1 Emergence of SARS-CoV-2 variant B.1.575.2 containing the E484K

2 mutation in the spike protein in Pamplona (Spain) May-June 2021

3 Running title: Emergence of B.1.575.2 SARS-CoV-2 lineage in Pamplona (Spain)

- 4 Camino Trobajo-Sanmartín^{1,2*}, Ana Miqueleiz^{1,2}, María Eugenia Portillo^{1,2}, Miguel
- 5 Fernández-Huerta^{1,2}, Ana Navascués^{1,2}, Pilar Sola Sara³, Paula López Moreno³,
- 6 Gonzalo R Ordoñez⁴, Jesús Castilla^{2,5,6}, Carmen Ezpeleta^{1,2}
- ⁷ ¹ Departament of Clinical Microbiology, Complejo Hospitalario de Navarra. Pamplona,
- 8 Spain.
- 9 ² Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
- ³ Servicio de Urgencias Extrahospitalarias (SUE), Pamplona, Spain
- ⁴ Centro de Secuenciación NASERTIC, Pamplona, Spain.
- ⁵ Instituto de Salud Pública de Navarra, Pamplona, Spain.
- ⁶ CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
- 14 *Corresponding author: Camino Trobajo-Sanmartín
- 15 Email: <u>camino.trobajo.sanmartin@navarra.es</u>
- 16 Keywords: SARS-CoV-2, E484K mutation, lineage B.1.575, variant, sequencing

17

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

18 Abstract

19	With the emergence of new SARS-CoV-2 variants and the acquisition of novel
20	mutations in exiting lineages, the need to implement methods capable of monitoring
21	viral dynamics arises. We report the emergence and spread of a new SARS-CoV-2
22	variant within B.1.575 lineage containing the E484K mutation in the spike protein
23	(named B.1.575.2) in a region of Northern Spain between May and June 2021.
24	SARS-CoV-2 positive samples with cycle threshold value less than or equal to 30 were
25	selected to screen of presumptive variants using the TaqPath TM COVID-19 RT-PCR kit
26	and TaqMan TM SARS-CoV-2 Mutation Panel. Confirmation of variants was performed
27	by whole genome sequencing. Of the 200 samples belonging to the B.1.575 lineage, 194
28	(97%) corresponded to the B.1.575.2 sub-lineage, which was related to the presence of
29	the E484K mutation. Of 197 cases registered in GISAID EpiCoV database as lineage
30	B.1.575.2 194 (99.5%) were identified in Pamplona (Spain).
31	This report emphasizes the importance of complementing surveillance of SARS-CoV-2
32	with sequencing for the rapid control of emerging viral variants.
33	
34	Introduction
35	During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic,
36	several variants were catalogued as variants of concern (VOC) and variants of interest
37	(VOI) by the European Centre for Disease Prevention and Control has emerged in
38	different countries. As of June 23, 2021, the four important lineages with evidenced
39	impact on transmissibility, severity and immunity are linage B.1.1.7 (Alpha), B.1.351
40	(Beta), B.1.617.2 (Delta), and P.1 (Gamma) (1-4). Lineages B.1.351 and P.1 were of
41	specific concern because they present the spike mutation E484K, which has been

with the reduced efficacy of the vaccine (2,3,5,6). Initially, the B.1.1.7 lineage had 43 44 mutations N501Y and D614G and the characteristic Δ H69/ Δ V70 deletion in the spike protein; however, in early 2021, Public Health England reported the first B.1.1.7 SARS-45 CoV-2 cases that had acquired the E484K mutation (3,7). 46 47 In this regard, concerns about the emergence of new SARS-CoV-2 variants and the acquisition of new mutations in existing lineages, such as the accumulation of mutations 48 49 in the spike gene in B.1.1.7, have been developing since the onset of the pandemic. This study identified the emergence and spread of the E484K spike mutation within the 50 SARS-CoV-2 B.1.575 lineage that has increased in the circulating virus population in 51 52 Pamplona (Spain) between May and June 2021. Additionally, we share our experience with the prospective surveillance of novel SARS-CoV-2 variants by implementing a 53 54 two-step laboratory strategy: reverse transcription quantitative real-time polymerase

chain reaction PCR (RT-qPCR) screening and whole genome sequencing.

56 Materials and methods

57 The Microbiology Department of the Complejo Hospitalario de Navarra, located in

58 Pamplona, the capital city of Navarra (Spain), is the reference laboratory of the public

59 health system for SARS-CoV-2 (approximately 650,000 inhabitants). Upper respiratory

60 specimens for SARS-CoV-2 detection are routinely collected at the hospital and

61 primary care centers, and processed by commercial RT-qPCR methods. Since the end of

62 2020, when variant B.1.1.7 became predominant in the United Kingdom, prospective

63 sample-based surveillance has been conducted in our community to identify novel

64 emerging SARS-CoV-2 variants. A two-step laboratory procedure included all positive

65 SARS-CoV-2 samples from hospital patients and community settings with a cycle

threshold (Ct) less or equal to 30. Occasionally, targeted samples are also included

67 according to epidemiological criteria.

68	Screening of presumptive SARS-CoV-2 variants carrying Δ H69- Δ V70 deletion was
69	performed using the TaqPath TM COVID-19 RT-PCR kit (Thermo Fisher Scientific,
70	USA) following the manufacturer's instructions. Then, all those samples non-B.1.1.7
71	variants were subjected to a second RT-qPCR, TaqMan TM SARS-CoV-2 Mutation
72	Panel (Thermo Fisher Scientific, USA). At that moment, we customed TaqMan assay
73	for detecting SARS-CoV-2 spike protein with the N501Y, E484K, K417N, K417T
74	mutations. All samples were sequenced.
75	Whole-genome sequencing was performed using Illumina COVIDSeq Test (Illumina
76	Inc, USA) on the Illumina NovaSeq 6000 located in the public company NASERTIC,
77	following the manufacturer's instructions. The viral lineages classifications were
78	performed by the Global Initiative on Sharing Avian Influenza Data (GISAID)
79	(https://www.gisaid.org/) [GISAID EpiCoV] database, Nextstrain
80	(https://nextstrain.org/) [Nextstrain] and Phylogenetic Assignment of Named Global
81	Outbreak (PANGO) Lineages (<u>https://cov-lineages.org/</u>) [Pango] (8-10).
82	Results
83	As of August 1, 2021, a total of 4,728 SARS-COV-2 genomes have been sequenced in
84	Navarra. Our sequencing analysis of the SARS-CoV-2 identified 200 (4.2%) samples
85	related to the B.1.575 lineage: four (2%) B.1.575, two (1%) B.1.575.1 and 194 (97%)
86	B.1.575.2. Among the common substitutions present in these lineages, four occurred in
87	the spike protein (S494P, D614G, P681H, T716I). (11). All samples showed a gene S
88	positive (not carrying Δ H69- Δ V70 deletion) in TaqPath. In TaqMan, all samples
89	identified by sequencing as B.1.575.2 showed the E484K mutation.
90	The first case with B.1.575 lineage to be identified in Pamplona dates back to January
91	20, 2021; since that date, no other case was identified until March 15, 2021, where three
92	isolates showing mutations common to the B.1.575 lineage were recorded.

93	Between weeks 20 to 26 2021, we identified 194 cases with lineage B.1.575, which had
94	acquired another S mutation, E484K, classified in the GISAID EpiCoV and Pangolin
95	databases as the sub-lineage B.1.575.2. The first case with B.1.575.2 lineage was
96	identified in a sample isolated on May 19 (week 20, 2021), and the number of cases
97	growled up to 48 cases in weeks 23 and 24 and declined therefore (Figure 1). The
98	beginning of the outbreak was detected in a car repair shop located in a district of
99	Pamplona. These cases could be related to another more significant outbreak of variant
100	B.1.575.2, which was found in a mosque. Since these first cases, the variant has spread
101	throughout Pamplona and its surroundings without affecting the rest of Navarra. The
102	median age of patients was 33±17 years old, 46.2% women, 53.8% men and
103	approximately 50% Arab origin. Eighty-two (43.1%) patients acquired the infection at
104	domiciliary ambit, the most common cause. Only 14 (7.1%) acquired it at the
105	workplace. One hundred and fifty-six (79.7%) patients showed symptoms, and only
106	four (2.2%) were admitted to hospitals, but none was a severe case. Six (3.3%) of
107	patients have been fully vaccinated for COVID-19 and 35 (19.2%) had received any
108	vaccine dose.
109	To know the distribution of SARS-CoV-2 B.1.575 lineage, we searched in the GISAID
110	EpiCoV and PANGO lineages databases. From May to July, the lineage and sub-
111	lineages of B.1.575 have increased exponentially in different countries. The B.1.575
112	lineage was predominant in the United States of America (USA) (90%), while the
113	B.1.575.1 and B.1.575.2 sub-lineages dominated Spain with 86% and 92%,
114	respectively.
115	The B.1.575.2 sub-lineage was predominant in Navarra since 99.5% (194/197) of the

116 cases registered in the GISAID EpiCoV database were identified in this region. By

117 contrast, we did not identify any genomes with B.1.575 and B.1.575.1 lineage carrying

- the E484K mutation.
- 119 Conclusions
- 120 In this study, we observed the emergence of a lineage B.1.575.2 to acquire the spike
- 121 E484K mutation circulating in Pamplona associated an outbreak. The new lineage
- displayed a low prevalence (4.10%) among SARS-CoV-2 genomes analyzed between
- 123 March 23, 2020, and June 30, 2021. Still, it is already dispersed in our city and
- 124 comprises 97% of the B.1.575 sequences detected in that period. The E484K mutation
- is considered one of the most important substitutions associated with reduced antibody
- neutralization potency and efficacy of the SARS-CoV-2 vaccine (12-14). The E484K
- 127 mutation has been identified in SARS-CoV-2 variants considered VOC such as B.1.351,
- 128 P.1 and B.1.1.7+E484K and in VOI variants such as B.1.525, B.1.620, and B1.621
- among others (1-3), so the presence of this mutation should be supervised and
- 130 monitored.
- 131 Screening PCR is a useful tool for detecting mutations, mainly because of its rapidity.
- 132 Future identifications with this method could include new mutations characteristic of
- the lineage could serve as a rapid method of variant identification. However, whole
- 134 genome sequencing remains the gold standard technique for pandemic control.
- 135 This brief report emphasizes the importance of exhaustive surveillance for circulating
- 136 variants of the SARS-CoV-2 virus to reduce community transmission and prevent the
- emergence of more transmissible variants that could further increase the severity of the
- 138 epidemic in the country.
- 139 **Conflict of interest**
- 140 The authors declare no conflict of interest.
- 141 Funding

142	This work was	supported by the	e Horizon 2020	program of the	European	Commission (l	[-
-----	---------------	------------------	----------------	----------------	----------	---------------	----

- 143 MOVE-COVID-19, grant agreement No 101003673) and the Carlos III Institute of
- 144 Health with the European Regional Development Fund (COV20/00542).

145 Acknowledgements

- 146 We would like to thank the GISAID EpiCoV database and all contributing researchers
- 147 for making the genomes publicly available.

148 Access to data

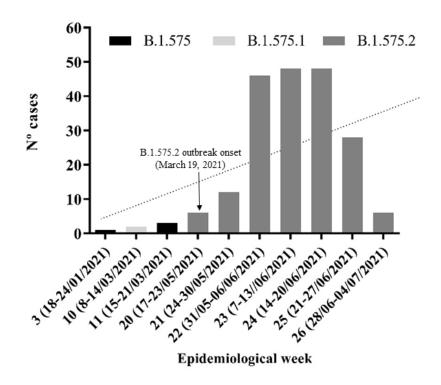
149 All genomes generated in this work were deposited in the GISAID EpiCoV database

150 (<u>http://gisaid.org</u>).

151 Author contributions

- 152 CTS, AM, MEP, MFH AN, CE conceived and designed the study. GRO was
- responsible for the whole genome sequencing interpretation. PSS, PLM, JC provided
- epidemiology data. CTS wrote the manuscript, and all authors critically revised the
- 155 manuscript. All authors approved the final version of the manuscript and were
- accountable for its accuracy.

157


159 **References**

160	1.	CDC: Available from: https://www.cdc.gov/coronavirus/2019-ncov/cases-
161		updates/variant-surveillance/variant-info.html. Accessed 30 June 2021.
162	2.	Hirotsu Y, Omata M. 2021. Detection of R.1 lineage severe acute respiratory
163		syndrome coronavirus 2 (SARS-CoV-2) with spike protein
164		W152L/E484K/G769V mutations in Japan. PLoS Pathog;17:e1009619.
165		http://doi.org/10.1371/journal.ppat.1009619.
166	3.	Moustafa AM, Bianco C, Denu L, Ahmed A, Neide B, Everett J, Reddy S,
167		Rabut E, Deseignora J, Feldman MD, Rodino KG, Bushman F, Harris RM, Mell
168		JC, Planet PJ. Comparative Analysis of Emerging B.1.1.7+E484K SARS-CoV-2
169		isolates from Pennsylvania. Preprint. bioRxiv 2021;2021.04.440801.
170		http://doi.org/10.1101/2021.04.21.440801.
171	4.	European Centre for Disease Prevention and Control. Implications for the
172		EU/EEA on the spread of the SARS-CoV-2 Delta (B.1.617.2) variant of
173		concern-23 June 2021. ECDC: Stockholm; 2021.
174	5.	Liu Z, VanBlargan LA, Bloyet LM, Rothlauf PW, Chen RE, Stumpf S, Zhao H,
175		Errico JM, Theel ES, Liebeskind MJ, Alford B, Buchser WJ, Ellebedy AH,
176		Fremont DH, Diamond MS, Whelan SPJ. 2021. Identification of SARS-CoV-2
177		spike mutations that attenuate monoclonal and serum antibody neutralization.
178		Cell Host Microbe 29:477-488. <u>http://doi.org/10.1016/j.chom.2021.01.014</u> .
179	6.	Wu K, Werner AP, Koch M, Choi A, Narayanan E, Stewart-Jones GBE, Colpitts
180		T, Bennett H, Boyoglu-Barnum S, Shi W, Moliva JI, Sullivan NJ, Graham BS,
181		Carfi A, Corbett KS, Seder RA, Edwards DK. 2021. Serum Neutralizing
182		Activity Elicited by mRNA-1273 Vaccine. N Engl J Med 384:1468-1470.
183		http://doi.org/10.1056/NEJMc2102179.
184	7.	Public Health England. Investigation of novel SARS-CoV-2 variant: Variant of
185		Concern 202012/01 (Technical briefing 5). 2021.
186		https://assets.publishing.service.gov.uk/government/uploads/system/uploads/atta
187		chment_data/file/959426/Variant_of_Concern_VOC_202012_01_Technical_Bri
188		efing_5.pdf.
189	8.	Shu Y, McCauley J. 2017. GISAID: Global initiative on sharing all influenza
190		data from vision to reality. Euro Surveill 22:30494.
191		https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494.

192	9.	Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, Sagulenko
193		P, Bedford T, Neher RA. 2018. Nextstrain: real-time tracking of pathogen
194		evolution. Bioinformatics 34:4121-4123.
195		https://doi.org/10.1093/bioinformatics/bty407.
196	10.	Rambaut A, Holmes EC, O'Toole Á, Hill V, McCrone JT, Ruis C, du Plessis L,
197		Pybus OG. 2020. A dynamic nomenclature proposal for SARS-CoV-2 lineages
198		to assist genomic epidemiology. Nat Microbiol 5:1403–1407.
199		https://doi.org/10.1038/s41564-020-0770-5.
200	11.	B.1.575 Lineage Report. Alaa Abdel Latif, Julia L. Mullen, Manar Alkuzweny,
201		Ginger Tsueng, Marco Cano, Emily Haag, Jerry Zhou, Mark Zeller, Emory
202		Hufbauer, Nate Matteson, Chunlei Wu, Kristian G. Andersen, Andrew I. Su,
203		Karthik Gangavarapu, Laura D. Hughes, and the Center for Viral Systems
204		Biology. outbreak.info, (available at https://outbreak.info/situation-
205		reports?pango=b.1.575). Accessed 30 June 2021.
206	12.	Jangra S, Ye C, Rathnasinghe R, Stadlbauer D, Personalized Virology Initiative
207		study group, Krammer, F., Simon, V., Martinez-Sobrido, L., García-Sastre, A.,
208		Schotsaert, M. 2021. SARS-CoV-2 spike E484K mutation reduces antibody
209		neutralisation. The Lancet. Microbe2:e283-e284. https://doi.org10.1016/S2666-
210		5247(21)00068-9.
211	13.	Resende PC, Gräf T, Paixão ACD, Appolinario L, Lopes RS, Mendonça ACDF,
212		da Rocha ASB, Motta FC, Neto LGL, Khouri R, de Oliveira CI, Santos-
213		Muccillo P, Bezerra JF, Teixeira DLF, Riediger I, Debur MDC, Ribeiro-
214		Rodrigues R, Leite AB, do Santos CA, Gregianini TS, Fernandes SB, Bernardes
215		AFL, Cavalcanti AC, Miyajima F, Sachhi C, Mattos T, da Costa CF, Delatorre
216		E, Wallau GL, Naveca FG, Bello G, Siqueira MM 2021. A Potential SARS-
217		CoV-2 Variant of Interest (VOI) Harboring Mutation E484K in the Spike
218		Protein Was Identified within Lineage B.1.1.33 Circulating in Brazil. Viruses
219		13:724. https://doi.org/10.3390/v13050724.
220	14.	Wang Z, Schmidt F, Weisblum Y, Muecksch F, Barnes CO, Finkin S, Schaefer-
221		Babajew D, Cipolla M, Gaebler C, Lieberman JA, Oliveira TY, Yang Z,
222		Abernathy ME, Huey-Tubman KE, Hurley A, Turroja M, West KA, Gordon K,
223		Millard KG, Ramos V, Da Silva J, Xu J, Colbert RA, Patel R, Dizon J, Unson-
224		O'Brien C, Shimeliovich I, Gazumyan A, Caskey M, Bjorkman PJ, Casellas R,
225		Hatziioannou T, Bieniasz PD, Nussenzweig MC. 2021. mRNA vaccine-elicited

- antibodies to SARS-CoV-2 and circulating variants. Nature 592:616–622.
- 227 https://doi.org/10.1038/s41586-021-03324-6.

- Figure 1. Timeline of SARS-CoV-2 B.1.575, B1.575.1 and B.1.575.2 linages 229
- emergence in Pamplona between January and June 2021. 230

Figure 1. Timeline of SARS-CoV-2 B.1.575, B1.575.1 and B.1.575.2 linages emergence in Pamplona between January and June 2021.