significant SNP was also 

associated with FDG PET in the cingulate and is located in an intergenic region on Chromosome 

6 near PACRG-AS1. The three SNPs showed a neuroprotective effect in later stages of AD, as 

represented in Fig. 3 with the rs1065272 SNP in BACH2. 

Additional six genetic regions met the less strict conventional genome wide significant threshold 

(P≤5x10-8) (Fig. 2). Including APOE genotype as a covariate in the SNPxDX model identified the 

same SNPs as without APOE adjustment. 

3.4 Functional Results 

The RegulomeDB analysis identified a score of 2b for the SNP rs2501374, indicating that there 

is evidence for transcription factor binding with a DNase footprint and DNase peak but no matched 

transcription factor. Other SNPs did not show suitable evidence in the RegulomeDB. 

In the GTEx database and ADNI whole blood eQTL analysis, nine main effect SNPs were 

identified as being associated with altered expression. For the SNPxDX analysis, the SNP, 

rs3803018, was associated with altered STAT6 expression levels in ADNI whole blood and 

altered RDH16 expression levels in the Cerebellar Hemisphere in GTEx. Table 2 provides a 

summary of eQTL findings between both approaches. 
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Figure 2: Matrix of SNP x Diagnosis analysis results. Each row indicates the top SNP for a genetic 

region after LD trimming, and each column represents an AD endophenotype. Endophenotypes 

showing no level of significance were removed for clarity. The asterisks represent the P-value of the 

association with [***] indicating meeting the study wide significant threshold (P≤8.33x10-9), [**] the 

conventional genome wide threshold (P≤5x108), and [*] the suggestive threshold (P≤1x105). The color 

and box size relates to the beta value effect size for a given association, with larger box size relating to 

distance from zero in either positive (blue, suggesting neuroprotective) or negative (red, suggesting 

neuropathological effect) direction. 
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Figure 3: Violin and boxplot distribution of Parietal Lobe Cortical Thickness, stratified by (A) rs1065272 

SNP, (B) Diagnosis, and (C) SNP and Diagnosis. (A) represents the Main Effect analysis, (B) the 

association with Diagnosis, and (C) the SNPxDX interaction association, with DX codes as an ordinal 

logistic variable of distinct categories with known ordinal relation (CN < EMCI < LMCI < AD). The 

asterisks represent the P-value of the association with [***] indicating meeting the study wide significant 

threshold (P≤8.33x10-9), [**] the conventional genome wide threshold (P≤5x108), and [*] the suggestive 

threshold (P≤1x105). 
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SNP eQTL Gene 

ADNI Blood 
eQTL FDR P-

value GTEx P-value GTEx Tissue 
rs11657741 CHRNB1 9.20E-06 5.40E-28 Skeletal Muscle 
rs28383392 HLA-DQA1 3.15E-93 Not Available  
rs28383392 HLA-DQB1 9.15E-92 Not Available  
rs28383392 HLA-DRB5 1.67E-24 Not Available  
rs3117640 FCAR 1.38E-03 Not Available  
rs3117640 KIR2DS4 7.93E-19 Not Available  
rs3117640 KIR3DL1 6.53E-04 Not Available  
rs3803018 RDH16 No Association 1.40E-08 Brain - Cerebellar Hemisphere 
rs3803018 STAT6 3.92E-04 No association  
rs5748614 TPTEP1 No Association 1.70E-20 Whole Blood 
rs5748614 XKR3 2.96E-14 3.00E-14 Whole Blood 
rs587750081 ZNF826P 1.19E-18 Not Available  
rs631717 KIR2DS4 7.26E-29 3.10E-97 Whole Blood 
rs631717 KIR3DL1 8.78E-12 5.10E-07 Whole Blood 
rs631717 KIR3DL2 3.68E-06 3.30E-05 Whole Blood 

rs8076152 KANSL1-AS1 No Association 
3.4E-21 / 
5.50E-9 

Whole Blood / Brain - 
Hippocampus 

rs8076152 LRRC37A2 8.40E-20 
2.4E-15 / 2.4E-

7 
Whole Blood / Brain - 

Hippocampus 

rs8076152 MAPK8IP1 2.48E-07 2E-18 / 7.7E-6 
Whole Blood / Brain - 

Hippocampus 
rs9265235 HLA-B 9.87E-06 No association  
rs9265235 HLA-S No Association 1.30E-23 Whole Blood 
rs9265235 C4A No association 2.70E-07 Brain - Hippocampus 
rs9275051 HLA-DQA1 1.23E-50 1.40E-22 Whole Blood 

rs9275051 HLA-DQA2 No Association 
3.8E-86 / 6.8e-

17  
Whole Blood / Brain - 

Hippocampus 

rs9275051 HLA-DQB2 No Association 
3.7E-75 / 8.1E-

16  
Whole Blood / Brain - 

Hippocampus 

rs9275051 HLA-DQB1 7.66E-45 9E-52/1.8E-11 
Whole Blood / Brain - 

Hippocampus 
rs9275051 HLA-DRB5 2.03E-08 No association  
rs114868642 TIMP3 No Association 7.9E-5 Thyroid 

Table 2: Summary of eQTL findings in ADNI whole blood analysis and GTEx database lookup. 
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4 DISCUSSION 

Systematic analysis of genetic associations with key AD endophenotypes identified genetic 

regions previously associated with AD as well as several novel genetic associations. Analysis 

with a stage specific clinical syndrome approach further identified genetic effects that modulate 

endophenotypes in later stages of AD. The difference and variety of genetic associations in the 

two models highlights the need and value of more complex modeling for AD analysis. These 

variants are among many that have been identified in contributing to AD disease risk. 

Understanding how, where, and when these variants are affecting the disease through models 

such as those used in this study is key in developing an understanding of the disease and 

developing therapeutic approaches. 

The identified SNPs identified in the main effect approach are largely in intergenic or 

uncharacterized regions, making functional analysis more challenging. The intergenic SNP 

rs2501374 proved particularly robust in this analysis. There is evidence of transcription factor 

binding in this region, though no direct eQTL evidence is available for this SNP. The nearest gene, 

SRSF10, is an alternative splicing gene which has general implications with AD pathogenesis 

[19]. SRSF10 has known effects in enhanced lipogenesis [20] and affects alternative splicing of 

IL1RAP [21], that has been associated with AD pathology [22]. XKR3 belongs to a family of 

phospholipid scramblases which have potential implications in apoptotic signaling [23], with eQTL 

evidence supporting a functional effect on expression in whole blood samples. 

The HLA region has proven of interest in AD, particularly the HLA Class II region [18, 24-26] with 

evidence for the HLA Class I regions as well [27, 28]. Five independent HLA genetic regions were 

identified as having study wide significance in at least one endophenotype, with additional HLA 

Class I related markers in KIR3DL1 and KIR2DL4. eQTL analysis identified association of these 

HLA region SNPs with HLA gene expression levels. However, study-wide significance is reduced 
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in the HLA related SNPs when adjusting for APOE allele status, with only rs9265235 near HLA-

B and rs9277531 near HLA-DPB1 maintaining study wide significance in cognitive measures. 

Further study in how HLA related genes interact with AD pathology is warranted. 

SNPs with study wide significance in a cognitive measure but suggestive association in other 

endophenotypes may provide insight as well. A SNP near POL2RA (rs11657741) shows a 

significant eQTL effect on CHRNB1, an acetylcholine receptor protein. There is evidence to 

suggest a role of the cholinergic system in AD [29]. PRIM2 plays a role in DNA replication through 

Okazaki fragment formation, with DNA replication stress playing a potential role in AD pathology 

[30]. The SNP rs11486842 intronic to SYN3 shows evidence of a small eQTL effect on TIMP3, 

which has been shown to regulate APP processing and APOE receptor proteolysis [31]. SYN3 

itself is involved in neurotransmitter release and synaptogenesis, and has been shown to be 

downregulated in hippocampal CA1 neurons in a tauopathy mouse model [32]. 

A SNP intronic to MAPT (rs8076152) is of potential interest, as it resides within the tau protein 

gene and is associated with neuroprotective effects in the parietal lobe. Evidence from this study 

suggests that the SNP is not directly related to AD as it retains its association with MRI measures 

when diagnosis is included as a covariate. While its position intronic to MAPT suggests it may 

have some effect on the tau protein gene, it may also have an effect on various other genes, 

providing alternative functional outcomes. 

The main effect analysis showed many significant associations with the composite cognitive 

measures. This is in part due to the cognitive scores having the highest N, resulting in better 

statistical detection power for association. MRI measures were close in sample size and 

corroborated many of the cognitive associations. Cognitive measures are not true 

endophenotypes but act as a surrogate quantitative measure for diagnosis, which may play a part 

in the scores representing the downstream effects of other phenotypic changes. Based on these 

results, utilizing a quantitative trait representative of diagnosis rather than a binary case/control 
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could be of use in genetic association in AD. However, some caution is needed in interpreting the 

cognitive measures alone, as those measures may be confounded by non-AD factors. 

Due to sample size differences, this dataset is best suited for evaluating MRI and cognitive 

phenotypes and lacks some power in PET and CSF measures for proper comparison across 

measures. However, the observed effect size can give insight into shared association as well as 

patterns of effect across endophenotypes. Despite sample size differences, SNPs rs2501374 and 

rs950939 showed suggestive association in CSF amyloid-β levels, consistent with study wide 

significance seen in those SNPs in MRI and cognitive measures. 

Outside of APOE and its surrounding regions, there was very little significance seen in Amyloid-

β and Tau biomarkers. This is in part due to the lower sample size of these measures, but other 

factors may contribute. Amyloid deposition in cognitively normal individuals [33] may affect 

detection power of AD specific genetic effects, and more complex models to account for these 

subjects may be needed. Additionally, polygenic risk score studies have provided evidence of 

common AD genetic markers having little contribution toward risk of amyloid deposition, distinct 

from APOE which contributes greatly toward amyloid deposition [34]. 

The analysis performed here for main effect does not well replicate the top genetic regions 

identified in large scale AD GWAS studies [18], outside of APOE and genes in the HLA class II 

region. The main difference is approach, with the large scale GWAS utilizing a case/control 

analysis where this study utilized an endophenotype approach. Despite the relatively smaller 

sample size, the endophenotype approach may provide more power for identifying genetic effects 

specific to AD related pathology. These genetic effects relate directly to AD mechanisms that 

contribute to differences in disease pathology, where case/control targets more generalized risk. 

In a highly heterogeneous disease like AD, a generalized approach may not have the power to 

identify genetic effects that will be important in a more personalized medicine approach.  
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The SNPxDX approach provides an alternative look at the genetic effects occurring in specific 

stages of AD, with study wide significant findings with AD specific implications. The top SNP in 

the BACH2 gene region is located in its 3’ UTR, suggesting possible post-transcriptional 

regulatory effects of the SNP. BACH2 is a transcriptional regulator involved in processes like NF-

κB signaling, apoptosis in response to oxidative stress, nuclear import of actin, and CD4(+) T-cell 

differentiation. It has also been shown to be upregulated in β-amyloid-treated SH-SY5Y 

neuroblastoma cells [35]. The top genetic association in EP300 does not have a clear functional 

effect, but is one of many strongly associated SNPs that blanket the EP300 gene. EP300 has 

been shown to be strongly associated as a candidate “Master Regulator” in AD genetic network 

[36].   

SNPs that did not meet the study wide significant threshold in the SNPxDX results but met the 

less strict conventional genome wide significant threshold may still be of interest. A SNP intronic 

to the gene Amyloid Beta Precursor Protein Binding Family B Member 2 (APBB2), which has 

been previously associated with AD  [37], was identified as being associated with a higher volume 

in the lateral temporal lobe in later AD stages. 

As with many GWAS studies, these findings are limited by the selected population and sample 

size, and further replication in independent larger cohorts is warranted. A larger sample size would 

benefit both models, and with the SNPxDX approach, it would allow more sophisticated modeling 

of interactions in earlier stages of the disease that could not be interpreted with confidence given 

the current sample size limitations. Future studies will include gene and pathway enrichment, 

functional analysis in multi-omic datasets, and application of endophenotypic associations in a 

polygenic risk score model. 

In summary, our findings show that an endophenotype approach can identify novel genetic 

associations with links to AD as well as provide insight into the identified associations. 

Endophenotypes allow for more complex models, such as the SNPxDX approach used here, 
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which may be necessary in identifying genetic effects that contribute to AD risk and progression 

that might otherwise be missed in conventional models. The findings identified here may provide 

insight into potential therapeutic targets or provide insight into genetic risk. Expanding on the 

techniques utilized in this study through more comprehensive modeling and larger samples will 

likely provide further power for new discoveries. 
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