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Abstract 

The functional architecture of the brain is composed of distinct networks, where higher system 

segregation, i.e. greater differentiation of such functional networks, is associated with better 

cognitive performance. Aging and many neurological diseases have been associated with 

reduced system segregation and thus cognitive impairment. The genetic basis and risk factors 

of system segregation are largely unknown. Here, we present the first genome-wide association 

study of fMRI-assessed system segregation in 16,635 UK Biobank participants, identifying 

nine independent genomic loci. The 66 implicated genes were significantly downregulated in 

brain tissue and upregulated in vascular tissue. Of major vascular risk factors (Life’s Simple 7), 

blood pressure showed a robust genetic correlation with system segregation. Observational and 

Mendelian randomization analyses confirmed a unfavourable effect of higher blood pressure 

on system segregation and of lower system segregation on cognition. Replication analyses in 

2,414 Rotterdam Study participants supported these conclusions.  
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Introduction 

The functional architecture of the brain is characterized by large-scale networks arising from 

neurovascular responses that are temporally coordinated between different brain regions1. 

These networks can be reproducibly detected during resting-state functional magnetic 

resonance imaging (fMRI) and correspond to those networks of brain regions that are activated 

during cognitive tasks, suggesting that these intrinsic networks are an important neurovascular 

substrate supporting cognitive functions2. High within-network connectivity but low between-

network connectivity, called system segregation, is a key global feature associated with higher 

cognitive performance across the life-span3,4. During aging and disease, system segregation 

decreases3,5–9 (for review see10,11), resulting in poorer cognitive functions3,5,9,12–14,15 (for review 

see4). In contrast, relatively preserved system segregation enhances cognitive resilience to brain 

alterations in older adults16. System segregation is thus a feature of global functional brain 

organisation that is crucial to sustain cognitive abilities throughout the adult life-span. 

However, little is known about factors that modulate system segregation3 and thus may yield 

targets for developing interventions to enhance cognitive resilience to disease. 

 

The human brain connectome is under significant genetic control17–20 21. Especially higher-

order features such as resting-state fMRI assessed system segregation showed high heritability 

ranging between 38% and 59% in twin studies19. Genome-wide association studies (GWAS) 

have provided tremendous progress in uncovering the genetic variants and potential biological 

pathways underlying neuroimaging phenotypes including connectivity21. Yet, the genetic 

architecture that supports system segregation of the healthy connectome is unknown. Here, we 

adopt a GWAS approach to identify genetic variants and associated pathways of system 

segregation in cognitively normal subjects spanning the adult life-span.  
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For our analyses, we draw on a unique set of neuroimaging and genetic data from two large-

scale population-based studies: the UK Biobank22 and the Rotterdam Study23. We first 

performed a GWAS of system segregation complemented by pathway and tissue enrichment 

analysis of the associated genes based on our discovery sample (UK Biobank participants, 

N=16,635, 41-81 years) followed by a targeted replication analysis in the Rotterdam Study 

(N=2,414, 52-90 years,). Potential causal effects of the discovered pathways were subsequently 

assessed by Mendelian randomization (MR) analyses. GWAS in the UK Biobank identified 

536 genome-wide significant single-nucleotide polymorphisms (SNPs) mapped to nine 

independent loci and 66 genes related to system segregation. We found an enrichment of 

vascular functions on the SNP and gene level. Genetic correlation analysis across the seven 

major modifiable cardiovascular risk factors – the so-called Life’s Simple 7 (LS7)24 revealed a 

shared genetic background between systolic blood pressure and system segregation. Our MR 

analysis in the UK Biobank dataset demonstrated a potentially causal link between higher blood 

pressure and lower system segregation, which was consistent with the observational 

associations found in the UK Biobank and Rotterdam Study samples. A separate MR analysis 

confirmed a favourable influence of higher system segregation on cognitive performance.  

Together, the current findings expanded our genetic understanding of a global feature of brain 

network organization that supports cognitive performance and further revealed high blood 

pressure as a potentially modifiable risk factor. Implications arise for blood pressure treatment, 

particularly for blood pressure-lowering trials, where system segregation could be considered 

as an intermediate imaging marker to detect treatment effects before cognitive decline and 

dementia occur.    
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Results 

Overview of the UK Biobank and Rotterdam Study designs and flowcharts illustrating the 

selection of participants can be found in Supplementary Fig. 1. Details of all included sub-

samples are presented in Supplementary Table 1. Sample characteristics of the main samples 

(used for GWAS and polygenic prediction of system segregation) are presented in Table 1. 

Mean age was 63.14 [range: 45-81] years in the UK Biobank sample and 67.22 [range: 52-90] 

years in the Rotterdam Study sample. A bit over half of the participants were women (UK 

Biobank: 52.9%, Rotterdam Study: 53.5%). The group-average functional brain connectome as 

well as the average connectome for participants with highest versus lowest system segregation 

scores are illustrated in Fig. 1.  

 

Significant single-variant associations with system segregation 

GWAS results of system segregation performed in 16,635 UK Biobank participants are 

displayed in Fig. 2. A total of 536 SNPs reached genome-wide significance (P < 5 × 10-8; 

Supplementary Data 1). We identified 53 independent significant SNPs (r2 < 0.6) and 12 lead 

SNPs (r2 < 0.1) which are associated with system segregation (respectively marked in blue and 

green on Manhattan plot in Fig. 2a). Based on all lead SNPs, nine independent genetic loci were 

detected, after merging regions < 250 KB apart into a single locus (Supplementary Fig. 2 and 

Supplementary Table 2).  

The quantile- quantile (Q-Q) plot of all SNPs shows modest inflation (λGC=1.04; Fig. 2b). We 

performed linkage disequilibrium score regression (LDSC)25 to quantify the proportion of 

inflation in the mean χ2 that was due to confounding biases. The low LDSC intercept of 1.01 

indicates a small contribution of bias, and that the mean χ2 of 1.06 results mostly from 

polygenicity and not from other sources of bias such as population stratification. SNP-based 

narrow-sense heritability was estimated at h2 = 0.144 (standard error (SE) = 0.03). 
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Detailed functional annotation of all 536 significant SNPs as implemented in FUMA26 can be 

found in Supplementary Data 1. Focusing on the 12 lead SNPs (Supplementary Table 3), we 

found 10 SNPs in intronic or intergenic regions, yet rs1133400 and rs227422 were exonic non-

synonymous SNPs and hence in coding regions. Combined Annotation Dependent Depletion 

(CADD)27 scores > 17 indicated that both SNPs are likely deleterious. The rs1133400 SNPs is 

a missense variant (MAF = 0.49, arginine-proline substitution) of the phospholipase C epsilon 

1 (PLCE1) gene. G allele carrier status is associated with lower system segregation, while other 

recent studies in the UK Biobank have found this variant to be related with higher body fat 

percentage21,28 and higher blood pressure29. The rs227422 SNP is a missense variant (MAF = 

0.21, lysine-arginine subsitution) of the inositol polyphosphate-5-phosphatase A (INPP5A) 

gene, with the G allele being linked to lower system segregation. INPP5A controls intracellular 

calcium signalling30. Interestingly, two other lead SNPs, rs138004790 and rs9645539, with 

likely regulatory functionality (Regulome DB31 score £ 3) are CTCF-binding sites flanking 

INPP5A.  

 

Out-of-sample polygenic prediction of system segregation 

Next, we estimated how much variance in system segregation measured in the independent 

Rotterdam Study can be explained by the current GWAS results by means of a polygenic risk 

score (PRS) which we computed via PRSice232. In brief, different PRSs based on GWAS 

summary statistics were computed, iteratively included SNPs across different P-value 

thresholds (P < 5 × 10-8 – 0.5) to achieve best model fit. Strongest prediction of system 

segregation was accomplished when only the top 13 GWAS SNPs were considered, i.e. only 

SNPs with P < 1 × 10-7 (Supplementary Table 4). This PRS explained 1.4% of variance in 

system segregation in the Rotterdam Study sample (Supplementary Fig. 3a). The association 

between PRS and system segregation remained significant after accounting for age, age2, sex, 

education, grey matter (GM) volume, white matter hyperintensities (WMH) volume, motion 
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during fMRI and signal-to-artefact ratio as covariates in the statistical model (standardized beta 

[betaSD] = 0.110, SE = 0.02, P < 0.001, N = 2,414, Supplementary Fig. 3b).  

 

Gene-based associations with system segregation 

We used two independent strategies to gain insights into which genes are linked to system 

segregation. First, positional gene-mapping via FUMA was performed to map individual 

significant SNPs in the risk loci within a 10kb window to 59 genes (see Supplementary Table 

2). Second, genome-wide gene-based association study (GWGAS) using MAGMA33 identified 

17 genes to be associated by system segregation at a Bonferroni-corrected significance 

threshold (P < 2.72 × 10-6; Fig. 2c, Supplementary Data 2). MAGMA estimates aggregate 

associations on the basis of all SNPs in a gene. The strongest gene-based associations with 

system segregation were found for the PLCE1 (P < 4.15 × 10-15) and anoctamin 1 (ANO1; P < 

9.78 × 10-14) genes. Both genes are involved in signal transduction, either by regulating 

phospholipase C-activating G-protein coupled receptor signalling or by AOV1 encoding 

calcium-activated chloride channels. Positional gene-mapping and GWGAS identified 10 

overlapping genes (ANO1, B9D1, CYP2C18, FHL5, MRVI1, NOC3L, PIP5K1B, PLCE1, 

TRPC6, UFL1) resulting in 59+17–10=66 unique genes potentially associated with system 

segregation (Fig. 2d) which were further explored via gene expression and gene set analyses. 

In gene expression analysis, we assessed whether the 66 genes of interest are overexpressed in 

any of the 54 different tissue types included in the GTEx v8 database at a Bonferroni-corrected 

significance threshold. We found a negative association (downregulation) with gene expression 

across multiple brain areas, while a positive association (upregulation) with gene expression in 

cardiovascular tissue (coronary, tibial and aorta artery) and adipose tissue was observed (all P 

< 9.26 × 10-4; Fig. 3a). 

Next, we performed gene set analysis in FUMA testing enrichment of canonical pathways 

(N=2,868) and GO gene sets (N=7,573). Results are reported at a stringent Bonferroni-
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corrected threshold taking the number of tests performed per gene set category into account. 

Four canonical pathways (all P < 1.74 × 10-5, Fig. 3b, and Supplementary Table 5a) and six GO 

gene sets (all P < 4.87 × 10-6; Fig. 3c, and Supplementary Table 5b) were significantly 

associated with the 66 genes of interest. Several pathways point towards molecular processes 

important for blood vessel structure and remodelling, including collagen processing and matrix 

metalloproteinases, and which had been shown to play a role in small vessel disease and 

stroke34. Of note is the association with arachidonic acid activity which among others is 

involved in regulating blood pressure as well as in the coupling between the metabolic activity 

of neurons and regional blood flow in the brain35. Additionally, we conducted gene set analysis 

for all gene set reported in the GWAS catalogue (N = 2,195). Seven significant associations 

were found at a Bonferroni-corrected significance threshold (P < 2.28 × 10-5). These results can 

be divided into three main groups including associations with genes related to drug 

effectiveness, migraine and blood pressure (Fig. 3d, and Supplementary Table 6). 

 

Genetic correlations between system segregation and cardiovascular risk factors 

Since we found a distinctive upregulation of the genes of interest in vascular tissue as well as 

enrichment of gene sets related to vascular functions, we evaluated the shared genetic 

environment between system segregation and cardiovascular risk factors using LD score 

regression25. For this purpose, we utilized previously calculated LD summary scores of the 

seven main cardiovascular risk factors (Life’s Simple 7, LS7) defined by the American Heart 

Association24, i.e. blood pressure, blood cholesterol, glycaemic status, smoking, body mass 

index, physical activity and diet (accessible via https://nealelab.github.io/UK 

BiobankB_ldsc/downloads.html; see Supplementary Table 7a for UK Biobank data fields). We 

observed a negative correlation with systolic blood pressure (rg = -0.178, SE=0.055, P = 0.001) 

at a Bonferroni-corrected significance threshold. We also found a negative correlation with 

diastolic blood pressure (rg = -0.145, SE = 0.059, P = 0.014) and a positive correlation with 
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physical activity (rg = 0.153, SE = 0.071, P = 0.033), yet both results did not pass multiple test 

correction (Fig. 3e, and Supplementary Table 8). 

 

Lower blood pressure is associated with higher system segregation  

Next, we estimated the relationship between LS7 cardiovascular risk factors and system 

segregation using observational data of all UK Biobank participants included in the GWAS (see 

Methods). Cardiovascular health scores were coded as poor=0, intermediate=1, and optimal=2 

according to the American Heart Association recommendations and considering 

pharmacological treatment (for cut-off definitions see Supplementary Table 7b)24. All seven 

cardiovascular traits were measured at baseline (on average 7.6 [range: 4-12] years prior to 

brain imaging) and five traits were measured at the time of brain imaging, not including blood 

cholesterol and glycaemic status (blood was drawn only at baseline). All statistical models were 

adjusted for age, age2, sex, education, GM volume, WMH, head motion during fMRI, 

assessment centre (only for UK Biobank) and signal-to-artefact ratio (only for Rotterdam 

Study). Consistent with the genetic correlation analysis, we found a significant association 

between blood pressure and system segregation, where an optimal blood pressure score (i.e. 

SBP <120 mm Hg and DBP <80 mm Hg untreated) was related to higher system segregation 

(poor versus optimal score at baseline visit: beta = 0.142, SE = 0.020, P < 0.001, N = 16,635, 

or at imaging visit: beta = 0.159, SE = 0.021, P < 0.001, N = 16,635; Fig. 4a). A trend-level 

association was found between optimal blood cholesterol levels (LDL-C < 130 mg/dl) and 

higher system segregation which did, however, not survive Bonferroni-correction. No other 

significant association was found (all P > 0.05; Supplementary Table 9). The reported findings 

remained consistent when LS7 risk factors were considered as continuous predictors (systolic 

blood pressure at imaging visit: betaSD = -0.059, SE = 0.007, P<0.001), Supplementary Fig. 4a) 

or after re-running the analysis in a non-imputed dataset (systolic blood pressure at imaging 

visit: betaSD = 0.044, SE = 0.004, P < 0.001, Supplementary Fig. 4b). 
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The replication analysis in the Rotterdam Study sample confirmed a significant association 

between higher blood pressure (continuous predictor) and lower system segregation (betaSD =-

0.058, SE = 0.020, P=0.004, N = 2,414, Fig. 4c).  

 

Mendelian randomization association between genetic predisposition to higher blood 

pressure and lower system segregation 

In two-sample MR analyses, we estimated the causal effect of blood pressure on system 

segregation. 312 independent genetic instruments of systolic blood pressure were identified 

based on GWAS output (all SNPs with P < 5 × 10-8 and r2 ≤ 0.001; Supplementary Data 3) from 

a non-overlapping sample of UK Biobank participants for whom fMRI was not available 

(N=364,061). Random-effects inverse variance weighted (IVW) MR analysis yielded a 

significant negative association between genetic variants of blood pressure and system 

segregation (betaSD = -0.144, SE = 0.043, P = 0.001, Fig. 4d). Test of heterogeneity was 

significant which indicates that one or more variants may be pleiotropic (Cochran’s Q, P < 

0.001). Directed pleiotropy has unlikely biased IVW estimates, since the MR Egger intercept 

was not significantly different form zero (Egger intercept: 0.001, SE = 0.001, P = 0.332) and 

the funnel plot was symmetrical (Supplementary Fig. 5a). Alternative MR approaches, which 

are more robust in the presence of pleiotropy, were performed (Supplementary Method 2). MR-

PRESSO identified four outliers (rs11153071, rs11187838, rs80226362, rs9869147). The 

outlier-corrected estimate from MR-PRESSO was comparable to the IVW result (betaSD = -

0.119, SE = 0.039, P = 0.002) and also the contamination mixture approach (betaSD = -0.118, 

SE = 0.105, P = 0.014) and weighted median approach (betaSD = -0.101, SE = 0.052, P = 0.052) 

yielded relatively comparable associations (Fig. 4d, Supplementary Table 10). Leave-one-out 

sensitivity analysis showed consistent results indicating that the result is unlikely biased by 

outliers (Supplementary Fig. 5b).  
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Higher system segregation is associated with better cognitive performance 

Based on previous studies reporting higher system segregation to be related with better 

cognitive performance in elderly participants, we determined age-dependent and -independent 

effects of system segregation on cognition. Out of the 19,822 UK Biobank participants for 

whom fMRI data was available at the time of download [March 2019], a subsample of 7,342 

participants completed the enhanced psychometric test battery at the brain imaging visit. Of the 

7,342 participants 2,113 underwent a follow-up cognitive assessment on average 2.23 [range 

2-3] years after the imaging visit. Cognitive performance was defined by a factor score 

computed based on six psychometric tests which covered memory, executive functions, as well 

as verbal and non-verbal reasoning skills (see Methods). All models were adjusted for age, age2, 

sex, education, GM volume, WMH volume and assessment centre (only for UK Biobank). We 

found higher system segregation to be associated with better cognition (betaSD = 0.031, SE = 

0.011, P = 0.005, N = 7,342; Fig. 5a). No system segregation × age interaction was observed 

(betaSD=-0.012, SE=0.011, P=0.288, N=7,342). In the subsample with follow-up cognitive 

assessment available, mixed effects regression analysis revealed that higher system segregation 

was associated with slower rates of cognitive decline (betaSD = 0.035, SE = 0.015, P = 0.018, 

N = 2,113, Fig. 5b).  

Out of the 3,288 Rotterdam Study participants with fMRI available [December 2020], 2,012 

participants completed cognitive assessment at the brain imaging visit. Follow-up cognitive 

assessment was not available. Cognitive performance was defined by a factor score computed 

based on five neuropsychological tests which covered memory, executive functions, as well as 

verbal fluency and motor skills (see Methods). We found no main effect of system segregation 

on cognitive performance (betaSD = -0.018, SE = 0.015, P = 0.335, N = 2,012). However, a 

significant system segregation × age interaction was observed (betaSD = 0.037, SE = 0.016, P = 

0.026, N=2,012, Fig. 5c) indicating that higher system segregation was associated with better 

cognition in the oldest but not in the younger participants. This discrepancy between the two 
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samples could be due to differences in study design, sample size or neuropsychological/fMRI 

assessment.  

 

Mendelian randomization association between genetic predisposition to higher system 

segregation and better cognition 

To explore the causal effect of system segregation on cognition, two-sample MR analysis was 

carried out. Ten genetic instruments of system segregation were derived from the current 

GWAS (Supplementary Data 4). GWAS summary results for cognitive performance was 

derived from a non-overlapping UK Biobank sample (N=10,558) for which cognitive 

assessment, but not fMRI, was available. Using the IVW approach, we found a significant 

association between higher genetic disposition of system segregation and cognitive 

performance (betaSD = 0.104, SE = 0.039, P = 0.008, Fig. 5d). Pleiotropy unlikely influenced 

the results based on a non-significant test of heterogeneity (Cochran’s Q, P = 0.827). A 

comparable positive association between system segregation and cognition was also found 

when using alternative MR methods (Supplementary Table 10). MR-PRESSO identified no 

outliers. 
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Discussion 

We discovered 12 lead variants, 9 independent risk loci and 66 genes that were associated with 

differences in the brain’s segregated network architecture. Many of the variants related to 

system segregation point towards vascular functions. LD score regression indicated a specific 

link between higher systolic blood pressure and lower system segregation, which was 

confirmed in observational and MR analyses, and replicated in an independent sample. In 

addition, we extended earlier work by MR evidence demonstrating that lower system 

segregation was related to poorer cognition.  

 

The top SNPs discovered in the GWAS linked to system segregation, and which are likely 

regulatory or deleterious, were related to the INPP5A (rs138004790, rs9645539, rs1133400) 

and PLCE1 (rs2274224) genes. PLCE1 was also the top hit of the gene-based analysis. Both 

genes play a key role in calcium signalling by generating (PLCE1) or modulating (INPP5A) the 

second messenger molecule inositol 1,4,5-trisphosphate (IP3) which in turn binds to the IP3 

receptor, stimulating the transient release of calcium from the endoplasmic reticulum. Since 

inositol calcium signalling is such a fundamental cellular process, it likely contributes to 

multiple neurobiological mechanisms underlying functional connectivity. This notion is 

supported by two previous UK Biobank GWAS highlighting the rs2274224 SNP and a LD 

proxy of rs9645539 (i.e. rs11596664, r2=0.99) as two of the top hits for frontal cortex 

connectivity21,36. In another UK Biobank study, the INPP5A and PLCE1 regions were 

associated with the proportion of brain age explained by changes in functional connectivity37. 

Another strong genetic signal came from a locus on chromosome six encompassing the FHL5 

and UFL1 genes. By regulating smooth muscle cell contraction, multiple of the SNPs we 

identified in this locus have previously been implicated in blood pressure (rs11153018, 

rs3798293)38, cerebral blood flow (rs2971609)39 and migraine (rs7775721, rs10786156)40. The 

same mechanisms may explain the link to system segregation, and more generally to functional 
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connectivity of many brain networks as shown earlier (rs3849198, rs11153070, rs12204342, 

rs6921291)21,36.  

 

Four of the nine loci (#1,3,6,9) we discovered in the current study were not found in the two 

previous GWAS on functional connectivity,21,36 suggesting a more specific contribution to 

system segregation. An interesting novel locus was detected on chromosome six with the lead 

SNP rs7766042 being a regulatory variant of the FOXF2 gene. This SNP is a known risk variant 

for ischemic stroke (OR: 2.96) and small artery occlusion (OR: 3.35)41. Inactivation of FOXF2 

in animals resulted in cerebrovascular defects and a breakdown of the blood-brain barrier due 

to FOXF2 crucial role in the differentiation of brain pericytes42. 

We found another novel locus on chromosome seventeen implicating the Epsin 2 (EPN2) gene 

which is enriched in the brain and involved in clathrin-mediated endocytosis. Mice 

conditionally lacking epsins display embryonic lethality because of vascular defects suggesting 

that epsins are required for normal development of the vasculature43. A recent GWAS in the 

UK Biobank related an LD proxy of the lead SNP rs72639204 (i.e. rs6587216, r2=0.97) to 

cerebral white matter hyperintensity volume44. Structural and functional connectivity are highly 

interrelated45 and reduced integrity of the former seems a plausible mechanism for 

compromising system segregation. In addition, these findings may suggest that changes in 

system segregation could be a novel neuroimaging marker of cerebrovascular disease, a 

hypothesis which should be tested in future research.  

 

This potential link to vascular pathways was affirmed in our post-GWAS analysis. Besides the 

SNP and locus-based associations reported above, the identified genes were significantly 

overexpressed in vascular tissue (particularly in arteries) and enriched for pathways critical for 

tissue remodelling and neurovascular coupling. These findings appear plausible considering the 

neurons and vascular cells have a close developmental, structural, and functional relationship46. 
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Neurovascular coupling, i.e. the increased local blood flow and tissue oxygenation in response 

to neuronal activity, is a fundamental brain property that supports local neuronal activity 

through oxygen and metabolic supply. The vascular responsivity has thus a vital function in 

sustaining neuronal activation during cognitive processes. Resting-state fMRI utilizes 

neurovascular coupling to infer functional connectivity at the scale of ultra-slow vasomotor 

fluctuations of brain vessels that oscillate at 0.1 Hz matching that of ultra-slow rhythmic neural 

oscillations47. Experimentally induced changes in vascular reactivity after inhalation of CO2-

enriched air propagate at the network level, mirroring the spatial distribution of fMRI detected 

functional large-scale networks such as the default model network48. Therefore, one possibility 

is that disturbances of vascular reactivity such as related to hypertension may alter functional 

network connectivity at a global scale including network segregation. However, direct evidence 

for changes in oscillatory vascular activity altering functional connectivity is missing to date. 

The current results provide genetic evidence for systemic vascular alterations to be associated 

with system segregation.   

 

Of the seven main cardiovascular risk factors, we showed that higher blood pressure was 

distinctively related to lower system segregation across genetic and observational correlation 

analyses and independent samples. Our MR analysis in the UK Biobank provides additional 

evidence for a causal role of the effect of higher blood pressure on lower system segregation. 

Recent data in non-demented adults at risk of Alzheimer’s disease consistently showed that 

high blood pressure, but not high cholesterol, was linked to a global reduction of network 

connectivity assessed over time49. Although the exact mechanisms of how hypertension affects 

system segregation are insufficiently understood, there are many biologically plausible 

pathways. At the molecular level, hypertension increases oxidative stress due to excess 

production of vascular reactive oxygen species (ROS)50. Oxidative and mechanic stress have 

been linked to profound cerebrovascular changes (including atherosclerosis, arterial stiffening, 
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impaired cerebrovascular autoregulation and reactivity;  for reviews see51,52), for some of which 

we found evidence in the pathway analysis. Remodelling and stiffening of blood vessels should 

protect downstream microvessels from the stress of chronic hypertension but which become 

maladaptive53. Our pathway analysis consistently showed enrichment for collagen and matrix 

metalloproteinases gensets which play an essential role in angiogenesis and stiffening of blood 

vessels53. Increased production of ROS has been also related to reduced endothelial nitric oxide 

(NO) bioavailability, impaired NO-dependent endothelial vasodilation, ultimately 

compromising neurovascular coupling which is essential for neuronal activity51. To better 

understand the underlying processes between high blood pressure and system segregation, it 

would be interesting to investigate the relationship in conjunction with other relevant imaging 

modalities such as blood perfusion, arterial stiffness and calcification imaging.  

 

By extending earlier observational analyses, our current MR approach, additionally 

demonstrated that higher system segregation contributes to better cognitive performance. The 

cross-sectional and longitudinal observational data in the UK Biobank aligns with this 

conclusion. In the Rotterdam Study, higher system segregation was associated with better 

cognitive performance only in the oldest participants, a finding which may suggest that more 

clearly segregated brain networks become especially relevant for individual at high risk of 

cognitive decline. This idea, that higher system segregation reflects one aspect of brain 

resilience, is supported by our previous study where we showed that higher system segregation 

was related to better cognition in the presence of Alzheimer’s disease pathology16. 

Alternatively, differences in the UK Biobank’s and Rotterdam Study’s design and sample size 

may have caused the discrepancy. 

 

Another interesting but yet to be tested hypothesis emerging from the current data implicates 

that changes in system segregation due to high blood pressure may be a pathway by which poor 
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cardiovascular health is linked to cognitive impairment and dementia54. In agreement with this 

notion are the results from a recent study in the UK Biobank which show that a history of 

hypertension was related to reduced hippocampus connectivity which in turn was associated 

with poorer memory performance55. Together, these results may be valueable for blood pressure-

lowering randomized controlled trials which so far failed to show a clear treatment effect on 

dementia outcome56 in contrast to the beneficial effects reported across many epidemiological 

studies57. Global measures of network connectivity, such as system segregation, may be 

considered as complementary imaging markers to detect intermediate treatment effects before 

cognitive decline or dementia occur.  

 

The current study is not without limitations. First, it is important to note that all study 

participants were of European ancestry and our findings should therefore be generalized only 

with great caution. Second, the SNP heritability estimate of the current study was significantly 

lower than the ones reported previously in family-based studies, but is in a comparable range 

as those observed by previous GWAS on functional connectivity21,36. Third, the fMRI protocols 

and MRI scanners of the UK Biobank and Rotterdam Study are quite different and the 

Rotterdam Study subsample in which fMRI was acquired is relatively small. Both factors have 

likely reduced the statistical power of the polygenic prediction analysis. On the other hand, the 

association strength between higher blood pressure and lower system segregation is identical 

between the two cohorts, supporting the robustness of our findings.  

 

In conclusion, the current genetic and observational results highlight the importance of blood 

pressure control for maintaining segregated brain networks which in turn was shown to benefit 

cognitive functions in the general aging population. 
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Methods 

UK Biobank 

Participants: The UK Biobank is an ongoing, longitudinal cohort study which aims to identify 

genetic and nongenetic determinants of the diseases of middle and old age58. Supplementary 

Fig. 1a provides a schematic overview of the three visits relevant for the current study. Baseline 

data collection including genotyping of 500,000 participants aged 40–69 years had been carried 

out between 2006 and 2010. From 2014 onwards, a subsample of participants was reinvited for 

brain imaging (including fMRI), while a third follow-up started in 2019. A flowchart of 

participant selection can be found in Supplementary Fig. 1b. After quality assessment 

performed by UK Biobank59, fMRI data of 19,822 participants were available and downloaded 

as of data release in March 2019. We additionally excluded participants for whom fMRI 

connectivity analysis failed (N =760) and participants with a diagnosis of dementia or stroke 

(N = 112). After quality assessment of participants’ genotype data, a total of 16,635 participants 

remained in the current main analysis (i.e. GWAS on system segregation).  

Genotyping: At the baseline visit, participants were genotyped using either the UK Bileve or 

Axiom array. We used the imputed genetic dataset made available by UK Biobank in its version 

3 release. This consists of ~96 million genotypes imputed from the Haplotype Reference 

Consortium (HRC) reference panel and a merged UK10K + 1000 Genomes reference panel. In 

addition to the quality control carried out by UK Biobank60, we  excluded samples with a call 

rate below 97%, gender mismatches, excess autosomal heterozygosity, family relations and 

non-white British ancestry, as well as vaiants with minor allele frequencies below 1%,. 

Imaging: Details about the acquisition and processing of the UK Biobank imaging data can be 

found in the online documentation 

(http://Biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf). Briefly, fMRI has been 

performed on a Siemens Skyra 3T with the following parameters: 32-channel RF receive head 

coil, TR = 753 ms, TE = 39 ms, Field-of-view (FOV) = 88 x 88 x 64, resolution = 2.4 mm3, 8-
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fold multislice acceleration and for 6:10 min (490 timepoints). Preprocessing and group-level 

independent component analysis (ICA) were carried out by UK Biobank via FSL packages. 

This preprocessing pipeline included motion correction, grand mean intensity normalization, 

high-pass temporal filtering, echo-planar image unwarping (incorporating T1-registration), 

gradient distortion correction (utilizing acquired field maps), removal of structured artifacts via 

FSL’s ICA+FIX and normalization to MNI space22,59,61. T1 and T2-FLAIR images were 

acquired during the same imaging session. We used total GM volume (data field: 25006) and 

total volume of WMH (data field: 25781) as global estimates of structural brain integrity. 

Cognitive assessment: At the imaging visit, participants underwent the enhanced version of the 

UK Biobank cognitive test battery62 

(https://Biobank.ndph.ox.ac.uk/showcase/showcase/docs/Fluidintelligence.pdf). We included 

the following tests: Pairs Matching Test (visual memory, data field: 399, log+1 transformed), 

Numeric Memory Test (working memory, data field: 4282), Symbol Digit Substitution Test 

(processing speed, data field: 23324), Trail Making Test part B (executive function, data field: 

6350, log transformed), Fluid Intelligence Test (verbal and numeric reasoning, data field: 

20016), and Matrix Pattern Completion (non-verbal reasoning, data field: 6373). Complete 

cognitive data was available for 19,630 participants of whom 7,347 individuals also had a 

successful fMRI assessment. Confirmatory factor analysis (R lavaan package, v0.6.7) was used 

to compute a score of general cognitive performance for each participant. All cognitive tests 

showed a significant intercorrelation of Pearson r-values between 0.16 and 0.48 which are 

comparable to previous reports62. Factor loadings of the single cognitive scores on the latent 

variable (i.e. general cognitive abilities) were moderate to high (range of beta-values: 0.30 – 

0.7) and fit statistics indicated a valid model fit (adjusted goodness of fit index (AGFI) = 0.960; 

Supplementary Table 11a).  

 

Rotterdam Study 
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Participants: The Rotterdam Study is an ongoing, longitudinal, population-based cohort study 

in the well-defined Ommoord district in the city of Rotterdam in the Netherlands which aims 

to determine the causes of common diseases in the elderly23. A schematic overview of the 

relevant visits and selection of participants is provided in Supplementary Fig. 1c and d. The 

Rotterdam Study was initiated in 1990 with a total of 14,926 participants being included aged 

45 years or older. Genotyping was performed in 11,502 participants at the initial visit. fMRI 

was acquired between 2012 and 2016 covering a total of 3,288 participants. After excluding 

participants with poor fMRI data quality (n=293), cortical infarcts on MRI (n=80), and with 

prevalent diagnosis of dementia or stroke (n=37), 2,878 participants remained. After quality 

assessment of participants’ genetic data, a total of 2,414 participants were included in the 

current main analysis (polygenic prediction of system segregation). 

Genotyping: Genotyping was performed using Illumina 550K, 550K duo, or 610 quad arrays. 

Genotypes were imputed using the MaCH/minimac software to the 1000 Genomes phase I 

version 3 reference panel (~30 million SNPs)63. Samples with a call rate below 97.5%, as well 

as gender mismatches, excess autosomal heterozygosity, duplicates or family relations, ethnic 

outliers, variants with call rates lower than 95.0%, failing missingness test, Hardy-Weinberg 

equilibrium P < 1e-06, and minor allele frequencies below 1%, were removed. 

Imaging: Neuroimaging was performed on a Signa Excite II GE 1.5T with the following 

parameters: 8-channel head coil, TR = 2900 ms, TE = 60 ms, FOV = 64 x 64 x 31, resolution 

= 3.3 mm3, and for 7:44 min (165 timepoints). The FSL-pipeline used for fMRI preprocessing8 

was largely comparable to the pipeline used in UK Biobank. Due to a technical issue, 

participants were scanned with the phase and frequency encoding direction swapped. In order 

to correct for any ghost artefacts, we computed a signal-to-artefact ratio defined by dividing the 

median intensity of any ghost artefacts outside of the brain by the median intensity of signal 

within the brain for each participant8. Signal-to-artefact ratio was considered as a covariate in 

the statistical analyses and scans with signal-to-artefact ratio > 0.1 were excluded. To estimate 
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overall structural brain integrity, measures of total grey matter and WHM volume were derived 

from T1 and T2-FLAIR images. 

Cognitive assessment: Cognitive tests were performed at the imaging visit or no more than 1 

year (mean = 0.36 years) apart from fMRI64. The following tests were included: Delayed Recall 

Task (verbal memory), Verbal Fluency Test (crystallized abilities), Letter-Digit Substitution 

(processing speed), Stroop Task (executive function), Purdue Pegboard Test (motor skills). 

Complete neuropsychological data was available for 10,164 participants of whom 2,012 also 

had fMRI. All tests showed a significant intercorrelation with Pearson r-values ranging from 

0.29 to 0.52. Identical to the UK Biobank, a score of general cognitive performance was 

computed. Factor loadings were moderate to high with standard coefficients between 0.54 and 

0.79. Fit measures showed an excellent model fit (AGFI = 0.979; Supplementary Table 11b). 

 

Functional connectivity analysis and system segregation  

We used the brain parcellation scheme generated based on the UK Biobank fMRI dataset59. In 

brief, group-level ICA was performed on the preprocessed fMRI data, using FSL’s MELODIC 

to estimate 100 components. Next, The UK Biobank Imaging Core classified the components 

into either noise (e.g. stemming from pulsation or motion) or signal components (stemming 

from a neuronal source). Fig. 1a illustrates the 55 signal components as an overlay on a standard 

brain template. A 3D rendering of each signal components can be inspected via UK Biobank’s 

online visualization tool 

(https://www.fmrib.ox.ac.uk/UKBiobankiobank/group_means/rfMRI_ICA_d100_good_nodes

.html). Dual-regression was performed in both the UK Biobank and Rotterdam Study to 

estimate participant-specific timecourses for all 55 component which were then entered into 

connectivity analysis (components are for this purpose referred to as networks). First, we 

computed the standard deviation of the networks’ timecourses as a measure of within-network 

connectivity strength (data field: 25755). Second, we computed the average correlation between 
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each network’s timecourse with every other network’s timecourse as a measure of between-

network connectivity strength. For this purpose, the node-by-node cross-correlation matrix was 

computed for each participant and correlation coefficients were normalized by Fisher’s r-to-z-

transformation (data field: 25751). Only positive ROI-to-ROI correlations were kept according 

to previously established protocol for computing system segregation3.  

System segregation was then computed as the difference between participants’ connectivity 

strength within versus between brain networks given by the following formula: 

 

𝑠𝑦𝑠𝑡𝑒𝑚	𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 =
�̅�	! − �̅�	"
�̅�	!

 

 

where �̅�	! 	is the average connectivity strength of a given ICA component and �̅�	" is the average 

connectivity strength between a given ICA comment and all other ICA components. Global 

system segregation was computed as the mean segregation across all 55 networks. Higher 

segregation values reflect a stronger subdivision of the brain connectome into clearly separated 

networks (see Fig. 1c-f for a visualization). To ensure that the parcellation scheme estimated in 

UK Biobank is generalizable to the Rotterdam Study sample, we repeated the high dimensional 

ICA, this time using data from the Rotterdam Study participants (estimating 100 components 

and retrieving 50 signal components) and again performed connectivity analysis on the 

Rotterdam-specific parcellation scheme. Resulting system segregation scores correlated highly 

(r=0.90) with the scores computed on the UK Biobank-based parcellation and the respective 

statistical results remained comparable when using either score. For consistency, we decided to 

report results which were retrieved from the UK Biobank-based parcellation.  

 

Genetic association of system segregation in UK Biobank 
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GWAS on system segregation was performed in the UK Biobank dataset (N=16,635) using 

PLINK2 (https://www.cog-genomics.org/plink/2.0/). To account for confounding effects due 

to population structure, the first twenty genetic principal components were considered as 

covariates, together with age, sex, genotype array, and assessment centre. SNP associations are 

reported to be significant when reaching a genome-wide significance threshold (P < 5  × 10-8). 

We identified significant independent (r2 < 0.6) and lead SNPs (r2 < 0.1) as well as genomic 

risk loci including all independent signals that are physically close or overlapping in a single 

locus (200kb). The 1000G phase 3 reference panel was used to calculate r2. SNP heritability 

was estimated using LD score regression25. Precalculated LD scores from the 1000 Genomes 

European reference population were obtained online 

(https://alkesgroup.broadinstitute.org/LDSCORE/). 

Functional annotation: For functional annotation, we considered all independent SNPs together 

with all SNPs in LD with the independent SNPs and with P-values < 0.05 (N=659). We 

performed ANNOVAR65 gene-based annotation as implemented in FUMA26 (v.1.3.5e) using 

refSeq genes. In addition, CADD27 and RegulomeDB31 scores were identified for those SNPs 

by matching chromosome, position, reference and alternative alleles. Chromatin modification 

of each SNP was characterized by FUMA ChromHMM66. In this process, a multivariate Hidden 

Markov Model is used to predict 15-core chromatin states base on 5 histone marks from 127 

different tissue/cell types. 

Gene-based analysis: We used two strategies to identify genes related to system segregation. 

For positional mapping, we mapped all SNPs in the risk loci to genes based on physical distance 

(within a 10 Kb window) from known protein-coding genes in the human reference assembly 

(GRCh37/hg19). For genome-wide gene-based association analysis (GWGAS), SNP-based P-

values from the GWAS output were tested with relation to the 19,427 protein-coding genes 

from the NCBI 37.3 gene definitions using MAGMA33 (v1.07). After functional annotation, 

18,335 genes were covered by at least one SNP. Gene association tests were performed taking 
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LD between SNPs into account. To account for multiple testing, we applied a stringent 

Bonferroni correction setting the significance threshold to P < 2.73  × 10-6 (i.e. 0.05/number of 

genes). We used all unique genes found via positional mapping and GWGAS as input for post-

GWAS analyses. 

Differential tissue expression: Gene expression analysis was carried out in FUMA. Input genes 

were tested against the GTEx.v8 data set of 54 tissue types using the hypergeometric test. 

Significant enrichment is reported at Bonferroni-corrected P < 9.26  × 10-4 (i.e. 0.05/number of 

tissues) and differentiating downregulated and upregulated genes dependent on the sign of the 

hypergeometric test. 

Pathway enrichment: We used FUMA to test for relationships between genes associated with 

system segregation and 13,139 predefined gene sets related to biological/molecular pathways 

(canonical pathways: N=2,868 and GO pathways: N=10,271) which were obtained from the 

Molecular Signatures Database (MSigDB, v7.0). Additionally, we tested for enrichment of gene 

sets which were previously related to other traits as reported in the GWAS catalogue (N = 

2,195). FUMA performs hypergeometric tests to evaluate whether genes of interest are 

overrepresented in any of the pre-defined sets. Results are reported at Bonferroni-corrected P-

value taking into account the total number of gene-sets in each category.   

Genetic correlation: Using LD score regression25, we estimated genetic correlations between 

system segregation and cardiovascular risk scores. SNP summary statistics for system 

segregation were derived from the current GWAS, while publicly available summary statistics 

were used for all other traits (https://nealelab.github.io/UK BiobankB_ldsc/downloads.html). 

 

Polygenic prediction in the Rotterdam Study 

For out-of-sample prediction, we computed a PRS of system segregation for each Rotterdam 

Study participant using PRSice232 (v2.3.3). PRS was created as a summation of an individual’s 

genotype data weighted by each SNP’s effect size that was estimated from the GWAS summary 
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statistics in the UK Biobank. Clumping was carried out to further remove SNPs that are in LD 

with each other at r2 < 0.25 within a 200 bp window. P-thresholding (lowest to largest P-value: 

 5 × 10-8 - 0.5 in intervals of  5 × 10-5) was used to obtain a PRS with the highest possible model 

fit.  

 

Assessment of cardiovascular health  

Cardiovascular risk factors were assessed for each UK Biobank participant based on Life’s 

Simple seven (LS7) which include blood pressure, blood cholesterol, glycaemic control, 

smoking status, body mass index, physical activity, and diet (Supplementary Table 7a). 

Following the American Heart Association’s recommendations24, each measure was divided 

into three levels (coded as poor=0, intermediate=1, and optimal=2) as detailed in 

Supplementary Table 7b. All scores expect of cholesterol and glycaemic control (blood samples 

were collected only at baseline) were available for both the baseline and the brain imaging visit. 

Missing raw values were imputed by multiple imputations using chained equations with 20 

imputations and all remaining variables as predictors (R mice package, v3.11.0). The amount 

of missing data and the quality of imputation are visualized in Supplementary Fig. 6.  

 

Mendelian randomization  

Two-sample MR analyses were carried out to assess the relationship between (1) systolic blood 

pressure (as exposure) and system segregation (as outcome) and (2) system segregation (as 

exposure) and cognition (as outcome). Genetic instruments of system segregation were derived 

from the current GWAS. Two additional GWAS of blood pressure and cognitive performance 

were conducted for the purpose of two-sample MR analysis (Supplementary Methods 1) in the 

largest non-overlapping samples of UK Biobank participants that had not undergone fMRI 

assessment and hence were not included in the current GWAS on system segregation. Genetic 

instruments were defined as all SNPs with P <  5 × 10-8 and r2 < 0.001 based on the European 
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1000 Genomes panel. As the primary method of analysis, individual MR estimates were pooled 

using a random-effects inverse-variance weighted (IVW) estimator67. MR outcome derived 

from the IVW method might be biased if the genetic variants are pleiotropic. As a measure of 

overall pleiotropy, heterogeneity in the IVW MR analyses was assessed with the Cochran’s Q 

statistic68. While it is assumed that balanced horizontal pleiotropy leads to random effects with 

zero means and hence no bias, directional (unbalanced) pleiotropy can lead to biased IVW 

estimates. To ensure that this was not the case, we computed the MR Egger intercept68, which 

should not be significantly different from zero in case of balanced pleiotropy. We additionally 

inspected funnel plots, which should show a symmetrical distribution. Alternative MR methods 

were applied, which are more robust to pleiotropy. These were the weighted median estimator69, 

the contamination-mixture method70, and MR-PRESSO71. Details about these approaches and 

their underlying assumptions are provided in Supplementary Methods 2. All analyses were 

performed in R using the MendelianRandomization (v0.4.3), TwoSampleMR (v0.5.5) and the 

MRPRESSO (v1.0) packages. 

 

Statistical analysis 

All statistical analyses were performed in R v3.6.3 and a P-value below 0.05 (two-sided) was 

considered significant when not stated differently. All continuous values had been scaled and 

centred before entered into the statistical models and hence beta values represent standardized 

regression coefficients. We included age (data field: 21022), age2, sex (data field: 31), education 

(data field: 6138; categorized as higher (college/university degree or other professional 

qualification) or lower), assessment centre visited (data field: 54; applies only to UK Biobank 

– all Rotterdam Study data was acquired at the same centre), total GM volume (data field: 

25006), and WMH volume (data field: 25781) as covariates into all statistical models unless 

differently stated. 
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System segregation-vascular risk relationship: Multiple linear regression analyses were used 

to estimate the relationship between system segregation and LS7 vascular risk factors assessed 

at the baseline or brain imaging visit. We followed the recommended strategy for multiple 

imputation analysis72 and estimated first the statistical model in each imputed dataset (N=20) 

and then pooled the parameter estimates of interest into one final estimate. This strategy ensures 

valid results, accounting for the missing data and having the correct type I error rate. Performing 

the analyses in the non-imputed dataset did not change our conclusions and thus we decided to 

report results for the imputed dataset (N = 16,635). All models included the above-mentioned 

covariates as well as head motion during fMRI assessment quantified by the mean framewise 

displacement (data field: 25741). Since multiple tests had been performed, we Bonferroni-

adjusted the P-value threshold by the number of cardiovascular risk factors, i.e. 0.05/7 = 0.007. 

The scores are classified on 3-levels (poor, intermediate, optimal). In order to ensure that this 

classification scheme has not biased our results, we additionally performed regression analyses 

on the continuous values. Finally, the discovered associations in the UK Biobank sample were 

replicated in the Rotterdam Study. Multiple linear regression models were used for this purpose 

including above mentioned covariates, head motion as well as signal-to-artefact ratio.  

Cognition-system segregation relationship: Linear multiple regression models were used to 

estimate the association between system segregation and cognitive performance in the UK 

Biobank (N = 7,342) and Rotterdam Study (N = 2,012). We specified a main effect model and 

a system segregation  × age interaction model on cognitive performance. We additionally 

investigated the effect of system segregation on cognitive decline in a subsample of UK 

Biobank participants who had a follow-up cognitive assessment available (N = 2,113). To this 

end, we used a linear mixed-effects model to estimate a system segregation  × time interaction 

effect on cognitive performance, while including a random intercept for each participant and 

the above-mentioned covariates as fixed effects.  
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Two-dimensional density plots: Results of multiple linear regression analyses are displayed 

by two-dimensional density plots created with the geom_pointdensity function 

(https://github.com/LKremer/ggpointdensity). Since we used the ‘n_neighbor’ calculation with 

the default bandwidth, the color-code of individual points represents the number of 

neighbouring points.  

 

Data availability 

The data that supports the findings of this study were obtained from the UK Biobank under 

application numbers 33018 and 2532 (https://www.ukbiobank.ac.uk) and the Rotterdam Study 

(http://www.epib.nl/research/ergo.htm). Researchers may access these datasets upon request 

and in accordance with the data use agreement. PLINK (https://zzz.bwh.harvard.edu/plink/) and 

PRSice (https://www.prsice.info) were used for GWAS and PRS analysis. In our post-GWAS 

analyses, we used LDSC regression (https://github.com/bulik/ldsc), precalculated LD scores 

(https://alkesgroup.broadinstitute.org/LDSCORE/), FUMA (https://fuma.ctglab.nl) and 

MAGMA (https://ctg.cncr.nl/software/magma. 
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Tables 

Table 1 Sample characteristics 

 UK Biobank Rotterdam Study 

N 16,635 2,414 

Age, y 63.14(7.44) 67.22(9.04) 

Sex, women 8,799(52.89) 1,292(53.52) 

Education, college degree 7,186(43.20) 655(27.14) 

Total GM volume, ml 617.66(55.22) 534.81(62.07) 

Total WMH, ml 4.55(5.86) 5.87(9.19) 

Head motion fMRI, FD 0.12(0.06) 0.07(0.03) 

Systolic BP, mmHg 138.83(18.94) 136.63(19.10) 

Diastolic BP, mmHg 78.54(10.55) 79.50(11.21) 

Body mass index, kg/m2 26.58(4.39) 27.13(3.91) 

Smoking, never 10,460(62.88) 813(33.68) 

Smoking, previous 5,579(33.54) 1,398(57.90) 

Smoking, current 596(3.58) 203(8.42) 
Mean(SD) for continuous variables and count(%) for categorial variables; BP blood pressure, FD frame-
wise displacement, GM grey matter, ml millilitre, mmHg millimetre of mercury, WMH white matter 
hyperintensities 
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Figures 

 

Fig. 1 Visualization of the sample-average functional brain connectome and comparisons 
between participants with highest versus lowest system segregation 
Average functional connectivity within and between 55 networks are displayed in a for UK 
Biobank and in b for Rotterdam Study participants. The 55 networks and associated spatial 
maps (axial view) had been derived from high-dimensional ICA performed in the UK Biobank 
sample. Within-network connectivity is illustrated as the group-averaged standard deviation 
(amplitude) of each network. Larger spheres represent stronger within-network connectivity. 
Between-network connectivity is illustrated as the group-averaged r-to-z-transformed 
correlation coefficients thresholded at 2/3 of the full range. Thicker bundles represent stronger 
between-network connectivity. The functional connectome of the five percent of participants 
with highest system segregation is displayed in c for the UK Biobank and in e for the Rotterdam 
Study as well as for the five percent of participants with lowest system segregation in d for the 
UK Biobank and in f for the Rotterdam Study. 

Cereb cerebellar network, DAN dorsal attention network, DMNa default mode network 
anterior, DMNp default mode network posterior, FPN frontoparietal network, SMN 
somatomotor network, Subcort subcortical network, TempPar temporoparietal network, VAN 
ventral attention network, Vis visual network 
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Fig. 2 Genome-wide association analysis of system segregation in UK Biobank (N=16,635) 
a Negative log10-transformed P-values for each SNP (y-axis) are plotted by chromosomal 
position (x-axis). The red lines represent the thresholds for genome-wide, statistically 
significant associations (P = 5 × 10-8). Blue and green dots represent the independent significant 
(N=53) and lead SNPs (N=12) respectively among the 536 genome-wide significant SNPs 
(listed in Supplementary Data 1). b The quantile-quantile plot shows observed (y-axis) versus 
expected (x-axis) SNP P-values. The h2 value denotes SNP-based heritability computed by LD 
score regression. c Results of gene-based genome-wide association analysis (GWGAS) as the 
negative log10-transformed P-values for each gene (y-axis) plotted by chromosomal position 
(x-axis). The red line marks the genome-wide significance threshold at 2.73 × 10-6 (i.e. 
0.05/number of genes). The 17 significantly associated genes are labeled. d Venn diagram 
shows overlap between 66 unique genes implicated by position mapping with FUMA or 
GWGAS. 
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Fig. 3 Post-GWAS analyses results of system segregation in the UK Biobank (N=16,635) 
a Results of differential gene expression analysis are plotted as the negative log10-transformed 
P values for 54 GTEx tissue types. The red line marks the Bonferroni-corrected significance 
threshold at 9.26 × 10-4 (i.e. 0.05/number of tissues). FUMA differentiates upregulated and 
downregulated genes dependent on the sign of the t-test. We color-coded brain tissue in blue 
and vascular tissue in red. Results of gene set analysis are displayed in b for canonical 
(N=2,868) and in c for GO (N=7,573) pathways as well as in d for genes reported in the GWAS 
catalogue. Only associations at a Bonferroni-corrected significance threshold (0.05/number of 
pathways in each category) are shown. Bars indicate the negative log10-transformed P-value, 
while the squares show the inputted genes that are part of the enriched gene sets. All analyses 
were performed using FUMA26. e Results of LD score regression analyses are shown testing 
for a genetic correlation between system segregation and seven cardiovascular risk factors 
(blood pressure, blood cholesterol, glycaemic control, smoking status, body mass index, 
physical activity and diet) measured by 27 variables. Statistical results for variables related to 
diet are in Supplementary Table 8 (all P > 0.05). Point estimates for genetic correlations (rg) 
and 95% confidence intervals are shown. Bonferroni-corrected P-values are color-coded in red.  
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Fig. 4 Association between cardiovascular risk factors and system segregation  
a Whisker plot displays associations between Life’s Simple 7 (LS7) cardiovascular risk factors 
(all classified on a 3-point scale according to AHA criteria) and system segregation (z-score) 
in UK Biobank participants. All scores were assessed at baseline and non-blood-based 
measurements were re-assessed at the brain imaging visit. Beta coefficients together with 95% 
confidence intervals are shown. Scatter plots show the main effect of continuous values of 
systolic blood pressure (mmHg) on system segregation (z-score) in b for UK Biobank 
participants (at imaging visit) and in c for Rotterdam Study participants (replication analysis). 
All statistical results are derived from multiple regression models including age, age2, sex, 
education, grey matter volume, white matter hyperintensity volume, head motion during fMRI 
and assessment centre (only UK Biobank) or signal-to-artefact ratio (only Rotterdam Study) as 
covariates. Standardized beta values and standard errors (SE) are reported. Linear model fits 
are displayed together with 95% confidence intervals. d The scatter plot displays the results of 
two-sample Mendelian randomization analysis in the UK Biobank estimating the causal effect 
of systolic blood pressure (x-axis) on system segregation (y-axis). The genetic instruments of 
blood pressure (N=312) were derived from GWAS results of a non-overlapping UK Biobank 
sample without brain imaging (N=364,061). Statistics are reported for the main analysis using 
random-effects IVW (green line). Results of alternative MR approaches are additionally 
displayed. 
ConMix contamination mixture method, IVW inverse-variance weighted method, PRESSO 
Pleiotropy RESidual Sum and Outlier method 
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Fig. 6 Association between system segregation and cognitive performance  
a Scatter plot shows the main effect of system segregation (z-value) on cognitive performance 
(z-value), i.e. a factor score derived from six tests examining distinct cognitive domains, in the 
UK Biobank sample. b Line plot displays the interaction between study visit (x-axis) and 
system segregation (color-coded) on mean predicted cognitive performance (y-axis) in UK 
Biobank participants with cognitive follow-up assessment. Note that we plotted the fitted value 
of cognitive performance, when the random effect for participant is held constant. c Results of 
the cross-sectional replication analysis in the Rotterdam Study sample are illustrated as the 
interaction between age (x-axis) and system segregation (color-coded) on cognitive 
performance (y-axis), i.e. a factor score derived from five tests examining distinct cognitive 
domains. Statistical results are derived from linear regression models (for a, c) or a linear mixed 
effects model (for b) including age, age2, sex, education, grey matter volume, white matter 
hyperintensity volume, assessment centre (only UK Biobank) and random intercept for 
participant (only mixed-effects model) as covariates. Linear model fits are indicated together 
with 95% confidence intervals. d Scatter plot displays the association between genetic 
predisposition of system segregation (x-axis) and cognition (y-axis) computed by MR analysis 
in the UK Biobank sample. Genetic instruments for system segregation (N=10) were derived 
from the current GWAS results. The genetic variants for cognition are based on GWAS results 
of a non-overlapping UK Biobank sample with cognitive assessment, but no fMRI available. 
Statistics are reported for the main analysis using random-effects IVW (green line). Results of 
alternative MR approaches are additionally shown (for full statistical results see Supplementary 
Table 10). In all plots, we reported standardized beta values. 

IVW inverse-variance weighted method, PRESSO Pleiotropy RESidual Sum and Outlier 
method, ConMix contamination mixture method.  
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