
 

 

Abstract 
ICU readmissions are associated with poor outcomes for patients 
and poor performance of hospitals. Patients who are readmitted have 
an increased risk of in-hospital deaths; hospitals with a higher read-
mission rate have a reduced profitability, due to an increase in cost 
and reduced payments from Medicare and Medicaid programs. Pre-
dicting a patient’s likelihood of being readmitted to the ICU can help 
reduce early discharges, the risk of in-hospital deaths, and help in-
crease profitability. In this study, we built and evaluated multiple 
machine learning models to predict 30-day readmission rates of ICU 
patients in the MIMIC-III database. We used both the structured 
data including demographics, laboratory tests, comorbidities, and 
unstructured discharge summaries as the predictors and evaluated 
different combinations of features. The best performing model in 
this study Logistic Regression achieved an AUROC of 75.7%. This 
study shows the potential of leveraging machine learning and deep 
learning for predicting ICU readmissions.  

1 Introduction 
Hospital readmission is defined as an episode when a patient 
who had been discharged from a hospital is admitted again 
within a specific time interval (“Hospital Readmission,” 
2020). High readmission rates of patients are a signal of is-
sues with healthcare quality [2], as high readmissions are in-
dicators of persisting issues in a patient’s health (Ponzoni et 
al., 2017). The United State Centers for Medicare and Medi-
caid Services (CMS) includes hospital readmission rate as an 
important performance metric in their reimbursement deci-
sions (“Hospital Readmission,” 2020).  Yet one fifth of pa-
tients receiving Medicare benefits are readmitted within 30 
days and 67% are readmitted within 90 days (Jencks et al., 
2009). This outcome has both financial and medical conse-
quences; the cost to Medicare of readmissions in 2004 was 
over $17 billion of avoidable costs. The high cost of avoida-
ble readmission resulted in legislation which withholds a per-
centage of Medicare payments to hospitals with a high read-
mission rate (McIlvennan Colleen K. et al., 2015). During the 
first year of the Hospital Readmissions Reduction Program, 
30% of hospitals received no penalty, 60% received a penalty 
less than 1% and 10% received the maximum penalty under 
the legislation of a withholding of 3% of total Medicare pay-
ments (McIlvennan Colleen K. et al., 2015). This resulted in 
total of $280 million in penalties (McIlvennan Colleen K. et 
al., 2015). Among patients who were readmitted, anywhere 
from 12% to 75% of these readmissions could have been 
avoided (Benbassat & Taragin, 2000). This high level of 
avoidable readmission indicates hospitals are not effectively 
utilizing preventative measures such as patient education, 

discharge assessments, and in-home aftercare options. This 
also presents great need of identifying patients who are more 
likely to be readmitted within 30 days so that hospitals can 
intervene as early as possible to avoid readmissions.   

The wide adoption of Electronic Health Records (EHRs) pre-
sented an unprecedented opportunity for building machine 
learning and deep learning models to predict patient out-
comes. EHRs contain fine-grained information about patient 
care including demographics, laboratory test results, medica-
tions, procedures, etc. The potential of using EHR for pre-
dicting 30 days readmission to ICU has been shown previ-
ously (Ben-Assuli & Padman, 2017; Futoma et al., 2015; Lin 
et al., 2019).  These studies used demographic information, 
lab results, and chart events as predictors for machine learn-
ing models to predict if an individual will be readmitted to 
the ICU within 30-days. However, these studies have two ma-
jor limitations: 1) They only used the structured data in EHRs 
(Futoma et al., 2015); and 2) they did not use deep learning 
for this problem, which may improve the prediction accuracy.  

Most current studies only used demographic information, re-
sults from lab tests, chart events such as heart rate measure-
ments and diagnoses on a patient’s chart. They did not con-
sider how discharge notes, which contain rich information 
about patients and their care, could correlate to a patient’s 
likelihood of being readmitted to the ICU (Ben-Assuli & Pad-
man, 2017; Futoma et al., 2015). For example, both Ben-As-
suli and Padman (Ben-Assuli & Padman, 2017) and Futoma 
et al. (Futoma et al., 2015) limited the scope of their dataset 
to only the structured EHR. State-of-the-art language models 
that are pretrained with enormous amount of text corpora, 
such as the BERT model (Devlin et al., 2019), provide an op-
portunity to encode the semantic information from discharge 
notes for the machine learning models, while principal com-
ponent analysis can reduce the dimensionality allowing for 
an even split between structured and unstructured data in the 
dataset. 

Due to the huge number of parameters in deep learning mod-
els, it is time consuming to fine-tune the model to achieve 
optimal performance for a given dataset. Some prior studies, 
even though built deep learning models, did not seem to 
spend enough time for tuning the hyperparameters. For ex-
ample, Lin et al. (Lin et al., 2019) did not mention hyperpa-
rameter tuning in their study while Futoma et al. (Futoma et 
al., 2015) performed minimal hyperparameter tuning in their 
study. Lin et al. (Lin et al., 2019) used a long short term 
memory to predict unplanned ICU readmission while Futoma 
et all (Futoma et al., 2015) gauged the ability of multiple deep 
neural networks to predict early hospital readmissions.    
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The aim of this study is to evaluate different machine learning 
and deep learning models using both the structured and un-
structured data from the MIMIC-III dataset to predict if an 
individual will be readmitted to the ICU within 30 days of 
discharge. Structured data in this study include demographic, 
admission lab test data, and comorbidities (ICD-9-CM codes) 
for each patient. The unstructured data are the discharge notes 
for each patient and the respective embeddings generated 
from each discharge note. The contributions of this study are 
two-folds: 1) we evaluated the usefulness of unstructured 
data in EHRs for predicting ICU readmission rates; 2) we 
evaluated the effectiveness of hyperparameter tuning of the 
prediction models. 

2 Methods 
 

 
Figure 1: Overall Workflow of the Study 

 

Figure 1 shows the overall workflow of the study. The struc-
tured data from the MIMIC-III database included the lab re-
sults, demographic information for each patient, and the ad-
mission data. ICD-9 codes were used to identify high level 
classification of comorbidities. Each patient’s recorded 
ICD9-CM codes in the MIMIC-III database was processed 
using the existing code (GitHub - Jackwasey/Icd, n.d.) to de-
termine if the patient had any of the following conditions: 
myocardial infarction, congestive heart failure, peripheral 
vascular disease, cerebrovascular disease, dementia, chronic 
pulmonary disease, connective tissue disease-rheumatic dis-
ease, peptic ulcer disease, mild liver disease, diabetes without 
complications, diabetes with complications, paraplegia and 
hemiplegia, renal disease, cancer, moderate or severe liver 
disease, metastatic carcinoma, and HIV. This was then com-
bined with the other structured data for each patient, nearest 
neighbor imputation was also performed for any missing val-
ues found in the lab test data for each patient. 

The unstructured data are the discharge notes for each patient. 
The unstructured data of discharge notes were in JSON files. 
Each discharge note was transformed into sentence embed-
dings using a transformer-based embedding method. In total 
six different embeddings were generated for each admission, 
this resulted in six different sentence embeddings for a single 

discharge note. The readmission notes were also cleaned to 
allow for a Bag-Of-Words approach to be used to represent 
the readmission notes. The Bag-Of-Words approach used the 
scikit package’s Count Vectorizer max feature parameter to 
limit the notes to the 3000 most frequently occurring words 
in the dataset. From there a matrix of token counts was cre-
ated for these 3000 words. Principal component analysis was 
used to reduce the dimensionality of the unstructured data, so 
the unstructured data does not outnumber the structured data 
when combing the dataset. We created different feature sets 
using combinations of structured and unstructured data. Then 
we trained and evaluated prediction models to predict read-
mission for each admission. 

2.1 Dataset 
The Medical Information Mart for Intensive Care III 
(MIMIC-III) database was used in this study. MIMIC-III is a 
dataset of 40,000 patients who stayed in critical care units of 
Beth Israel Deaconess Medical Center between 2001 and 
2012. The dataset contains demographics, vital sign measures 
taken on an hourly basis, laboratory test results, procedures, 
medications, free-text notes about the patients stay, and mor-
tality reports.  

Data selection was based on features found in similar studies 
that predict ICU readmission and mortality in the ICU (Ben-
Assuli & Padman, 2017; Futoma et al., 2015). Patient dis-

charge notes were also included in this study. Minimum, 
maximum, and average of lab features were included in this 
study to give a better view of the patient’s health throughout 
the course of their stay in the ICU. 47,388 admissions per-
taining to 40,104 subjects from the database met the require-
ments of this study however only 4,522 were included. The 
limit was put in place to provide an equal split between indi-
viduals readmitted to the ICU and those who were not read-
mitted. The limiting factor was the number of individuals, 
2,261, who were readmitted to the ICU. Table 1 provides the 
basic characteristics of the patient cohort. Table 2 shows the 
included features. 

Characteristics Num-
ber of 
in-
stanc
es 

Number and 
Percentage of 
Positive In-
stances 

Number and 
Percentage of 
Negative In-
stances 

P 

Gender Male 2510 1347 53.7% 1163 46.3% .43 

Female 2012 1056 52.5% 956 47.5% 

Age  Under 30 152 59 38.8% 93 61.2% 0.004 

30 to 49.9 626 279 44.6% 347 55.4% 

50 to 59.9 664 349 52.6% 315 47.4% 

60 to 69.9 989 534 54.0% 455 46.0% 

70 to 79.9 1016 553 54.4% 463 45.6% 

80 to 90 843 504 60.0% 339 40.0% 

Over 90 232 125 54.0% 107 46% 

Table 1: Basic characteristics of the patient cohort 

 

 

 

 

 

Table 1: Example table 
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2.2 Data Preprocessing 
Nearest neighbor imputation was employed to impute miss-
ing lab results. These missing results may be because some 
patients did not have those lab tests or these values were not 
accurately reported. Categorical variables with a high degree 
of cardinality, anything greater than 10, were dropped from 
the dataset.  

The Sentence-BERT base model was used to generate sen-
tence tokens from the discharge notes (Reimers & Gurevych, 
2019). Sentence-BERT base model is a transformer model 
that uses Siamese and triplet network structures to generate 
sentence embeddings (Reimers & Gurevych, 2019). This 
model is an improvement of the BERT base model as it main-
tains the same level of accuracy while reducing the computa-
tion time dramatically. Six additional BERT-based models 
were also used to generate sentence transformers stsb-distil-
bert-base, bert-base-nli-max-tokens, bert-base-nli-mean-to-
kens,distilbert-base-nli-stsb-mean-tokens, stsb-roberta-large, 
and roberta-base-nli-stsb-mean-tokens (Wolf et al., 2020). 
After generating the sentence embeddings and transformers, 
principal component analysis was used on the sentence em-
beddings, to reduce the dimensionality to match the number 
of features in the structured dataset. As such, the combined 
structured data and unstructured data will be transformed to 
a vector that includes the same amount of features from the 
structured data and the unstructured data. Before performing 

PCA, the embeddings produced 767 features for each record. 
PCA was then used to reduce the number of features to 50 to 
create a balance between the representation of structured and 
unstructured data in the dataset. When the comparison of only 
unstructured data was being performed, PCA was not used. 

To generate the binary 30-day readmission outcome variable, 
we compared the ICU discharge date with their next admis-
sion date to determine if readmission occurred within 30 
days. If the difference between the two dates was within 30 
days, the readmission variable was set to true for that admis-
sion. 

2.3 Modeling and Evaluation 
The outcome of the prediction model is to predict if an ad-
mission will be followed by a readmission in 30 days. Three 
datasets were created: (1) one containing only structured data, 
(2) one containing unstructured data and its respective em-
beddings, and (3) a combined dataset of structured and un-
structured data. The following popular classification algo-
rithms were used: Logistic Regression, XGBOOST, Random 
Forest, Feed Forward Neural Network, and Support Vector 
Classification. We used standard metrics including accuracy, 
precision, recall, and area under the curve to evaluate their 
performance. Scikit-learn was used to implement each of the 
classification algorithms (Pedregosa et al., n.d.). We ran-
domly split the instances into 80% for training and 20% for 
testing. 

A Random Forest classifier is made up of a group of decision 
trees with each tree being as unrelated to the other trees as 
possible. This is accomplished by using bagging and feature 
randomness when creating each tree to minimize the correla-
tion chance. Once the trees are created each individual tree in 
the set returns a class prediction, the class with the most 
“votes” by the trees is the model’s prediction. The underlying 
principle guiding this algorithm is that a group of highly un-
related models will have a better outcome than any single 
model. We finetuned the parameters of this model by first 
starting out with the default hyperparameters. From there the 
criterion was changed between gini and entropy and the num-
ber of trees were increased by an interval of 500 in the model 
until the performance of the model decreased. 

Rather than training the models in isolation from one another, 
boosting trains each model in sequential order with the next 
model fixing the errors of the former. This process continues 
until no further improvements can be made in the model. This 
prevents the issue of Random Forest where uncorrelated 
models make the same mistakes. XGBOOST is a model 
which is designed to support the idea of additive tree model 
which optimizing the process to be time effective (Chen & 
Guestrin, 2016). We finetuned the parameters of this model 
with all datasets having using hinge loss for binary classifi-
cation and increasing the number of tress in the model until 
performance of the model decreased. 

Feedforward neural networks are deep learning model used 
when the data is not sequential or time dependent. As the flow 

Variable Type Variables 
Demographics Age, Gender, Marital status, Insur-

ance 
Lab & Chart 
Value 

Minimum, Max, and Average 
value taken for all listed: Urea, 
Platelets, Magnesium, Albumin, 
Calcium, LDL cholesterol, HDL 
cholesterol, total cholesterol, creat-
inine, c reactive protein, creatine 
kinase, cortisol, homocysteine, tro-
ponin I, troponin t, Respiratory 
Rate, glucose, heart rate, Systolic 
BP, Diastolic BP, temperature, 
urine 

Unstructured 
data 

Discharge notes  

Comorbidities myocardial infarction, congestive 
heart failure, peripheral vascular 
disease, cerebrovascular disease, 
dementia, chronic pulmonary dis-
ease, connective tissue disease-
rheumatic disease, peptic ulcer dis-
ease, mild liver disease, diabetes 
without complications, diabetes 
with complications, paraplegia and 
hemiplegia, renal disease, cancer, 
moderate or severe liver disease, 
metastatic carcinoma, HIV 

Table 2: Structured and unstructured data from MIMIC-III 
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of data in the model only moves towards the output in com-
parison with recurrent neural networks where the data is cy-
clical. This deep learning model works for our scenario as 
each admission is separate from other admissions in the da-
taset, and the data in the dataset is not time series data. We 
finetuned the hyperparameters for each dataset. The com-
bined dataset used a model with 100 epochs and 3 hidden lay-
ers with 150, 100, 50 neurons respectively, an activation 
function of relu, and a solver of adam. The structured dataset 
used a model with 300 iterations. The unstructured dataset 
used a max iteration of 10000, 8 hidden layers, with 100 neu-
rons in each layer, and an alpha of 0.003 and early stopping 
enabled. The increase in iterations, hidden layers in the un-
structured dataset can be explained by the difference in fea-
tures. In the unstructured dataset there were 767 features 
while in the combined dataset there were 100 features and the 
structured dataset there were 50 features. For any parameters 
not specified here, we used scikit’s default parameters for the 
models.  

A Support Vector Classification Algorithm attempts to find a 
hyperplane in an N-dimensional space (N – number of fea-
tures) that can classify the data points. Overall objective is to 
find a hyperplane that results in the greatest distance between 
data points in both classes. The easiest way to visualize this 
is the hyperplane is a dividing line between two classification 
groups with the line giving each group the greatest distance 
from another. As the number of features in a dataset increases 
so does the dimensionality of the hyperplane, making visual-
ization difficult as the feature set increases. The position of 

new data points in relation to line results in them data’s clas-
sification by the model. For the SVC model we used the de-
fault parameters for the structured dataset and increased the 
number of iterations to 1050 for the combined and unstruc-
tured dataset. 

3 Results 
Table 3 shows the performance of the models using the struc-
tured data only. The highest scoring model in the structured 
dataset was the Random Forest model with an accuracy of 
61.1%, a recall of 81.3%, a precision score of 73.4%, an F1 
score of 77.2%, and an AUROC of 73.9%. This model has 
the second highest AUROC score out of all three datasets.  

Table 4 shows the performance of the models using the un-
structured dataset. The Logistic Regression model was the 
best overall performing model. 68.5% of all predictions were 
correct, and the model achieved an AUROC score of 75.7%. 
The recall rate of 68.2% for this model indicates the Logistic 
Regression model was able to correctly identify 68.2% of all 
patients who would be readmitted to the ICU within 30 days. 
The model also achieved an F1 score of 69.7%.  

Table 5 shows the performance of the models using the com-
bined dataset. The Random Forest model was the best overall 
performing model in the combined dataset. 70.8% of all pre-
dictions were correct, and the model achieved an AUROC 
score of 70.3%. The recall rate of 79.2% for this model indi-
cates the Random Forest model was able correctly identify 
79.2% of all patients who would be readmitted to the ICU 
within 30 days. The model also achieved an F1 score of 

Model Accuracy Recall Precision F1 AUROC 

Random Forest 61.1% 81.3% 73.4% 77.2% 73.9% 

XGBOOST 61.1% 78.5% 59.9% 68% 60.1% 

Feed Forward 52.9% 99.2% 52.8% 68.9% 50.4% 

SVC 50.7% 63.9% 52.6% 57.6%      52.6% 

Table 3: Performance of the models using structured data 

 

 

 

 

Model Embedding Accuracy Recall Precision F1 AUROC 

Logistic Regres-
sion 

Bag-Of-Words 68.5% 68.2% 71.2% 69.7% 75.7% 

Random Forest Bag-Of-Words 65.8% 76.5% 65.7% 70.7% 64.9% 

SVC Bag-Of-Words 64.8% 69.9% 66.5% 68.2% 64.4% 

Feed Forward Bag-Of-Words 63.5% 68.6% 65.4% 66.9% 63.0% 

XGBOOST Bag-Of-Words 63.3% 76.8% 63.1% 69.3% 62.2% 

Feed Forward bert-base-nli-mean-tokens 60.8% 64.3% 64.6% 64.5% 60.5% 
Random Forest bert-base-nli-mean-tokens 60.1% 69.9% 62.3% 66.2% 59.6% 
SVC bert-base-nli-mean-tokens 62.9% 70.1% 62.4% 66.0% 59.1% 

Table 4: Performance of the models using unstructured data (Top 8 Models) 
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74.0%. The only models with a higher recall score in the com-
bined dataset were SVC and XGBOOST models, however 
they are not displayed due to their low AUROC score. The 
discussion section will provide an explanation for why the 
higher AUROC score is occurring. 

On average the model performance in the unstructured da-
taset was lower than both the combined and structured da-
taset. The next highest scoring machine learning model which 
did not use the bag-of-words approach for the unstructured 
data was a Feed Forward model which used bert-base-nli-
mean-tokens for its embeddings. This model had an ROC 
score of 60.5%.  

4 Discussion 

4.1 Principal Results 
 
This study compared multiple different machine learning 
models for predicting ICU readmission within 30 days of pa-
tients using the MIMIC-III dataset. In our dataset, the deep 
learning models consistently underperformed non-deep 
learning models. Overall, the Random Forest model consist-
ently outperformed all other machine learning models with 
an AUROC of 73.9% in the structured dataset and an AU-
ROC of 70.3% in the combined dataset. Logistic Regression 
was the only model able to outperform the random forest 
model with an AUROC score of 75.7% in the unstructured 
dataset. Embedding choice did not have a major impact on 
the AUROC score of a model. The average difference of each 
model between their highest and lowest scoring embedding 
was 4.15%. The feed forward neural network model has the 
highest difference with a 7% difference in AUROC score. 
While the Random Forest model had the lowest difference of 
2.2% between the highest and lowest AUROC score for each 
embedding. Hyperparameter tuning did result in an overall 
improvement in deep learning models. While some models 
such as the Random Forest could have the same parameters 
applied across datasets with improved outcomes, both deep 
learning models required hyperparameter tuning specific to 
each dataset. This is especially apparent in the feed forward 

neural network model which required 10000 maximum iter-
ations in the combined dataset but only 300 in the structured 
dataset.  Due to the complexity of the deep learning models 
and the requirement to retrain the model after changing a sin-
gle parameter a significant amount of time is required to tune 
parameters for deep learning models. 

When comparing the results of this study with other studies 
the highest performing model was outperformed by Lin et al. 
(Lin et al., 2019) which had an AUROC of 79.1% while our 
model had an AUROC of 75.7% . The difference in results in 
the Lin et al. study can be explained by their use of time series 
data which provided the deep learning models in their study 
additional data. This study did not use time series data, which 
is challenging to construct and may suffer from the granular-
ity issue for different variables (Cirillo et al., 2021).  

In the combined dataset, the SVC and XGBOOST models 
were able to outperform the other models when comparing 
their recall scores. While the SVC and XGBOOST model 
performed substantially lower in comparison in other evalu-
ation areas. By showing the prediction for each admission in 
the SVC and XGBOOST models, it is apparent why their re-
call scores are so high. Both models were more likely to pre-
dict that a patient would be readmitted to the hospital. Since 
nearly all predictions were positive the models had a high re-
call score but an overall low score in other metrics due to the 
high number of false positives in the balanced dataset. 
 

4.2 Limitations and Opportunities 
A few limitations should be noted. Imputation had to be used 
for some lab values because not all lab values are collected 
for all the patients. According to our recent paper (Payrov-
naziri et al., 2020), imputation techniques may impact the sta-
bility of the prediction performance and the feature ranking 
results.  

Similar with other machine learning projects, the process of 
manually tuning parameters was extremely time-consuming 
since the model would have to be retrained each time a pa-

Model Embedding PCA Accuracy Recall Precision F1 ROC 

Random Forest stsb-distilbert-base 50 70.8% 79.2% 69.6% 74.1% 70.4% 

Random Forest Bag-Of-Words None 66.7% 75.3% 63.6% 69.0% 66.8% 

SVC Bag-Of-Words None 66.5% 67.0% 65.6% 66.3% 66.5% 

XGBOOST Bag-Of-Words None 64.2% 70.6% 61.9% 66.0% 64.3% 

Feed Forward Bag-Of-Words None 62.1% 61.6% 61.4% 61.5% 62.1% 

Random Forest roberta-base-nli-stsb-
mean-tokens 

50 62.1% 73.7% 61.7% 67.1% 61.5% 

Random Forest stsb-roberta-large 50 61.9% 73.3% 61.6% 66.9% 61.3% 

Random Forest bert-base-nli-max-tokens 50 61.8% 74.2% 61.4% 67.2% 61.2% 

Table 5: Performance of the models using combined data (Top 8 Models) 
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rameter was changed to gauge its performance. The complex-
ity of the models resulted in a long training time. Future stud-
ies should look into automating the tuning process such as 
grid search. Other future direction is to apply post hoc inter-
pretability enhancement method to explain how the models 
work and why a certain prediction is made. 

5 Conclusion 
In this study, we predicted unplanned ICU readmission using 
three different datasets, a structured dataset with chart events, 
lab results, and demographic information, an unstructured da-
taset with the sentence embeddings for each admission dis-
charge notes using multiple encoders, and a combined dataset 
composed of both the structured and unstructured data. The 
results of this study showed that the Logistic Regression 
model using Bag-Of-Words embedding had an AUROC of 
75.7% and recall of 68.2% using only the unstructured da-
taset. 
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