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Abstract1

Background: Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide.2

Tumor heterogeneity continues to confound researchers’ understanding of tumor growth and the devel-3

opment of an effective therapy. Digital cytometry allows interpretation of heterogeneous bulk tissue4

transcriptomes at the cellular level.5

Methods: We built a novel signature matrix to dissect epithelium and stroma signals using a scRNA-6

seq data set for GC. We applied cell mixture deconvolution to estimate diverse epithelial, stromal,7
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and immune cell proportions from bulk transcriptome data in four independent GC cohorts. Robust8

computational methods were applied to identify strong prognostic factors for GC.9

Results: We identified an EMEC population whose proportions were significantly higher in patients10

with stage I cancer than other stages, and it was predominantly present in tumor samples but not11

typically found in normal samples. We found that the ratio of EMECs to stromal cells and the ratio12

of adaptive T cells to monocytes were the most significant prognostic factors within the non-immune13

and immune factors, respectively. The STEM score, which unifies these two prognostic factors was an14

independent prognostic factor of overall survival (HR=0.92, 95% CI=0.89-0.94, p = 2.05 × 10−9). The15

entire GC cohort was stratified into three risk groups (high-, moderate-, and low-risk) which yielded16

incremental survival times (p < 0.0001). For stage III disease, patients in the moderate- and low-17

risk groups experienced better survival benefits from radiation therapy ((HR=0.16, 95% CI=0.06-0.4,18

p < 0.0001), whereas those in the high-risk group did not (HR=0.49, 95% CI=0.14-1.72, p = 0.25).19

Conclusions: We conclude that the STEM score is a promising prognostic factor for gastric cancer.20

1 Introduction21

Gastric cancer (GC) is a complex and heterogeneous disease from morphological, molecular, and cellular22

standpoints [1]. Such tumor heterogeneity has been demonstrated in numerous histological and molecular23

classifications. The Lauren classification separates gastric adenocarcinomas into intestinal, diffuse, and mixed24

subtypes which were found to be associated with varying stomach cancer risks [2, 3]. The Asian Cancer25

Research Group (ACRG) classified GC into four molecular subtypes that, based on gene expression data,26

were associated with distinct molecular alterations, disease progression, and survival outcomes [4]. These27

subtypes are epithelial-to-mesenchymal transition (EMT), MSS/TP53-, MSS/TP53+, and microsatellite28

instability (MSI). More recently, The Cancer Genome Atlas (TCGA) research network characterized GC into29

four genomic subtypes by integrating data from six molecular platforms: array-based somatic copy number30

analysis, whole-exome sequencing, array-based DNA methylation profiling, messenger RNA sequencing,31

microRNA (miRNA) sequencing and reverse-phase protein array, as well as Microsatellite instability (MSI)32

testing [5]. These genomic subtypes are EBV-positivity (EBV), MSI-high status (MSI), genomically stable33

(GS), and those exhibiting chromosomal instability (CIN). Each subtype displays distinct molecular and34

genomic patterns.35

Tumor heterogeneity, including the results from the tumor microenvironment (TME), continues to con-36

found researchers’ understanding of tumor growth and the development of an effective therapy [6,7]. Tumors37
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are complex ecosystems that are affected by numerous stromal and immune factors which dampen or en-38

hance the effects of genetic epithelial alterations [8–11]. The TME is comprised of tumor cells, tumor39

stromal cells, endothelial cells, immune cells, and the non-cellular components of extracellular matrix pro-40

teins [12,13]. Some essential components of the TME, including cancer-associated fibroblasts (CAF) [14,15],41

tumor-infiltrating lymphocytes (TIL) [16,17], tumor-associated macrophages (TAM) [18], and other cellular42

components [19–21], have been evaluated to help researchers better understand the role of the TME in gastric43

cancer risk. Most of these studies have focused on the subsets of cellular components of TME: typically the44

stromal and immune cell populations. However, the prognostic values of diverse gastric epithelial cell types45

in GC risk were still unclear. To our knowledge, a systematic analysis of the prognostic value of diverse46

epithelial cell types, including cancer cell, MSC, PMC and PC, emerged in early gastric cancer for predicting47

survival has not been described.48

Digital cytometry enables the examination of heterogenous bulk tissue transcriptomes at the cellular level49

in addition to using computational methods to quantify cell type composition. In recent years, single cell50

RNA-sequencing (scRNA-seq) techniques have offered new insights into tissue samples at the resolution of51

single cells. The availability of single cell transcriptomic profiles, which are used to build cell type-specific52

signature matrices, promote the development of statistical deconvolution methods for estimating cell type53

compositions in heterogeneous mixture samples. [22, 23].54

This study attempts to investigate the TME of GC with comprehensive epithelial, stromal, and immune55

cell profiling by combining single cell and bulk expression profiles. We have undertaken a comprehensive56

analysis on 10 non-immune and 7 immune cell populations of the TME of GC, evaluated the prognostic role57

of the STEM score in four independent GC cohorts, and stratified the GC patients into three TME subtypes58

based on the abundance of four STEM pupulations.59

2 Results60

2.1 Building a non-immune signature matrix for GC from a single-cell RNA-seq61

data set62

We carried out a systematic cell subtype analysis on a single-cell RNA-seq data set of patients with gastric63

premalignant lesions and early gastric cancer [24]. An unsupervised hierarchical clustering analysis was used64

to investigate the possibility of identifying different non-immune cell populations in the gastric scRNA-seq65
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data set based on their expression profiles. Hierarchical clustering of the cell types in the cascade stages from66

non-atrophic gastritis (NAG), chronic atrophic gastritis (CAG), intestinal metaplasia (IM) and early gastric67

cancer (EGC) in the single cell reference revealed that 24,874 non-immune cells fell into three large groups:68

epithelial cell types (including cancer cell, enterocyte, enteroendocrine, GMC, goblet cell, MSC, PC, and69

PMC), stromal cell types (including Fibroblast and SM cells), and endothelial cell types (Fig.1). Notably, the70

enterocytes and cancer cells that emerged in the CAG and IM biopsies were clustered together. We labeled71

this cluster as the premalignant epithelial cell (PMEC) pupulation. We also detected a cell population in72

which cells were clustered by stage instead of by cell type. This cell population consists of four gastric73

epithelial cell types (including cancer cell, MSC, PC, and PMC) that emerged uniformly in the EGC biopsy.74

Therefore, we called it the early malignant epithelial cell (EMEC) subtype. The other eight cell populations75

were found to clustered by cell type. Overall, ten cell populations of EMEC, PMEC, enteroendocrine, GMC,76

goblet cell, MSC, PC, PMC, endothelial cell, and stromal cell were detected in the cluster tree (Fig.1, Table77

5). To estimate the proportions of non-immune cell compositions in the gastric cancer samples, we created a78

cell population-specific signature matrix to distinguish these 10 cell populations. The cell population-specific79

marker genes were selected by using two-way ANOVA (see Methods for details).80

2.2 Dissecting epithelium-stroma-immune signals from gastric cancer samples81

Epithelial, stromal, and immune cell populations comprise the vast majority of gastric tumor cellularity. In82

order to accurately dissect epithelium-stroma-immune signals from GC samples, we applied CIBERSORT [25]83

or CIBERSORTx [23] to RNA profiles of GC samples. Our methodology involved two separate deconvolution84

procedures: an immune cell deconvolution procedure and a non-immune cell deconvolution procedure, which85

dissects immune and non-immune signals from GC samples, respectively. The immune system is an important86

determinant of the TME, we applied CIBERSORT/CIBERSORTx to infer relative immune cell subtype87

fractions in four cohorts of bulk GC samples by using a signature matrix derived from the peripheral blood88

mononuclear cell (PBMC) samples (Fig.2, see Methods for details). We observed that the T adaptive cell89

population, comprised of naive and memory CD4 and CD8 T cells, was consistently dominant across the four90

GC cohorts, followed by the monocyte, B adaptive, and T innate subsets. The single cell gene expression91

data sets of GC offer new insights to investigating the GC TME at the resolution of single cells. To enumerate92

GC non-immune cell proportions, we further applied CIBERSORT/CIBERSORTx by using the single-cell93

reference profiles to distinguish epithelial, stromal, and endothelial cell subsets in the bulk GC samples94
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Figure 1: Cluster tree of 11 non-immune cell types of patients with NAG, CAG, IM and EGC.
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(Fig.3, see Methods for details). We observed that the EMEC, PC, and stromal cell subsets were highly95

abundant while the endothelial cell subset was less abundant in all four cohorts.96

Figure 2: The relative abundance of major classes of immune cell populations for four cohorts of gastric
cancer samples.
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The EMEC population is composed of gastric epithelial cells (including cancer cells, MSCs, PCs, and97

PMCs) that were isolated from early GC patients. We analyzed the functional annotation of the EMEC98

gene signatures using Gene Ontology (GO). The EMEC gene signatures were mostly enriched for mitochon-99

drial translation, mitochondrial translational elongation and mitochondrial translational termination in the100

biological process (BP) ontology (Fig. 4a); and were mainly enriched in the mitochondrial inner membrane101

and mitochondrial ribosome in the cellular component (CC) ontology (Fig. 4b). The results suggest that the102

mitochondria could serve as a GC biomarker for early detection, which are consistent with previous reports103

showing a role for mitochondria [26–28] in the early detection of solid tumors.104

We hypothesized that the EMEC population would be more abundant in patients with stage I cancer than105

other stages. To test this hypothesis, we estimated proportions of the EMEC population in each sample of106

both the ACRG and TCGA-STAD cohorts. We observed significantly higher EMEC populations in patients107
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Figure 3: The relative abundance of major classes of non-immune cell populations for four cohorts of gastric
cancer samples.
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Figure 4: Top GO terms enriched for the EMEC gene signatures in the BP (a) and CC (b) ontologies.
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with stage I cancer than stage II, III, or IV in both the ACRG and TCGA-STAD cohorts (p < 0.05, Student’s108

t-test; Fig.5). To investigate whether the EMEC population was typically found in tumor samples but not109

in normal samples, we estimated proportions of 10 non-immune cell populations in samples from both tumor110

and adjacent normal tissues available in the TCGA-STAD sample collection. We observed that the EMEC111

population was significantly higher in tumor samples than in adjacent normal samples (p < 0.0001, Student’s112

t-test; Fig.6).113

We also observed the PMEC population was significantly lower in tumor samples than in normal samples114

(p < 0.0001, Student’s t-test; Fig.6). The proliferative cell type was the second major epithelial cell type115

found in tumors. It was significantly increased in tumor samples when compared to normal samples (p <116

0.0001, Student’s t-test; Fig.6). Contrastingly, the PMC cell types were significantly decreased in tumor117

samples compared to normal samples (p < 0.0001, Student’s t-test; Fig.6).118

Figure 5: Comparison of the relative abundance of EMEC population across four stages in the ACRG and
TCGA cohorts.
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2.3 Correlates of non-immune/immune factors with overall survival119

The ACRG (GSE62254) cohort was used as the training cohort because it provided the most comprehensive120

clinical data along with more than 5 years of follow-up information for 300 GC patients. The univariate Cox121
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Figure 6: Comparison of the relative abundance of non-immune cell populations between normal and tumor
samples in the TCGA-STAD cohort.
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proportional hazards regression model was used to identify prognostic factors of overall survival (OS) in the122

training cohort. We further expanded the univariate analyses to Multivariate Cox proportional hazard analy-123

ses, which accounts for age, sex, stage, Lauren histology, and adjuvant chemotherapy treatment as additional124

clinical covariates to examine their independent prognostic values. The univariate Cox analyses indicated125

that the three non-immune factors of EMEC/stromal cell, PC/stromal cell, and endothelial cell/stromal cell126

ratios were significantly correlated to OS, and the hazard ratio ranged from 0.27 to 0.8 (p < 0.05). Addition-127

ally, the ratios of EMEC/stromal cell and PC/stromal cell remained significant prognostic factors of OS by128

multivariate analyses, with hazard ratios of 0.82 and 0.85 (p < 0.05), respectively (Table 1). The univariate129

Cox regression analysis for the prediction of OS also confirmed that three immune factors - the ratios of T130

adaptive/monocytes, monocytes/T adaptive, and monocytes/B adaptive were all found to be of prognostic131

significant factors with a hazard ratio ranging from 0.86 to 2.54 (p < 0.05). The multivariate analyses132

confirmed that the T adaptive/monocytes and monocytes/T adaptive ratios were independent prognostic133

factors of OS with hazard ratios of 0.88 and 2.61 (p < 0.05), respectively (Table 2).134

Table 1: Univariate and multivariate results in Cox proportional hazards analysis of non-immune factors in
the training cohort.

Univariate analysis Multivariate analysis

Non-immune factors HR (95% CI for HR) P value HR (95% CI for HR) P value

EMEC/Stromal cell 0.75 (0.65-0.86) < 0.001 0.82 (0.71-0.94) 0.005
PC/Stromal cell 0.8 (0.71-0.9) < 0.001 0.85 (0.75-0.96) 0.011
Endothelial cell/Stromal cell 0.27 (0.08-0.9) 0.032 0.44 (0.13-1.47) 0.182
Stromal cell/Endothelial cell 1.04 (1-1.08) 0.081 1.07 (1.02-1.13) 0.009
PC/Endothelial cell 0.98 (0.96-1.01) 0.15 0.99 (0.97-1.02) 0.463
EMEC/Endothelial cell 0.99 (0.97-1.01) 0.167 0.99 (0.97-1.01) 0.415

Note: The p value was derived from the Cox regression model; HR, hazard ratio; CI, confidence interval.

Table 2: Univariate and multivariate results in Cox proportional hazards analysis of immune factors in the
training cohort.

Univariate analysis Multivariate analysis

Immune factors HR (95% CI for HR) P value HR (95% CI for HR) P value

T adaptive/Monocytes 0.86 (0.78-0.96) 0.004 0.88 (0.8-0.97) 0.01
Monocytes/T adaptive 2.54 (1.24-5.21) 0.011 2.61 (1.11-6.15) 0.028
Monocytes/B adaptive 1.14 (1-1.29) 0.048 1.08 (0.95-1.22) 0.239
B adaptive/Monocytes 0.8 (0.61-1.04) 0.097 0.78 (0.59-1.03) 0.078
T Innate/T adaptive 2.76 (0.81-9.39) 0.104 1.6 (0.41-6.21) 0.5
Granulocytes/Monocytes 0.79 (0.5-1.24) 0.304 0.9 (0.63-1.29) 0.582
B adaptive/T Innate 0.99 (0.96-1.02) 0.347 0.99 (0.97-1.01) 0.354
T Innate/B adaptive 1.16 (0.85-1.59) 0.36 1 (0.72-1.37) 0.978
B adaptive/T adaptive 1.44 (0.61-3.43) 0.405 1.43 (0.54-3.78) 0.471
Granulocytes/B adaptive 0.87 (0.63-1.22) 0.426 1.05 (0.76-1.45) 0.781
Granulocytes/T Innate 0.96 (0.86-1.09) 0.553 1 (0.99-1.01) 0.997
T Innate/Monocytes 0.89 (0.57-1.38) 0.598 0.82 (0.52-1.3) 0.393
T adaptive/B adaptive 0.99 (0.93-1.05) 0.742 0.99 (0.93-1.06) 0.817
Granulocytes/T adaptive 0.85 (0.32-2.29) 0.749 1.17 (0.46-2.98) 0.741

Thus, we defined a new TME score, called STEM score for each GC sample by combining the most

significant non-immune ( the ratio of EMECs to Stromal cells) and immune factors (the ratio of adaptive T

11
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cells to Monocytes) as:

STEM score =
EMEC

Stromal cell
+

T adaptive

Monocytes

We performed multivariate Cox regression analysis correcting for clinicopathological variables, including135

age, sex, stage, Lauren histology, and adjuvant chemotherapy treatment. We found that the STEM score136

acts as an independent prognostic factor for OS (HR 0.9, p = 0.003) in the training cohort (Table 3).137

Table 3: Multivariate Cox regression analysis used to evaluate the independent risk factor of prognosis in
the training cohort.

Variable HR (95% CI for HR) P value

STEM score 0.9 (0.84-0.97) 0.003
Age 1.02 (1-1.03) 0.019
Gender
(Male vs. Female) 1.21 (0.85-1.71) 0.283
Stage
(II vs. I) 1.78 (0.68-4.63) 0.239
Stage
(III vs. I) 3.58 (1.4-9.15) 0.008
Stage
(IV vs. I) 8.49 (3.36-21.47) < 0.001
Lauren
(Intestinal vs. Diffuse/Mixed) 0.75 (0.53-1.07) 0.111
Chemotherapy
(Yes vs. No) 0.45 (0.31-0.64) < 0.001

To validate whether the STEM score had consistent prognostic value in different cohorts, we applied it138

to three independent validation data sets from TCGA-STAD, GSE15459, and GSE84437. The multivari-139

ate Cox proportional hazard analyses, which account for age, sex, stage, Lauren histology, and adjuvant140

chemotherapy/radiation therapy treatment (if applicable as additional clinical covariates) confirmed that141

the STEM score was an independent prognostic factor of OS in each validation data set (TCGA-STAD: HR142

0.94, p = 0.001, GSE15459: HR 0.89, p = 0.01, and GSE84437: HR 0.86, p < 0.001). We further performed143

a meta-analysis to evaluate the overall effect of the STEM score on clinicopathologic factor-adjusted survival.144

We added three validation cohorts to the training cohort. A forest plot of estimated hazard ratios indicated145

the STEM score was a significant independent prognostic factor of OS (HR = 0.92, p = 2.05 × 10−9, z-test146

for overall effect; Fig.7).147

2.4 Increased STEM score associated with superior survival148

We next assessed the predictive value of the STEM score for risk stratification. For the ACRG cohort, we149

stratified 300 patients into two groups (low vs. high) according to the STEM score and using an optimal150

cutoff of 3.95 (Fig.8; see Methods for details). The Kaplan-Meier curve showed that patients in the high-151

STEM score group had significantly longer OS times than patients in the low-STEM score group (p < 0.0001,152

log-rank test; Fig.9).153
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Table 4: Multivariate Cox regression analysis used to examine the independent risk factor of prognosis in
three independent validation cohorts.

TCGA-STAD GSE15459 GSE84437

Variable HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

STEM score 0.94 (0.91-0.97) 0.001 0.89 (0.82-0.97) 0.010 0.86 (0.8-0.92) < 0.001
Age 1.02 (1-1.04) 0.011 1.01 (1-1.03) 0.128 1.02 (1.01-1.03) < 0.001
Gender
(Male vs. Female) 1.09 (0.76-1.57) 0.626 0.74 (0.47-1.19) 0.213 1.31 (0.96-1.77) 0.086
Stage
(II vs. I) 1.43 (0.7-2.92) 0.321 2.22 (0.68-7.22) 0.186
Stage
(III vs. I) 2.64 (1.34-5.21) 0.005 7.96 (2.8-22.61) < 0.001
Stage
(IV vs. I) 4.15 (1.89-9.08) < 0.001 23.28 (7.92-68.46) < 0.001
Lauren
(Intestinal vs.
Diffuse/Mixed) 1.25 (0.8-1.95) 0.322
Radiationtherapy
(Yes vs. No) 0.41 (0.25-0.69) 0.001

Figure 7: Forest plot of estimated hazard ratios indicating STEM score as a prognostic factor for OS in four
GC cohorts.
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Figure 8: An illustration of optimal cutoff identification for STEM score.
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Figure 9: Kaplan-Meier survival curves for the patients with low vs. high STEM scores in the ACRG cohort.
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By using the same cutoff optimized in the ACRG cohort, we observed consistent results across three154

independent validation cohorts that showed patients with a high STEM score yielded better OS than those155

with a low STEM score (GSE15459: p = 0.015; GSE84437: p = 4 × 10−4; TCGA-STAD: p = 1.8 × 10−4; a156

combined set of four cohorts: p < 0.0001; log-rank test, Fig.10).157

Figure 10: Kaplan-Meier plots for the OS of patients with low vs. high STEM scores in the GSE15459 (a),
GSE84437 (b), TCGA-STAD (c) cohorts and a combined set of four cohorts (ACRG, GSE15459, GSE84437,
and TCGA-STAD) (d). Significance test p value is shown in the lower left.
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Additionally, we investigated the prognostic values of the STEM score in groups of patients treated with158

or without chemotherapy. We then stratified the ACRG cohort into four groups based on the STEM score159

and chemotherapy (CT) treatment or not. The unadjusted survival curve for the four groups indicated160

the high-STEM score groups had superior survival compared to the low-STEM score group for patients161

regardless of chemotherapy treatment (Fig.11a).162
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To explore the prognostic values of the STEM score in groups of patients treated with or without radiation163

therapy, we stratified the TCGA-STAD cohort into four groups based on the STEM score and radiation164

therapy (RT) treatment or not. The unadjusted survival curve for the four groups indicated the high-STEM165

score groups still had superior survival compared to the low-STEM score group for patients regardless of166

radiation therapy treatment (Fig.11b).167

Figure 11: (a) Kaplan-Meier survival curves for the four groups (including chemotherapy-high STEM score,
chemotherapy-low STEM score, no chemotherapy-high STEM score, and no chemotherapy-low STEM score)
in the ACRG cohort. Significance test p value is shown in the lower left. (b) Kaplan-Meier survival curves
for the four groups (including radiation therapy-high STEM score, radiation therapy-low STEM score, no
radiation therapy-high STEM score, and no radiation therapy-low STEM score) in the TCGA-STAD cohort.
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By using multivariate Cox regression analysis and univariate Kaplan-Meier analysis in Section 2.3, four168

prognostic cell populations of Stromal cell, adaptive T cell, EMEC and Monocyte, referred as STEM popula-169

tions, that had been found to be significant in the univariate Cox regression analyses were further examined170

to be prognosis stratification factors in gastric cancer. Thus, these four cell populations were selected to171

perform cluster analysis of all 1340 GC samples in four GC cohorts. Based on the estimated relative abun-172

dance of these four cell populations, we applied spectral clustering with the optimal number of clusters173

chosen by NbClust (see Methods for details). The three resulting TME subtypes, including TMEsubtype-H,174

TMEsubtype-M, and TMEsubtype-L (with 302, 591, and 447 samples, respectively) were characterized by175

a distinct distribution of relative abundance over the four selected cell populations. The relative abundance176

of these four cell populations varied significantly across the three TME subtypes (p < 2.22×10−16, Kruskal-177
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Wallis test; Fig.12). The TMEsubtype-H cluster had the highest stromal cell (mean proportion = 0.48,178

p < 2.22 × 10−16, Wilcoxon test relative to next-highest; Fig.12, left bottom) and monocyte abundance179

(mean proportion = 0.29, p < 2.22 × 10−16, Wilcoxon test relative to next-highest; Fig.12, right bottom),180

while it had the lowest EMEC (mean proportion = 0.17, p < 2.22 × 10−16, Wilcoxon test relative to next-181

lowest; Fig.12, left top) and adaptive T cell abundance (mean proportion = 0.44, p = 0.0036, Wilcoxon test182

relative to next-lowest; Fig.12, right top). However, in the TMEsubtype-L the opposite was observed. The183

TMEsubtype-L cluster was found to have the lowest stromal cell (mean proportion = 0.14, p < 2.22×10−16,184

Wilcoxon test relative to next-lowest; Fig.12, left bottom) and monocyte abundance (mean proportion =185

0.18, p = 6.7 × 10−9, Wilcoxon test relative to next-lowest; Fig.12, right bottom), while it had the highest186

EMEC (mean proportion = 0.44, p < 2.22 × 10−16, Wilcoxon test relative to next-highest; Fig.12, left top)187

and adaptive T cell abundance (mean proportion = 0.57, p = 0.0036, Wilcoxon test relative to next-highest;188

Fig.12, right top). The mean proportions of EMEC, stromal cell, adaptive T cell, and monocyte for the189

TMEsubtype-M were 0.25, 0.22, 0.47, and 0.2, respectively.190

We further examined the TME subtypes’ association with OS. The TMEsubtype-L had the best prognosis191

(OS HR (95% CI) 0.52 (0.42-0.65), p < 0.0001 relative to the TMEsubtype-H, adjusted for age and sex),192

the TMEsubtype-M had intermediate prognosis (OS HR (95% CI) 0.76 (0.63-0.91), p = 0.0035 relative193

to the TMEsubtype-H, adjusted for age and sex), and the TMEsubtype-H had the least favorable outcome194

(p < 0.0001, log-rank test; Fig.13a). A decreased value of the STEM score, non-immune, or immune score led195

to worse outcomes in the TMEsubtype-H (Fig.13b). The survival analysis revealed a substantial difference196

in OS among the three TME subtypes. Robust correlations between the identified TME subtypes and OS197

were also validated in ACRG (p < 0.0001, log-rank test; Fig.14a), GSE84437 (p = 0.002, log-rank test;198

Fig.14b), and TCGA-STAD (p = 0.014, log-rank test; Fig.14c) cohorts, separately. Patients in different GC199

cohort were stratified into three groups with significantly distinct prognosis, and it was found that the lower200

the STEM score the poorer the patient survival outcome. Although the difference in the GSE15459 cohort201

was not statistically significant (p = 0.097, log-rank test; Fig.14d), the TMEsubtyp-H still had the poorest202

outcome.203

The risk stratification model was further investigated in patients with the same stage GC in the ACRG204

and TCGA-STAD data sets. Similarly to the whole cohort, patients with stage IV GC were stratified into205

three groups with significantly distinct prognosis (ACRG: p = 0.031, Fig.15a and TCGA-STAD: p = 0.028,206

Fig.15b; log-rank test).207

To investigate the predictive value of the TME subtypes for radiation therapy response in the TCGA-208
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STAD cohort, we evaluated the association between TME subtypes and overal survival among stage III209

patients who either received or did not receive radiation therapy. We found that for patients in the210

TMEsubtype-M and TMEsubtype-L group, radiation therapy was associated with improved OS (HR 0.16,211

95% CI (0.06-0.4), p < 0.0001; Fig.16a). However, for patients in the TMEsubtype-H group, performing212

radiation therapy did not improve OS (HR 0.49, 95% CI (0.14-1.72), p = 0.25; Fig.16b). The mean STEM213

score of patients in the TMEsubtype-H group is substantially smaller than those in the TMEsubtype-M and214

TMEsubtype-L groups (Fig.16c).215

Figure 12: Comparison of the estimated proportions of four prognostic cell populations across three TME
subtypes in the meta cohort.

p < 2.22e-16

p < 2.22e-16

p < 2.22e-16

Kruskal-Wallis, p < 2.2e-16

p < 2.22e-16

p < 2.22e-16

p < 2.22e-16

Kruskal-Wallis, p < 2.2e-16

p < 2.22e-16

p < 2.22e-16

0.0036

Kruskal-Wallis, p < 2.2e-16

p < 2.22e-16

6.7e-09

p < 2.22e-16

Kruskal-Wallis, p < 2.2e-16

Stromal.cell Monocytes

Early.malignant.epithelial.cell T.adaptive

TMEsubtype-H TMEsubtype-M TMEsubtype-L TMEsubtype-H TMEsubtype-M TMEsubtype-L

0

50

100

0

50

100

TME subtype

R
e
la

ti
v
e
 c

e
ll 

s
u
b
ty

p
e
 a

b
u
n
d
a
n
c
e

18

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 10, 2021. ; https://doi.org/10.1101/2021.08.10.21261822doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.10.21261822
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 13: TME subtype in gastric cancer. (a)Kaplan-Meier plots for the OS of patients stratified into three
TME subtypes in the meta cohort (ACRG, GSE15459, GSE84437 and TCGA-STAD). Significance test p
value is shown in the lower left. (b) The mean non-immune and immune scores with TME subtypes.
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2.5 Comparison with other reported molecular classifications for GC216

We compared the similarities and differences of the identified TME subtypes with the molecular subtypes217

derived by the ACRG, as well as with the genomic subtypes derived by the TCGA. The ACRG classified GC218

into four molecular subtypes, including EMT, MSS/TP53-, MSS/TP53+, and MSI, which are associated219

with distinct molecular alterations, disease progression, and survival outcomes based on gene expression220

data. In survival analysis, the MSI subtype had the best prognosis, followed by MSS/TP53+, MSS/TP53-,221

and finally the EMT subtype having the worst prognosis [4]. The comparisons of the TME subtypes with the222

ACRG molecular subtypes showed several differences, for instance, the samples classified as the ACRG EMT223

subtype were present in both the TMEsubtype-H and TMEsubtype-M, and the samples classified as ACRG224

MSS (TP53+ and TP53-) and MSI subtypes were present in both the TMEsubtype-M and TMEsubtype-225

L. However, we observed that the TMEsubtype-H, TMEsubtype-M, and TMEsubtype-L were enriched in226

ACRG EMT, MSS (TP53+ and TP53-) and MSI, respectively (Fig.17a). Moreover, we investigated the227

association of the TME subtypes with tumor stages. The TMEsubtype-H was linked to patients classified228

as stage III and IV, whereas the TMEsubype-L was associated with patients classified as early stage I and229

II (Fig.17a). We showed previously that a lower STEM score was associated with poorer survival outcome.230

We found similar results when comparing the STEM score across ACRG molecular subtypes. The ACRG231
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Figure 14: Kaplan-Meier plots for the OS of patients stratified into three TME subtypes in the ACRG (a),
GSE84437 (b), TCGA-STAD (c) and GSE15459 (d) cohorts. Significance test p value is shown in the lower
left.
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Figure 15: TME subtype in patients with stage IV GC. Kaplan-Meier plots for the OS of patients with stage
IV GC stratified into three TME subtypes in the ACRG (a) and TCGA-STAD (b) cohorts.
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Figure 16: Relationship between the TME subtypes and survival benefit from radiation therapy in matched
patients with stage III gastric cancer: (a) TMEsubtype-H, (b) TMEsubtype-M/L. (c) Compare the mean
non-immune and immune scores of patients in the TMEsubtype-H to the TMEsubtype-M and -L for stage
III disease in the TCGA-STAD cohort.
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EMT subtype, composed mostly of diffuse-type tumors, had been shown to have the worse prognosis of the232

four and was linked to the lowest STEM score (mean STEM score = 3.1, p = 2.3 × 10−14, Wilcoxon test233

relative to next-lowest). The ACRG MSI subtype, which had been shown to have the best prognosis of234

four, was linked to the highest STEM score (mean STEM score = 6.49, p = 0.0073, Wilcoxon test relative235

to next-highest). The mean STEM score of the ACRG MSS subtype was 5.73. The STEM score varied236

significantly across the four ACRG molecular subtypes (p = 3.1 × 10−16, Kruskal-Wallis test; Figure.17b).237

Consistent results were found for the non-immune and immune scores across the ACRG molecular subtypes238

(Figure.17c).239

The TCGA research network classified GC into four genomic subtypes, including EBV, MSI, GS, and CIN,240

by integrating data from six molecular platforms and performing Microsatellite instability (MSI) testing [5].241

The MSI and EBV subtypes were shown to have a better prognosis than GS and CIN subtypes [4, 29,242

30]. The comparisons of the TME subtypes with the TCGA genomic subtypes showed similarities, such243

as the TMEsubtype-H, TMEsubtype-M, and TMEsubtype-L were enriched in TCGA GS, CIN and MSI,244

respectively (Fig.18a). The TMEsubtype-H is primarily composed of samples classified as the TCGA GS245

and CIN subtypes. The GC samples classified as TMEsubtype-M were present across all TCGA genomic246

subtypes. The TMEsubtype-L is primarily composed of samples classified as the TCGA MSI, EBV, and247

CIN subtypes. We found a significantly lower mean STEM score in the TCGA GS (3.57) and CIN (5.7)248

subtypes compared to the EBV (9.41) and MSI (11.4) subtypes (Fig.18b), further reinforcing the prognostic249

value of the STEM score.250

2.6 Identification of GC prognostic gene signatures251

We have shown predictive values of the EMEC and stromal cell populations for OS. In this respect, we further252

investigated prognostic gene signatures of these two cell populations. By using scRNA-seq transcription253

profiles, we have identified 150 gene markers for the EMEC and stromal cell populations on the construction of254

non-immune signature matrix. For each marker gene, we did multivariate Cox proportional hazard modeling255

on the four GC cohorts, respectively, accounting for conventional clinical and pathologic factors including age,256

sex, stage, Lauren histology, and adjuvant chemotherapy/radiation therapy treatment if applicable. Next,257

we performed fixed effects meta-analyses to identify gene signatures whose expressions were significantly258

associated with survival outcome across multiple cohorts.259

A higher abundance of the stromal cell subtype has been associated with poorer prognosis. Thus, we260
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Figure 17: Association of TME subtypes and ACRG molecular subtypes. (a) Alluvial plot displaying the
association of TME subtypes, ACRG molecular subtype and stage. (b) Comparison of STEM score across
three ACRG molecular subtypes. (c) Comparison of non-immune (e.g. ratio of EMEC/stromal cell) and
immune scores (e.g. ratio of T adaptive/monocytes) across three ACRG molecular subtypes.
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Figure 18: Association of TME subtypes and TCGA genomic subtypes. (a) Alluvial plot displaying the
association of TME subtypes and TCGA-STAD subtypes. (b) Comparison of STEM score across four
TCGA genomic subtypes.
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identified those prognostic genes for each GC cohort at a p-value cutoff of 0.05, as well as those with a261

hazard ratio greater than 1, which suggest a significant increase in risk. There were 43 significant prognostic262

gene signatures detected after performing meta-analysis (p < 10−5, z-test for overall effect). The top 8263

genes, including FERMT2 (Fermitin family homolog 2, HR=1.49), SGCE (sarcoglycan epsilon, HR=1.5),264

PPP1R14A (protein phosphatase 1 regulatory inhibitor subunit 14A, HR=1.38), LAMC1 (laminin subunit265

gamma 1, HR=1.83), MYL9 (myosin light chain 9, HR=1.3), TPM2 (tropomyosin 2, HR=1.34), TAGLN266

(transgelin, HR=1.33), and AKAP12 (A-kinase anchoring protein 12, HR=1.4), that have a smaller p value267

for overall effect are shown in Fig.19. We further explored the association between the expression level268

in prognostic marker genes with TME subtypes. We focused on the ACRG cohort. Violin plots indicate269

that the representative prognostic marker genes were highly expressed in TMEsubtype-H with relatively low270

levels in other two TME subtypes: TMEsubtype-M and TMEsubtype-L (Fig.20). The expression levels were271

significantly different among three TME subtypes (p < 10−21, one-way ANOVA F test).272

The EMEC subtype showed an opposite trend. A lower abundance of that subtype has been shown to273

be associated with poorer prognosis. We therefore identified the prognostic genes for each GC cohort at a274

p-value cutoff of 0.05, as well as with a hazard ratio below 1, which suggests a significantly smaller risk. No275

significant prognostic genes were found across all four GC cohorts, therefore, we just kept the genes that276

were significantly prognostic across three of the four GC cohorts for further analysis. Finally, four significant277

prognostic gene signatures, including KCNQ1 (potassium voltage-gated channel subfamily Q member 1,278
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HR=0.73), SURF6 (surfeit 6, HR=0.57), AGMAT (agmatinase, HR=0.79), and MRPS2 (mitochondrial279

ribosomal protein S2, HR=0.6), were detected after performing meta-analysis (p < 10−5, z-test for overall280

effect; Fig.21). Violin plots for the ACRG cohort indicated the representative prognostic marker genes were281

highly expressed in TMEsubtype-L with relatively low levels in other two TME subtypes (Fig.22). The282

expression levels were significantly different among three TME subtypes (p < 0.001, one-way ANOVA F283

test).284

3 Discussion285

In the present study, a comprehensive and systematic analysis of diverse epithelial, stromal, and immune286

cell types within the TME and their associations with GC risk was developed. We examined several large287

cohorts of GC patients at the cellular level and found a new and strong independent prognostic factor (STEM288

score) for GC patients. The STEM score was defined as the arithmetic sum of the two most significant TME289

factors: EMEC to stromal ratio and adaptive T cell to monocyte ratio. Our results suggest that high-risk290

patient groups (STEM score≤ 3.95) have significantly shorter OS times than patients in the low-risk group291

(STEM score> 3.95).292

Stromal cells, especially cancer-associated fibroblasts (CAFs), in the TME have been found to promote293

growth and survival of malignant cells [31]. Many studies have found that cancer cells release factors294

promoting fibroblasts to secrete tumor-promoting chemokines [32]. The interactions of tumors and CAFs295

can lead to increased malignancy in many cancer types [33,34]. Several studies of GC suggest that low tumor296

to stroma ratio (TSR) is associated with poor prognosis [19, 35]. Herein, we analyzed a gastric scRNA-seq297

data set that covered diverse epithelial cell types isolated from patients with NAG, CAG, IM, and EGC, and298

identified the EMEC population. The EMEC to stromal cell ratio was shown to have significant correlation299

to OS, which agreed with previous studies on the positive prognostic value of TSR. The EMEC population300

is comprised of cancer cells, MSCs, PCs, and PMCs that emerged uniformly in the EGC biopsy and were301

predominantly present in tumor samples but not typically found in adjacent normal samples. Additionally,302

significantly higher EMEC populations were detected in patients with stage I cancer than stage II, III, or303

IV, suggesting the value of the EMEC population in the early detection of gastric cancer.304

There is increasing evidence that suggests a strong infiltration of T cells, especially CD8+ T cells, into305

the TME correlates with a good prognosis in many types of cancer and has implications for success of306

active cancer immunotherapy [36,37]. Studies have shown that CD8+ T cells play a vital role in mediating307
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Figure 19: Forest plot of estimated hazard ratios of prognostic gene signatures in stromal cell subtype.
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Figure 20: Violin plots showing differential expression of representative stromal cell markers in three TME
subtypes.
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Figure 21: Forest plot of estimated hazard ratios of prognostic gene signatures in EMEC population.

anti-tumor immunity, and cytotoxic CD8+ memory T cells kill tumor cells by recognizing tumor-associated308

antigens presented on major histocompatibility complex class I [38–40]. High numbers of CD4+ T helper309

1 cells in the TME also correlate with better prognosis [40]. Tumor-associated macrophages were found to310

enhance malignant cell migration, invasion, and metastases [41]. Monocytes can give rise to macrophages, so311

the abundance of monocytes may lead to increased production of macrophages. In our study of GC cohort,312

an increased adaptive T cell to monocyte ratio was significantly associated with increased OS. This is in313

line with studies by [42] of haematologic malignancies and [43] of stage III colon cancer. The studies of314

haematologic malignancies and stage III colon cancer demonstrate that an elevated lymphocyte to monocyte315

ratio (LMR) yields better survival outcome.316

Molecular signatures associated with distinct clinical outcomes have been studied in many types of cancer317

[5,44,45]. We identified several gene signatures of the EMEC and stromal cell populations to be independent318

prognostic factors of OS in multivariate analysis. Several prognostic gene signatures of stromal cells have319

been previously reported to play oncogenic roles in cancer cell proliferation, migration, or invasion. FERMT2320

(also known as Kindlin-2), a focal adhesion protein, has been found to regulate cancer cell proliferation,321
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Figure 22: Violin plots showing differential expression of representative EMEC markers in three TME
subtypes.
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apoptosis, and chromosomal abnormalities in breast cancer that are associated with tumor stromal invasion,322

lymph node metastasis, and patient outcome in gastric cancer. Overexpression of FERMT2 promotes tumor323

formation in breast cancer and was linked with poorer patient outcomes [46, 47]. TAGLN is expressed in324

fibroblasts and smooth muscle, and the overexpression of TAGLN has been found in the tumor-induced325

reactive myofibroblastic stromal tissue in lung adenocarcinoma, as well in carcinomas of the stomach, liver,326

and oesophagus [48]. Silencing of TAGLN2, a homologue of TAGLN, has been reported to significantly327

inhibit cell proliferation and increase of apoptosis in bladder cancer [49]. MYL9 was previously found to328

be over-expressed in stages III and IV non-small cell lung cancer [50]. Overexpression of MYL9 in tumor329

cells was associated with poorer OS and recurrence-free survival in esophageal squamous cell carcinoma [51].330

TPM2, a marker of fibroblast, was previously reported to be associated with poor prognosis in colorectal331

cancer [52]. The TAGLN, MYL9 and TPM2 were found to be over-expressed in fibroblasts from primary332

tumors compared to adjacent normal tissues and were associated with poorer prognosis in the TCGA cohort333

of colorectal cancer [52]. PPP1R14A has been investigated as a prognostic biomarker of gastric cancer [53].334

LAMC1 was found to be a target of miR-29s. Silencing of LAMC1 significantly inhibited cell migration and335
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invasion in prostate cancer cells [54]. AKAP12 has been investigated as a tumor suppressant in some human336

primary cancers, including GC [55,56], however, in the present study we found it significantly over-expressed337

in the TMEsubtype-H high risk group, suggesting an increased risk on OS with higher expression level.338

Herein, we identified four prognostic gene signatures of EMEC population to be positively associated339

with OS. AGMAT were found to be positively associated with OS in kidney renal clear cell carcinoma [57].340

MRPS2 encoding the mitochondrial ribosomal protein S2 was important for mitoribosome formation and341

stability, and mitochondrial translation. It was reported to predict poor OS in ovarian cancer patients [58].342

However, we found that it was associated with better clinical outcome in GC patients. KCNQ1 has been343

shown to distribute widely and be functionally relevant in a variety of epithelial tissues [59]. There is344

preliminary evidence to suggest that KCNQ1 is a tumor suppressor in the stomach and colon [60, 61]. Low345

or loss expression of KCNQ1 was previously found to associated with poor disease-free survival in stage II346

and III colon cancer patients [62].347

In conclusion, we identified significant prognostic factors and gene signatures among diverse epithelial,348

stromal, and immune cell populations in the GC TME. This study demonstrated the STEM score as a TME349

prognostic factor for GC. It showed that a lower STEM score was significantly associated with a shorter350

survival time. The entire GC cohort was stratified into three risk groups (high-, moderate-, and low-risk)351

based on the four STEM populations, which yielded incremental survival times. The risk stratification model352

may aid stratification of patients with stage III gastric cancer for radiation therapy.353

4 Materials and Methods354

4.1 Gastric cancer bulk gene expression data355

We collected four GC gene expression datasets with the associated clinical, pathological, and outcome356

data: GSE62254 (ACRG), GSE15459, GSE84437, and TCGA-STAD (stomach adenocarcinoma). The357

ACRG and GSE15459 data sets contained gene expression profiles of 300 and 192 patients, respectively.358

The raw data (CEL files) of these two data sets were downloaded from Gene Expression Omnibus (GEO,359

www.ncbi.nlm.nih.gov/geo/). The CEL files were MAS5 normalized in the R environment using the affy360

software package. Both data sets were converted to gene-specific expression matrices using the R package361

hgu133plus2.db. For the GSE84437 data set, we directly downloaded its expression matrix after using quan-362

tile normalization from GEO. The R package illuminaHumanv3.db was used to translate probe identifications363
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(IDs) to gene symbols. When multiple probes were present for one gene, we selected the probe with the364

highest average expression across the samples. The TCGA-STAD data set from The Cancer Genome Atlas365

(TCGA) was downloaded by using the getTCGA function of R package TCGA2STAT. This returned a gene366

expression matrix of RSEM [63] values.367

The corresponding clinical, pathological, and outcome data of these data sets were collected as follows. We368

collected clinical data of the ACRG cohort from the supplementary materials of the original publication [4].369

For the GSE15459 and GSE84437 cohorts clinical data was retrieved from the GEO database. We used the370

getTCGA function of R package TCGA2STAT to obtain clinical and OS data for the TCGA-STAD cohort.371

4.2 Identification of ten non-immune cell populations from single-cell RNA-Seq372

of gastric antral mucosa biopsies373

The single-cell RNA-seq data of patients with gastric premalignant lesions and early GC were downloaded374

from the GEO database with accession number GSE134520. This data set, profiled by 10X Chromium v2375

(3’ assay), consists of 32,332 cells from nine patients with non-atrophic gastritis (NAG), chronic atrophic376

gastritis (CAG), intestinal metaplasia (IM), and early gastric cancer (EGC). We only included non-immune377

cell types with more than 20 cells’ sequencing data available at two or more stages for further analysis.378

During quality control, we further excluded cells with fewer than 500 expressed genes and removed genes379

detected in less than 2% cells, leaving 9926 genes in a total of 24,874 single cells.380

To explore the hierarchical relationship among cell types in the cascade from gastritis to EGC, agglom-381

erative hierarchical clustering was performed on the gastric scRNA-seq data set. The counts of single cell382

gene expression data were summarized across all cells mapped to the same cell type and subject. We then383

normalized the count summarization matrix by the transcripts per million (TPM) method. Next, we used384

the two-way analysis of variance (ANOVA) F test to identify cell type specific expressed genes. The main385

effects of cell type and subject were analyzed. The ANOVA analysis tested for differentially expressed genes386

between a cell type and all other cells. We selected the top 100 genes with high F value of cell type compared387

to F value of subject. We next computed the mean expression for the cell type specific expressed genes across388

expression profiles mapped to the same cell type and stage. The hierarchical cluster tree was generated using389

Pearson correlation coefficient (1−r
2 ) as the pairwise distance on the log-transformed mean expression profiles390

and Ward’s linkage distance as the cluster distance. Ten non-immune cell populations consisting of EMEC,391

PMEC, enteroendocrine, GMC, goblet cell, MSC, PC, PMC, endothelial cell, and stromal cell were identified392
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from the cluster tree (Fig.1). The mapping of 11 non-immune cell types of patients with NAG, CAG, IM,393

and EGC to 10 cell populations is provided in Table 5 and Fig. 23.394

Figure 23: The t-SNE plot of whole transcriptomes of 24874 cells from gastric antral mucosa biopsies. (a)
The 11 cell types are denoted by distinct colours. (b) The 10 identified cell populations are denoted by
distinct colours. (c) The 4 stages are denoted by distinct colours.
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4.3 Marker selection and signature matrix construction395

To estimate the proportions of non-immune cell populations in the gastric samples we created a signature396

matrix composed of the characteristic expression profiles for each of the 10 non-immune cell populations.397

This signature matrix distinguished EMEC, PMEC, enteroendocrine, GMC, goblet cell, MSC, PC, PMC,398

endothelial cell, and stromal cell populations. The matrix was generated based on the gastric single cell data.399

The counts of single cell gene expression data were summarized across all cells mapped to the same cell type400

and subject, then normalized to the count summarization matrix by the TPM method. The expression401

profiles were averaged within each cell population. This generated a matrix of genes × cell populations.402

The signature matrix was defined as the sub-matrix formed by a set of cell population-specific marker genes.403

The marker genes were selected by first selecting genes with a two-fold or higher over differential expressed404

between one cell population and all other cell populations, then filtering out non-significant genes with a405

p-value larger than 0.01 (one-way ANOVA analysis tested for each gene between a cell population and all406

other cells). Next, we ranked genes in decreasing order by their fold changes and selected the top 150407

genes for each cell population, which resulted in a signature matrix of 1319 genes by 10 cell populations.408

The signature matrix and gene signatures for each non-immune cell population are available on Github409

(https://github.com/wenjshen/STEM).410
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Table 5: Grouping of the non-immune cell types for bulk gene expression samples deconvolution.

Non-immune cell types Full name Stages Grouping for Bulk deconvolution

Cancer cell Cancer cell EGC EMEC
MSC Metaplastic stem-like cell EGC EMEC
PC Proliferative cell EGC EMEC
PMC Pit mucous cell EGC EMEC
EC Endothelial cell CAG Endothelial cell
EC Endothelial cell EGC Endothelial cell
EC Endothelial cell IM Endothelial cell
EC Endothelial cell NAG Endothelial cell
Enteroendocrine Enteroendocrine cell CAG Enteroendocrine
Enteroendocrine Enteroendocrine cell EGC Enteroendocrine
Enteroendocrine Enteroendocrine cell IM Enteroendocrine
Enteroendocrine Enteroendocrine cell NAG Enteroendocrine
GMC Antral basal gland mucous cell CAG GMC
GMC Antral basal gland mucous cell EGC GMC
GMC Antral basal gland mucous cell IM GMC
GMC Antral basal gland mucous cell NAG GMC
Goblet cell Goblet cell CAG Goblet cell
Goblet cell Goblet cell EGC Goblet cell
Goblet cell Goblet cell IM Goblet cell
Goblet cell Goblet cell NAG Goblet cell
MSC Metaplastic stem-like cell CAG MSC
MSC Metaplastic stem-like cell NAG MSC
PC Proliferative cell CAG PC
PC Proliferative cell IM PC
PC Proliferative cell NAG PC
PMC Pit mucous cell CAG PMC
PMC Pit mucous cell IM PMC
PMC Pit mucous cell NAG PMC
Cancer cell Cancer cell CAG PMEC
Cancer cell Cancer cell IM PMEC
Enterocyte Enterocyte CAG PMEC
Enterocyte Enterocyte EGC PMEC
Enterocyte Enterocyte IM PMEC
Enterocyte Enterocyte NAG PMEC
Fibroblast Fibroblast CAG Stromal cell
Fibroblast Fibroblast EGC Stromal cell
Fibroblast Fibroblast IM Stromal cell
Fibroblast Fibroblast NAG Stromal cell
SM cell Smooth muscle cell CAG Stromal cell
SM cell Smooth muscle cell IM Stromal cell
SM cell Smooth muscle cell NAG Stromal cell
Cancer cell Cancer cell NAG Undefined
MSC Metaplastic stem-like cell IM Undefined

To quantify the proportions of immune cell populations, we used a signature matrix provided in [64]411

consisting of 1296 genes in 17 immune cell types whose transcriptomic profiling was sorted by RNA-seq.412

This signature matrix covers the majority of cells that constitute a PBMC sample. We then merged these413

17 immune cell types into 7 major lineages according to their biological similarity, resulting in 7 immune414

cell populations: adaptive T cells, innate T cells, adaptive B cells, natural killer cells, monocytes, dendritic415

cells, and granulocytes (Table 6).416

Table 6: Grouping of the immune cell types for bulk gene expression samples deconvolution.

Immune cell types Full name Grouping for Bulk deconvolution

Monocytes C Classical monocytes Monocytes
Monocytes NC+I Non-classical/intermediate monocytes Monocytes
NK Natural killer cells NK
T gd non-Vd2 γδ non-Vδ2 T cells T Innate
T gd Vd2 γδ Vδ2 T cells T Innate
Neutrophils LD Low-density neutrophils Granulocytes
Basophils LD Low-density basophils Granulocytes
mDCs Myeloid dendritic cells DCs
pDCs Plasmacytoid dendritic cells DCs
T CD8 Naive Nave CD8 T cells T adaptive
T CD8 Memory Memory CD8 T cells T adaptive
B Naive Naive B cells B adaptive
B Memory Memory B cells B adaptive
Plasmablasts Plasmablasts B adaptive
T CD4 Naive Nave CD4 T cells T adaptive
T CD4 Memory Memory CD4 T cells T adaptive
MAIT Mucosal associated invariant T cells T Innate
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4.4 Deconvolving bulk gene expression samples417

For the deconvolution of the bulk RNA-seq data, the expression profiles of bulk samples were normalized418

for sequencing depth and gene length using the Transcripts Per Million (TPM) method [65]. We performed419

deconvolution with support vector regression using the CIBERSORT algorithm [25].420

The microarray data was quantile normalized. We next used the CIBERSORTx method [23] to deconvolve421

bulk samples. Additionally, batch correction was applied to reduce cross-platform variance.422

The deconvolution method was combined with the signature matrices of non-immune and immune cell423

populations, respectively, to estimate non-immune and immune cell relative fractions of GC samples. Since424

CIBERSORT and CIBERSORTx estimated relative but not absolute fractions of cell populations within425

a sample, the values may not be comparable across samples. We therefore defined non-immune scores (or426

immune scores) by calculating the ratios of relative fractions in each pair of non-immune (or immune) cell427

populations. The non-immune or immune scores are therefore comparable across samples.428

4.5 GO enrichment analyses429

The functional classification of the EMEC gene signatures was analyzed in the GO. The R package clus-430

terProfiler [66] (version 3.18.1) was used to identify and visualize enriched GO terms. Significance in all431

enrichment analyses were based on BH-corrected p value < 0.1 and the gene counts ≥ 2.432

4.6 Determination of Optimal STEM score cutoff433

To identify the statistically optimal cutoff of the STEM score, we analyzed the influence of the STEM434

score on survival outcome in the ACRG cohort by using univariate Cox proportional hazard modeling. The435

analysis was performed for a dense set of quantiles from 0.1th to 0.9th, with a 0.01 step. Each analysis436

divided the entire cohort into two groups, and the cutoff that minimized the P-value for testing the risk437

difference between the two groups was selected.438

4.7 TME subtypes identification in GC439

Each GC sample is represented by four input features of the estimated relative abundance of the cell popu-440

lations: EMECs, stromal cells, adaptive T cells, and monocytes. Spectral clustering was performed on the441

meta-cohort (ACRG, GSE15459, GSE84437, and TCGA-STAD) by using the radial basis kernel function to442

measure the similarity between two samples, which was implemented in the R kernlab package. The optimal443
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number of clusters was chosen using the NbClust function, which was implemented in the R NbClust [67]444

package. NbClust utilizes 26 different cluster validity indices with Euclidean as the distance measurement445

method and Ward’s hierarchical clustering as the clustering method to generate a majority rules number of446

clusters for the GC data set.447

4.8 Statistical analysis448

All the statistical analyses were performed in the R environment (version 4.0.3). Cumulative survival time449

was calculated using the Kaplan-Meier method and the differences in survival curves were analyzed using450

the log-rank test from R package survminer. Univariate and multivariate analyses were conducted using451

the Cox proportional hazards regression modeling using the R package survival. For all tests, the p-value452

cutoff for statistical significance was set as 0.05 as default unless an alternative value is specified. Statistical453

significance between tumor samples and adjacent normal samples was assessed using Student’s t test and454

indicated as follows: ∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001,∗∗∗∗ p < 0.0001.455

5 Data availability456

The data analyzed in this study are available from the Gene Expression Omnibus (accession numbers:457

GSE62254; GSE15459; GSE84437; GSE134520), The Cancer Genome Atlas Project or from the authors458

upon reasonable request.459
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