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Abstract 

Background & Aims: Distinguishing malignant from benign primary solid liver lesions is highly 

important for treatment planning. However, diagnosis on radiological imaging is challenging. In this 

study, we developed a radiomics model based on magnetic resonance imaging (MRI) to distinguish 

the most common malignant and benign primary solid liver lesions, and externally validated the 

model in two centers. 

Approach & Results: Datasets were retrospectively collected from three tertiary referral centers (A, 

B and C) including data from affiliated hospitals sent for revision. Patients with malignant 

(hepatocellular carcinoma and intrahepatic cholangiocarcinoma) and benign (hepatocellular 

adenoma and focal nodular hyperplasia) lesions were included. For each patient, only a T2-weighted 

MRI was included. A radiomics model was developed on dataset A using a combination of machine 

learning approaches, and internally evaluated on dataset A through cross-validation. Next, the model 

was externally validated on datasets B and C, and compared to scoring by two experienced 

abdominal radiologists on dataset C. In the resulting dataset, in total, 486 patients were included (A: 

187, B: 98 and C: 201). Despite substantial MRI acquisition heterogeneity, the radiomics model 

developed on dataset A had a mean area under the receiver operating characteristic curve (AUC) of 

0.78 in the internal validation on dataset A, and a similar AUC in the external validations (B: 0.74, C: 

0.76). In dataset C, the two radiologists showed moderate agreement (Cohen’s κ: 0.61) and achieved 

AUCs of 0.86 and 0.82, respectively. 

Conclusions: Our radiomics model using T2-weighted MRI only can non-invasively distinguish 

malignant from benign primary solid liver lesions. External validation indicated that our model is 

generalizable despite substantial differences in the acquisition protocols. 

Keywords: Machine Learning; Liver Neoplasms; Carcinoma, Hepatocellular; Biomarkers; Magnetic 

Resonance Imaging   
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Introduction 

Liver cancer is the seventh most commonly diagnosed cancer and the third most common cause of 

cancer deaths worldwide, with approximately 906,000 estimated new cases and 830,000 deaths in 

2020 (1). One of the most important tasks in routine clinical practice is making the distinction 

between malignant and benign primary solid liver lesions, which substantially influences treatment 

planning (2, 3). Commonly, a first assessment is made by the radiologist based on imaging, generally 

magnetic resonance imaging (MRI). Guidelines such as those from the European Association for the 

Study of the Liver (EASL) (4, 5) may aid the radiologist. Typically, a mixture of T2-weighted, T1-

weighted, dynamic contrast enhanced MRI, diffusion weighted imaging, and the apparent diffusion 

coefficient (ADC) is used. The diagnosis is often challenging due to the wide variety of liver lesion 

phenotypes, sizes, and appearances (6), and lack of a clear assessment consensus (7). 

Patients from peripheral centers may therefore be referred to tertiary centers for 

reassessment. This trajectory is time consuming and expensive, while a quick and accurate diagnosis 

is crucial for the treatment planning. Often, despite imaging, a biopsy may be performed to make the 

final diagnosis, as indicated by the EASL guidelines. While accurate, biopsies are (minimally) invasive, 

can be technically challenging, and bring risks such as bleeding and tumor seeding to the patient (8). 

Patient treatment may benefit from a non-invasive tool to shorten time to diagnosis by enabling 

quicker referral, refining patient selection prior to biopsies, and assist diagnosing patients who do 

not require a biopsy. 

In recent years, radiomics, i.e., the use of a large number of quantitative medical imaging 

features to predict clinical outcomes, has been successfully used in various clinical areas (9-11). In 

liver cancer, this has been mostly based on computed tomography to make predictions such as 

survival, prognosis, and recurrence (12-14). For MRI in liver cancer, radiomics has been used to 

classify focal liver lesions (15-18), and as LI-RADS (19) surrogate (20). Radiomics thus shows potential 

for usage in liver lesion characterization. 
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However, as concluded in a recent review, the use of radiomics for liver lesion 

characterization is still at an early stage (21). First, there is a need for large, multicenter cohorts, 

especially for external validation (22-24). Second, a major challenge is the lack of image acquisition 

standardization (21), as radiomics methods are generally sensitive to acquisition variations (25), 

underlining the need for external validation. Rather than requiring a comprehensive, standardized 

set of multiple MRI sequences, usage of a single sequence would make radiomics models more 

universally applicable in a routine clinical setting.  

The primary aim of this study was therefore to develop a radiomics model based on only T2-

weighted MRI to distinguish between the most common malignant and benign primary solid liver 

lesions, and to externally validate the model in two multicenter cohorts. We used only T2-weighted 

MRI, as this sequence is widely available, reliable for lesion segmentation, minimally sensitive to 

motion or breathing artefacts, and informative (4, 5, 19). Our secondary aim was to compare the 

performance of radiomics to clinical practice through visual scoring of the lesions by two experienced 

abdominal radiologists. 

Materials and Methods 

Data collection 

Approval for this study by the institutional review boards of Erasmus MC (Rotterdam, the 

Netherlands) (MEC-2017-1035), Maastricht UMC+ (Maastricht, the Netherlands) (METC 2018-0742), 

and Hôpital Beaujon (Paris, France) (N° 2018-002) was obtained. Informed consent was waived due 

to the use of retrospective, anonymized data. The study protocol conformed to the ethical guidelines 

of the 1975 Declaration of Helsinki. 

Three datasets were collected retrospectively from three tertiary referral centers: all patients 

diagnosed or referred to A) Erasmus MC between 2002 - 2018; B) Maastricht UMC+ between 2005 - 

2018; and C) Hôpital Beaujon, included in reverse chronological order starting at 2018, until in total 
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201 patients were identified, in accordance with the inclusion and exclusion criteria described below. 

Imaging data, age, sex, and phenotype were collected for each patient. 

Inclusion criteria were: hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma 

(iCCA), hepatocellular adenoma (HCA) or focal nodular hyperplasia (FNH); pathologically proven 

phenotype, except for “typical” FNH; and availability of a T2-weighted MRI scan. Exclusion criteria 

were: maximum diameter equal to or smaller than 3 cm; underlying liver disease; and significant 

imaging artefacts. Details on the pathological examination are given in Supplementary Material 1. 

Malignant lesions included HCC (75 - 85% of primary liver cancers), and iCCA (10 - 15% of 

primary liver cancers) (6). Benign lesions included HCA (3-4 cases per 100,000 person-years in Europe 

and North America) and FNH (found in 0.8% of all adult autopsies) (6). The most common benign 

primary liver lesions, hemangioma, were not included as these are nonsolid and often relatively easy 

to diagnose on imaging (4, 26). Only lesions with a pathologically proven phenotype were included to 

ensure an objective ground truth. Pathological analysis for each patient was performed locally in 

their admission hospital. An exception was made for typical FNH (6), which are routinely not biopsied 

and diagnosed radiologically (27), as typical FNH imaging characteristics are 100% specific (4). Not 

including these would create a selection bias towards “atypical” FNH: the model performance would 

than only be evaluated on atypical FNH, and no claims could be made on the performance in typical 

FNH. In patients with multiple lesions, only the largest one was included. 

Patients with underlying liver disease due to alcohol, hepatitis, and vascular liver disease, 

such as fibrosis or cirrhosis, were excluded, as the a priori chance of a lesion being HCC in these 

patients is by far the largest (28). Steatosis was not an exclusion criterium. Diagnosis of liver disease 

was based on clinical, pathological and/or imaging findings. In case of HCC, cirrhosis was always 

excluded from biopsy or resection. Lesions with a maximum diameter equal to or smaller than 3 cm 

were excluded, since in non-cirrhotic livers these have a high probability of being secondary lesions, 

hemangioma, or cysts (26, 29), which are generally easy to diagnose on imaging (4, 26). Hence, a 
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radiomics model would have relatively little added value in these patients with underlying liver 

disease or small lesions. When T2-weighted MRI with fat saturation was not available, regular T2-

weighted MRI was used, similar to clinical practice. Images with significant artefacts (i.e., patient or 

scanner related) and therefore not suitable for diagnostic purposes, as judged by an experienced 

radiologist (21 years of experience), were excluded.  

Segmentation 

Lesion segmentation was done semi-automatically using in-house software (15). Each lesion was 

segmented by one of three observers: a radiology resident, and two experienced abdominal 

radiologists (21 and 8 years of experience). The observers were aware of the inclusion and exclusion 

criteria, and were asked to segment a primary liver lesion. When the lesions could not be found, e.g. 

isointense lesions, the observers were able to look at the other sequences if available. The observers 

could segment manually or semi-automatically using region-growing or slice-to-slice contour 

propagation. Segmentation was performed per slice in the 2D transverse plane, resulting in a 3D 

volume. Semi-automatic results were always reviewed and manually corrected when necessary, to 

assure the result resembled manual segmentation. All segmentations were verified by the most 

experienced radiologist. A subset of 60 lesions (30 from dataset B, 30 from dataset C) was segmented 

by two observers to assess the intra-observer variability using the pairwise Dice Similarity Coefficient 

(DSC), with DSC > 0.70 indicating good agreement (30). 

Radiomics 

An overview of the radiomics methodology is depicted in Figure 1. As T2-weighted MRI scans do not 

have a fixed unit and scale, the full images were normalized using z-scoring. No further preprocessing 

was performed. For each lesion, 564 features quantifying intensity, shape and texture were extracted 

from the T2-weighted MRI scan. For details, see Supplementary Material 2. To create a decision 

model from the features, the Workflow for Optimal Radiomics Classification (WORC) toolbox was 

used (31, 32). In WORC, decision model creation consists of several steps, e.g. feature selection, 
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resampling, and machine learning. WORC performs an automated search amongst a variety of 

algorithms for each step and determines which combination maximizes the prediction performance 

on the training dataset. For details, see Supplementary Material 3. The code for the feature 

extraction and model creation has been published open-source (33). 

 

Figure 1. Schematic overview of the radiomics approach. Adapted from (46). Input to the algorithm are the T2-weighted 
MRI scans (1) and the lesion segmentations (2). Processing steps include feature extraction (3) and the creation of a 
machine learning decision model (5), using an ensemble of the best 100 workflows from 1,000 candidate workflows (4), 
where the workflows are different combinations of the different analysis steps (e.g. the classifier used). 

Experimental setup 

First, to evaluate the predictive value of radiomics within a single center, an internal validation was 

performed in dataset A through a 100x random-split cross-validation (34, 35), see Supplementary 

Figure S1 A. In each iteration, the data was randomly split into 80% for training and 20% for testing in 

a stratified manner, to make sure the distribution of classes in all datasets was similar to that in the 

full dataset. 

Second, to evaluate whether a model developed on data from one center generalizes well to 

unseen data from other centers, two external validations were performed by training a model on 

dataset A, and testing it on the unseen datasets B and C, see Supplementary Figure S1 B. 
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Third, as clinicians frequently use age and sex in their decision making, two additional models 

were externally validated based on: 1) age and sex; and 2) age, sex, and radiomics features. 

For both the internal and external validations, model optimization was performed within the 

training dataset using an internal 5x random-split cross-validation, see Supplementary Figure S1. 

Hence, all optimization was done on the training dataset to eliminate any risk of overfitting on the 

test dataset.  

Performance of the radiologists 

To compare the models with clinical practice, the T2-weighted MRI scans were scored by two 

experienced abdominal radiologists. They were blinded to the diagnosis, but aware of the inclusion 

and exclusion criteria. Classification of malignancy was made on a four-point scale to indicate the 

radiologists’ certainty: 1=benign, certain; 2=benign, uncertain; 3=malignant, uncertain; and 

4=malignant, certain. To obtain binary scores, 1 and 2 were converted to benign, 3 and 4 to 

malignant. Several characteristics used in the decision making were also scored by the radiologists: 

presence of 1) central scar (6); 2) liquid; 3) atoll sign (36); and 4) degree of heterogeneity (scale 1-4 

similar to malignancy). As the radiologists were from centers A and B, scoring was done on dataset C 

to prevent them from having seen the data previously. 

Statistical analysis 

To evaluate the difference in clinical characteristics and explore the predictive value of the individual 

radiomics features between the malignant and benign lesions, per dataset, univariate statistical 

testing was performed using a Mann-Whitney U test for continuous variables and a Chi-square test 

for categorical variables. For the clinical characteristics, the statistical significance of the difference 

between datasets was assessed using a Kruskal-Wallis test for continuous variables, and a Chi-square 

test for discrete variables. P-values of the clinical characteristics were not corrected for multiple 
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testing as these are purely descriptive: p-values of the radiomics features were corrected using the 

Bonferroni correction (i.e., multiplying the p-values by the number of tests).  

For all models, the Area Under the Curve (AUC) of the Receiver Operating Characteristic 

(ROC) curve, Accuracy, Sensitivity, and Specificity were calculated. ROC confidence bands were 

constructed using fixed-width bands (37). The positive class was defined as the malignant lesions.  

For the internally validated model, 95% confidence intervals of the performance metrics 

were constructed using the corrected resampled t-test, thereby taking into account that the samples 

in the cross-validation splits are not statistically independent (35). For the externally validated model, 

95% confidence intervals were constructed using 1,000x bootstrap resampling of the test dataset and 

the standard method for normal distributions ((38) table 6, method 1), see Supplementary Figure S1 

B. 

For binary scores, the agreement between radiologists was evaluated using Cohen’s κ (39). 

For ordinal scores, i.e., degree of heterogeneity and malignancy, the correlation was evaluated using 

Pearson correlation (40). The AUCs of the radiomics model and the radiologists were compared using 

the DeLong test (41), and confusion matrices were used to analyze the agreement. 

To gain insight into the radiomics model’s decision making, lesions were ranked based on the 

probability of a lesion being malignant as predicted by the model. Ranking was done as archetypal 

benign (ground truth benign, probability near 0%) - pitfall malignant (ground truth malignant, 

probability near 0%) - borderline (probability around 50%) - pitfall benign (ground truth benign, 

probability near 100%) - archetypal malignant (ground truth malignant, probability near 100%). This 

was done on dataset C to enable comparison with the radiologists.  

For all statistical tests, p-values below 0.05 were considered statistically significant. 
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Results 

Datasets 

In total, 486 patients were included (A: 187; B: 98; C: 201). The clinical and imaging characteristics 

are reported in Table 1. As all centers serve as tertiary referral centers, the datasets originated from 

159 different scanners (A: 52; B: 21; C: 86), resulting in substantial heterogeneity in the MRI 

acquisition protocols. Statistically significant differences between datasets A, B, and C included 

magnetic field strength (p=0.001), manufacturer (p=10-4), slice thickness (p=10-32), repetition time 

(p=0.006), flip angle (p=0.05), and use of fat saturation (p=10-17).  

On the subset that was segmented by two observers, the mean ± standard deviation of DSC 

indicated good agreement (B: 0.80±0.21; C: 0.81±0.11). 

Radiomics 

The results of the radiomics model are depicted in Table 2. The internal validation on dataset A had a 

mean AUC of 0.78; the two external validations yielded a similar performance (B: 0.74; C: 0.76). The 

ROC curves (Figure 2) illustrate that the model trained on dataset A performed similar in each of the 

three centers.  

The age-and-sex-only model had a high AUC in both the internal validation (A: 0.88) and the 

two external validations (B: 0.93; C: 0.85). Combining age, sex, and the radiomics features yielded an 

improvement (A: 0.93; B: 0.98; C: 0.91), although not statistically significant. The Accuracy for the 

age-and-sex-only model (A:0.83; B: 0.92; C: 0.82) and the combined age, sex, and radiomics model 

(A: 0.85; B: 0.92; C: 0.83) were similar. 
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Table 1. Clinical and imaging characteristics of the datasets. The number of patients (N) in each dataset is indicated in the 

column header. Per dataset, the statistical significance of the difference between the malignant and benign lesions was 

assessed using a Mann-Whitney U test for continuous variables, and a Chi-square test for discrete variables. The statistical 

significance of the difference between datasets was assessed using a Kruskal-Wallis test for continuous variables, and a Chi-

square test for discrete variables. Statistically significant p-values are displayed in bold. 

Dataset A: Erasmus MC 
(N=187) 

B: Maastricht UMC+ 
(N=98) 

C: Beaujon APHP 
(N=201) 

P 

 Benign Malignant P Benign Malignant P Benign Malignant P  

Patients 93 94  55 43  117 84   

Age in years+ 37 [30-46] 62 [25-70] 10-19 38 [31-45] 64 [60-71] 10-14 38 [31-45] 63 [53-68] 10-20 0.69 

Sex   10-12   10-6   10-17 0.22 
  Male 4 48  3 20  11 55   

  Female 89 46  52 23  106 29   

Phenotype          0.003 

  HCC  81   28   47   

  iCCA  13   15   37   

  HCA 48   26   65    

  FNH 45   29   52    

Size           

Imaging           

Magnetic field 
strength 

  0.10   0.45   0.003 0.002 

  1.0 Tesla 1 4  2 4  1 3   

  1.5 Tesla 76 82  48 39  74 68   

  3.0 Tesla 16 8  5 0  42 13   

Scanner 
Manufacturer  

  10-8   0.03   0.77 10-15 

  Siemens 13 32  21 7  23 17   
  Philips 16 38  34 36  62 40   

  GE 64 24  0 0  30 24   

  Toshiba 0 0  0 0  2 3   

Slice thickness (mm)* 6.0 - 8.0 6.0 - 7.0 0.12 5.0 - 6.0 5.0 - 5.0 0.08 5.0 - 6.0 5.0 - 6.0 0.41 10-32 

Pixel spacing (mm)* 0.72 - 0.94 0.73 - 1.19 0.005 0.77 - 1.38 0.77 - 0.99 0.13 0.74 - 1.0 0.75 - 1.07 0.13 0.07 
Repetition time (ms)* 1348 - 8571 1218 - 4844 0.001 1100 - 2805 1600 - 2961 0.007 1200 - 3884 1512 - 6058 0.14 0.006 

Echo time (ms)* 89 - 100 80 - 100 10-3 80 - 112 80 - 90 0.04 80 - 120 80 - 103 0.13 0.62 

Flip angle (degree)* 90 - 150 90 - 150 0.47 90 - 141 90 - 90 0.01 90 - 140 90 - 134 0.33 0.07 

Fat Saturation yes/no 72/21 59 / 35 0.04 35/20 39/4 0.004 98/19 59/25 0.03 10-18 

Abbreviations: GE: General Electric; HCC: hepatocellular carcinoma; iCCA: intrahepatic cholangiocarcinoma; HCA: hepatocellular adenoma; FNH: focal 
nodular hyperplasia; Max: maximum; P: p-value of Mann-Whitney U test for continuous variables, Chi-square for categorical variables. 
+: median [Quartile 1 - Quartile 3]  
*: Quartile 1 - Quartile 3 
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Figure 2. Receiver operating characteristic (ROC) curves of the radiomics model and radiologists. For the radiomics model, 
the curves present the model internally validated on dataset A (A); and trained on dataset A, externally validated on dataset 
B (B) and dataset C (C). The performance of scoring by the two experienced abdominal radiologists on dataset C is also 
depicted in (C). For the radiomics model, the crosses identify the 95% confidence intervals of the 100x random-split cross-
validation (A) or 1,000x bootstrap resampling (B and C); the bold curves are fit through the means. 

Table 2. Performance of the radiomics model and the radiologists three datasets (A, B, and C). For the radiomics model, 
the mean (internal cross-validation) or point estimate (external validation) and 95% confidence intervals are reported. 

Evaluation Internal cross-validation External validation Radiologist 1 Radiologist 2 

Train set A* A A - - 

Test set A* B C C C 

AUC 0.78 [0.70, 0.85] 0.74 [0.65, 0.84] 0.76 [0.70, 0.83] 0.86 0.83 

Accuracy 0.69 [0.62, 0.76] 0.64 [0.54, 0.74] 0.69 [0.62, 0.75] 0.80 0.77 

Sensitivity 0.70 [0.57, 0.82] 0.79 [0.67, 0.91] 0.82 [0.74, 0.91] 0.88 0.87 

Specificity 0.68 [0.59, 0.78] 0.53 [0.40, 0.66] 0.59 [0.50, 0.68] 0.74 0.69 

Abbreviations: AUC: area under the receiver operating characteristic curve. 
*Training and testing within a single dataset was done through a 100x random-split cross- validation.  
 

Comparison with radiologists 

The performance of the two experienced abdominal radiologists on classifying dataset C is depicted 

in Table 2. The ROC curves (Figure 2c) were mostly just above the 95% confidence interval of the 

radiomics model. The AUC of Radiologist 1 (0.87) was statistically significantly better than the 

radiomics model (DeLong: p=0.0028): the differences in AUC between Radiologist 2 (0.83) and the 

radiomics model and between the two radiologists were not statistically significant. The Accuracy per 

phenotype is depicted in Table 3. The radiomics model had a similar Accuracy in HCC (0.83) and iCCA 

(0.82), while the performance in FNH (0.66) was slightly better than in HCA (0.54). 
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Table 3. Accuracy per phenotype of the radiologists and the radiomics model in the external validation on dataset C. The 
Accuracy per phenotype represents the percentage of the lesions with that specific phenotype being correctly classified as 
malignant or benign. The number of lesions per phenotype in dataset C is given between brackets in the first column. 

Accuracy Radiomics Radiologist 1 Radiologist 2 

Train dataset A - - 

Test dataset C C C 

HCC (47) 0.83 0.85 0.83 

iCCA (37) 0.82 0.95 0.92 

HCA (65) 0.54 0.69 0.62 

FNH (52) 0.66 0.82 0.78 

Abbreviations: HCC: hepatocellular carcinoma; HCA: hepatocellular adenoma; FNH: focal nodular hyperplasia; 

iCCA: intrahepatic cholangiocarcinoma 

 Confusion matrices of the predictions on dataset C are depicted in Figure 3. The agreement 

between the radiologists on classifying the lesions as malignant or benign was moderate (Cohen’s κ: 

0.61) (39): the two radiologists agreed in 160 of the 201 patients (80%). The agreement between the 

two radiologists and the radiomics model was weak (Radiologist 1: κ of 0.47; Radiologist 2: κ of 0.42), 

as reflected by the confusion matrices. For the other characteristics scored by the two radiologists, 

the agreement was weak for presence of a scar (κ: 0.41) and liquid (κ: 0.52), and strong for presence 

of the atoll sign (κ: 0.80); the correlation was moderate for heterogeneity (Pearson coefficient: 0.69) 

and strong for malignancy (Pearson coefficient: 0.70) (40). 

 

Figure 3. Confusion matrices of the predictions by the radiomics model and the two radiologists. The darker the 
background, the higher the agreement. 

Model insight 

In dataset A, on which the radiomics model was developed, 45 radiomics features showed 

statistically significant differences between the malignant and benign lesions with p-values after 
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Bonferroni correction from 9x10-10 to 0.049. These included 4 shape features (volume was not 

significant), 1 orientation feature, and 40 texture features. Statistically significant differences were 

found for 49 radiomics features in dataset B and 10 in dataset C. Four radiomics features (all texture) 

showed statistically significant differences in all three datasets. A list of these features and their p-

values can be found in Supplementary Table S1. The differences in volume between the three 

datasets was statistically significant (p=10-10). 

Examples of lesions from dataset C ranked as archetypal, borderline, or pitfall by the 

radiomics model are depicted in Figure 4. Visual inspection of the T2-weighted MRI scans of the 

archetypal or pitfall lesions showed a relation with heterogeneity (archetypal malignant: 

heterogeneous; archetypal benign: homogeneous), area and volume (archetypal malignant: generally 

high maximum axial area and high volume), and irregularity of shape on 2-D axial slices (archetypal 

malignant lesions: irregular; archetypal benign: compact). Pitfall lesions showed the opposite, e.g. 

pitfall benign: heterogeneous. Borderline lesions, i.e., with an almost equal predicted chance of being 

malignant or benign, were mostly of medium size and medium heterogeneity.  

 

Figure 4. Examples of liver lesions on T2-weighted MRI. From left to right, examples of lesions considered by the radiomics 
model as archetypal (i.e., predicted probability close to extremes and correct), pitfall (i.e., predicted probability close to 
extremes and incorrect), and borderline (i.e., predicted probability close to border of 50%). Abbreviations: HCC: 
hepatocellular carcinoma; iCCA: intrahepatic cholangiocarcinoma; HCA: hepatocellular adenoma; FNH: focal nodular 
hyperplasia. 
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The predictions by the radiomics model on dataset C were compared to the characteristic 

scores of Radiologist 1, who had the highest performance. The correlation between the probability of 

malignancy as predicted by the radiomics model and heterogeneity as scored by Radiologist 1 was 

moderate (Pearson coefficient: 0.58). Radiologist 1 performed well when lesions had an apparent 

atoll sign: from the 19 lesions which Radiologist 1 scored as having an atoll sign and therefore 

classified as benign, 17 were indeed benign and 2 malignant. On the contrary, the radiomics model 

only classified 11 of these lesions correctly, but these included the 2 malignant lesions misclassified 

by Radiologist 1. 

Discussion 

In this study, we developed a radiomics model to distinguish between malignant and benign primary 

solid liver lesions based on T2-weighted MRI in patients with non-cirrhotic livers. We showed that 

our radiomics model can distinguish between these lesions, both in an internal cross-validation and 

in two external validations. 

The substantial increase of radiomics related research in recent years has led to various 

guidelines, vulnerabilities, and gaps (22-24, 42). While several studies have evaluated radiomics for 

the classification of liver lesions (16-18), radiomics for primary liver cancer is still in the early stages, 

and many of these aspects still need to be addressed (21). One of the most important is external 

validation, which is crucial to ensure a high level of evidence in a variety of settings (22, 23). 

Furthermore, the lack of standard imaging parameters can be problematic as these can affect the 

appearance of the lesion and thus radiomics (21, 25). Requiring a comprehensive, standardized set of 

multiple MRI sequences is hardly feasible in practice. In this study, we therefore only used T2-

weighted MRI without strict protocol requirements, and externally validated our model on two 

multicenter cohorts from different countries to assess the generalizability. The scans of the 486 

patients included in this study originated from 159 different MRI scanners, resulting in substantial 

heterogeneity in the acquisition protocols. In univariate analyses, only four radiomics features 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 10, 2021. ; https://doi.org/10.1101/2021.08.10.21261827doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.10.21261827
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

 
 

showed statistically significant differences in all three datasets. Nevertheless, our method performed 

well on data from unseen scanners (i.e., not present in the training dataset), indicating good 

generalizability. Furthermore, we used routinely acquired T2-weighted MRI, increasing the chance 

that the reported performance can be reproduced in a routine clinical setting. All lesions in our study, 

except typical FNH (27), were pathologically proven to ensure the ground truth was objective. We 

also set inclusion criteria to maximize the relevance to clinical decision making. Usage of a single, 

widely used sequence and the fact that the lesion phenotypes included in our study present more 

than 90% of all solid lesions, makes our model widely applicable.  

 To compare the radiomics model to routine clinical practice, the model’s predictions were 

compared to assessment by two experienced abdominal radiologists. The agreement between 

radiologists was moderate, indicating some observer variation in the predictions. The characteristics 

apparently used by the radiomics model to define lesions as archetypal, borderline, and pitfalls, were 

different than those used in the scoring of the radiologists. This is also illustrated by the moderate 

correlation in the heterogeneity scored by Radiologist 1 and the radiomics model’s score, and their 

different predictions on lesions with an apparent atoll sign. As these results indicate the potential 

complementary value of the radiomics model, further research should focus on how the radiologists’ 

and the radiomics model’s predictions can be optimally combined to improve clinical decision 

making.  

Our results indicate that assessment of primary solid liver lesions by radiologists can be 

challenging and is subject to observer dependence. Existing guidelines may aid the radiologist in 

specific scenarios, such as EASL’s guidelines for management of benign liver tumors (4) and HCC (5), 

or LI-RADS for patients with cirrhotic livers (19). In this study, inclusion and exclusion criteria were 

determined to maximize the clinical relevance, covering scenarios not included in these guidelines. 

Our radiomics model therefore complements these existing initiatives. Radiomics may be especially 

useful on lesions where there is no consensus between radiologists, or on the pitfalls for radiologists. 
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Additionally, it may serve as a gatekeeper in non-specialized centers, shortening the diagnostic delay 

by enabling direct referral to an expertise center and reducing the number of missed malignant 

lesions.  

Age and sex are known to be strong predictors for distinguishing malignant from benign liver 

lesions (1, 26). In our study, in line with worldwide findings, (young) females represented the 

majority of benign lesions, while older patients represented the majority of malignant lesions (1, 26). 

The models based on age and sex used an age threshold at 49 years. In dataset C, only 19 (17%) of 

the 114 lesions of patients below 49 years were malignant. Although this therefore yielded a good 

overall performance, it would lead to missing all malignant lesions in young patients, for whom such 

a diagnosis is essential as these patients would benefit most from treatment. Simply classifying all 

lesions below 49 years as benign, regardless of any imaging information, would be unacceptable and 

cannot be applied to the general population. On the other hand, the radiomics model purely based 

on T2-weighted MRI does not use any population-based information. The model rather predicts the 

probability of a lesion being malignant based on the imaging appearance. Our radiomics method 

could be especially useful in young males to not miss malignant lesions, and in older females to 

detect benign lesions. Future research should therefore also focus on optimally combining imaging, 

age, and sex. 

 Our study has several limitations. First, while the inclusion and exclusion criteria were set to 

maximize the relevance to clinical decision making, they limit the applicability, as our model cannot 

be applied to all liver lesions, and may have led to selection biases. Future research should therefore 

focus on loosening these criteria, for example including patients with smaller lesions (maximum 

diameter < 3 cm), liver disease, more typical lesions, i.e., that are routinely not biopsied, and other 

(rare) phenotypes. Second, the current radiomics approach requires semi-automatic segmentations. 

While accurate, this process is time consuming and subject to some observer variability, limiting the 

transition to clinical practice. We do not believe that this has substantially affected the results, as the 
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inter-observer DSC indicated good segmentation reproducibility, and the radiomics model performed 

similar in the internal and external validations despite training and testing on segmentations of 

various observers. Automatic segmentation methods, for example with deep learning (43), may help 

to further automate the method and avoid observer dependence.  

On one hand, using a single, widely available (T2-weighted) MRI sequence without strict 

protocol restrictions is a strength of our model. On the other hand, in real life, radiologists use 

multiple sequences in their assessment, indicating that a multi-sequence model may lead to an 

improved performance. EASL’s guidelines also describe lesion assessment characteristics based on 

these other sequences, e.g. wash-out on dynamic contrast enhanced T1-weighted MRI, and diffusion 

restrictions (low ADCs) (4, 5). These other sequences may contain additional information to improve 

the radiomics and radiologists’ performance (16). Especially when extending our work to 

phenotyping, these sequences may contain essential information for an accurate diagnosis. Main 

additional challenges for such a multi-sequence model, due to the lack of a standardized protocol in 

the literature, are the additional heterogeneity, missing data as not all these sequences are acquired 

by default, and overcoming differences in appearance caused by the variations in contrast agents 

(44).  We used only T2-weighted MRI, as this sequence suffers less from these disadvantages; is 

widely available, thus a T2-weighted MRI based radiomics model is feasible to use in routine clinical 

practice; is relatively simple and thus showing less heterogeneity as e.g. sequences with contrast; is 

reliable for lesion segmentation; and is minimally sensitive to motion or breathing artefacts; and is 

informative (4, 5, 19). The latter is also illustrated by our results, as the two radiologists were already 

able to distinguish malignant from benign lesions quite accurately using only T2-weighted MRI. 

Future research should, besides the points mentioned in the previous paragraphs, focus on 

extending our work to phenotyping (e.g. HCC, iCCA, HCA, FNH), and possibly even subtyping (e.g. 

inflammatory HCA, β-catenin activated HCA) to further aid clinical decision making. Furthermore, to 

gain better insight into the complementary value of radiomics, our model may be compared with 
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more radiologists. In our study, two experienced abdominal radiologists who were trained at the 

same center scored the patients. Hence, it would be valuable to compare with radiologists from a 

variety of institutes, also including less experienced and non-academic radiologists. This will also give 

a better insight into which type of lesions are difficult for radiologists to classify or reach consensus 

on, and thus where radiomics could have the highest added value. 

In conclusion, our radiomics model based on T2-weighted MRI was able to distinguish 

malignant from benign primary solid liver lesions in patients with non- cirrhotic livers, both in an 

internal validation and in two external validations on heterogeneous, multicenter data. Pending 

further optimization and generalization, our model may serve as a robust, non-invasive and low-cost 

aid to enable quicker referral and refine patient selection prior to biopsies, and help solve the 

shortage of radiologists (45).  
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Abbreviations 

AUC    area under the curve 

ADC    apparent diffusion coefficient 

DSC    Dice similarity coefficient 

EASL    European association for the study of the liver 

FNH    focal nodular hyperplasia 

HCA    hepatocellular adenoma 

HCC    hepatocellular carcinoma 

iCCA    intrahepatic cholangiocarcinoma 

MRI    magnetic resonance imaging 

ROC    receiver operating characteristic 

WORC    workflow for optimal radiomics classification  
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