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ABSTRACT 

 Metformin, an antidiabetic drug, triggers anti-aging cellular responses. Aging is the principal risk factor 

for dementia, but previous observational studies of the diabetes drugs metformin vs. sulfonylureas have 

been mixed. We tested the hypotheses that metformin improves survival and reduces the risk of dementia, 

relative to the sulfonylureas, by emulating target trials in electronic health records of diabetic patients at 

an academic-centered healthcare system in the US and a wide-ranging group of primary care practices in 

the UK. To address metformin's potentially dual influences on dementia risk—that it might reduce the 

hazard of death and put more people at risk of developing dementia while reducing the hazard of 

dementia by slowing biological aging, we used a competing risks approach and carefully grounded that 

within a causal inference emulated trial framework. To identify candidate biomarkers of metformin’s 

actions in the brain that might mediate reduced dementia risk, we conducted an in-vitro systems 

pharmacology evaluation of metformin and glyburide on differentiated human neural cells through 

differential gene expression. We named our multi-dimensional approach DRIAD-EHR (Drug 

Repurposing in Alzheimer's Disease-Electronic Health Records). In intention-to-treat analyses, metformin 

was associated with a lower hazard of all-cause mortality than sulfonylureas in both cohorts. In competing 

risks analyses, there was also a lower cause-specific hazard of dementia onset among metformin 

initiators. In in-vitro studies, metformin reduced human neural cell expression of SPP1 and APOE, two 

secreted proteins that have been implicated in Alzheimer’s disease pathogenesis and whose levels can be 

quantified in the CSF. Together, our findings suggest that metformin might prevent dementia in patients 

without type II diabetes. In addition, our results inform the design of clinical trials of metformin in non-

diabetics and suggest a pharmacodynamic CSF biomarker, SPP1, for metformin’s action in the brain. 

 

INTRODUCTION 

 Repurposing drugs affords a route to therapeutic development that is shorter, less expensive, and 

more likely to succeed1. However, with fewer economic incentives for drug repurposing than for bringing 

new drugs to market, combined evidence from real-world data and mechanistic studies that supports the 

therapeutic hypothesis might justify a Randomized Clinical Trial (RCT). Alzheimer’s disease (AD), with 

one to two decades of accumulating pathology prior to symptom onset, brings another challenge: a 

preclinical period so long that it is often not economically feasible for RCTs and presents ethical 

problems. Observational studies in Electronic Health Records (EHR) allow longer follow-up times than 

RCTs and offer the possibility of evaluating drugs already approved by the Food and Drug 

Administration (FDA) and/or the European Medicines Agency (EMA) within the preclinical period of 

dementia. Using the target trial method2,3 of conducting observational studies that aim to mimic RCTs, we 
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emulated the same target trial in two distinct EHR systems. We reasoned that replicating results across 

two samples from vastly different settings—one a healthcare system anchored in two large tertiary care 

hospitals and another a nation-wide primary care network—would provide a more robust estimate of the 

generalizability of the drug’s effect4,5. Moreover, differences in medical practice, data collection, timing 

and length of follow-up, patterns of missingness, and known and unknown sources of bias between two 

EHR databases bolster any signal observed in both samples. 

 In this study, we emulated a target trial to estimate the effects of metformin compared to 

sulfonylureas on the risk of death and dementia. Metformin is a first-line antidiabetic drug with additional 

properties that may slow biological aging6,7, including some evidence of increased survival8. Since the 

risk of dementia rises very steeply with age9, it has been hypothesized that metformin would reduce such 

risk. Clinical studies of metformin, however, have had mixed results in older adults with incident 

dementia10,11. To address the potentially opposing influences of metformin on dementia—that it might 

reduce the hazard of death and therefore put more people at risk of developing dementia while reducing 

the hazard of dementia by slowing biological aging, we used a competing risks analysis framework12. We 

used the target trial method2 to emulate a trial in the Research Patient Data Registry (US RPDR13) at Mass 

General Brigham (formerly Partners) Health Care system in the US and the UK Clinical Practice 

Research Datalink (UK CPRD14) database among initiators of metformin vs. the other first-line therapy 

for diabetes, the sulfonylureas (reference group). 

In parallel, we conducted an in-vitro systems pharmacology evaluation of both drugs on 

differentiated human neural cells in culture to identify genes whose expression is differentially altered in 

neural cells with metformin treatment relative to the vehicle and to glyburide, one of the sulfonylureas. 

The secreted products from these differentially expressed genes are candidate pharmacodynamic markers 

of metformin’s actions in the brain, which can be quantified in the cerebrospinal fluid (CSF). The goal of 

these emulated trials and in-vitro studies is to inform the design of clinical trials in cognitively healthy 

non-diabetics by enriching trials with participants most likely to benefit from metformin, based on the 

presence of demographic factors and central nervous system biomarkers linked to AD.  

 

RESULTS 

 

Target trial emulation in the EHR from the US RPDR and UK CPRD 

We emulated the target trial in cohorts from the US RPDR and UK CPRD EHR databases (Table 

1) with a one-year run-in period. Our target trial outcomes were time to first diagnosis of dementia or 

death in type II diabetics over age 50, starting on metformin- or sulfonylurea-monotherapy, and followed 

for at least one year. Of note, the one-year run-in period was selected to ensure sufficient drug exposure 
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before measuring outcomes. While the duration of a clinical trial is usually fixed, the duration of follow-

up in the emulated trial is often much longer (US RPDR median: 5.0 years (max 12 years); UK CPRD 

median: 6.0 years (max 16 years)).  

The US RPDR cohort, which was drawn from patients receiving primary care at an academic 

health care system, included 13,191 patients who started on metformin- (11,229; 85%) or sulfonylurea- 

monotherapy (1,962; 15%) (Fig. 1a). Patients who had a diagnosis of dementia, or died within the first 

year of follow-up, were excluded from the study population to emulate the standard exclusion criterion in 

clinical trials of patients with baseline cognitive impairment or a high morbidity index. Additionally, 

patients with chronic kidney disease (CKD; see Extended Data Table 1 for definitions) at treatment 

initiation—a contraindication for metformin, but not for sulfonylureas—were excluded from the cohort. 

Metformin initiators were younger than their sulfonylurea counterparts (Table 2). Among the metformin 

initiators, there were more hypertensives and fewer missing values for baseline body mass index (BMI) 

than among the sulfonylurea initiators (Table 2). The baseline glycosylated hemoglobin (HbA1C) levels 

and other baseline characteristics, however, were comparable between the two groups (Table 2). 

The UK CPRD cohort, which was drawn from primary care practices across 13 regions in the 

UK, included 108,025 patients in total with 94,208 (87%) metformin initiators and 13,817 (13%) 

sulfonylurea initiators (Fig. 1b). Patients who were diagnosed with dementia or died within the first year 

of follow-up were excluded from the study population (Fig. 1b). Those with CKD at treatment initiation 

(Extended Data Table 2) were also excluded. As in the US cohort, metformin initiators were younger than 

their sulfonylurea counterparts (Table 2). They were also more likely to have entered the cohort more 

recently and to have lower HbA1C and higher BMI at baseline. Further, they included more 

cardiovascular disease (CVD) and hypertension cases, but fewer cancer cases at baseline than the 

sulfonylurea group (Table 2).  

 

Metformin improved survival relative to the sulfonylureas in the US and UK cohorts 

First, we compared the effect of metformin vs. sulfonylureas on all-cause mortality in both 

cohorts, since metformin use has previously been reported to improve survival relative to the 

sulfonylureas in distinct US15 and UK16 cohorts of type II diabetics.  

In the US RPDR cohort, 3.7% (n=415) of metformin initiators and 7.8% (n=154) of sulfonylurea 

initiators died during follow-up (median: 5.0 years; total: 74,107 person-years; range of age at death: 57-

104 years). Using a Cox Proportional Hazards (PH) regression model with Inverse Probability of 

Treatment Weighting (IPTW) to emulate randomization, the estimated hazard ratio for all-cause mortality 

was 0.57 (95% CI: [0.48;0.67]) for metformin initiators relative to sulfonylurea initiators (Fig. 2a).  Next, 

we examined metformin’s effects by age (≤70 vs. >70), sex, and BMI strata. Overall, there was no 
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evidence for heterogenous treatment effects across baseline age, sex, or BMI levels in the US RPDR 

cohort (Fig. 2b). Similar results were obtained using age strata defined as ≤65 vs. >65 and ≤75 vs. >75 

(Extended Data Table 3). 

In the larger UK CPRD cohort, 13.7% (n=12,941) of metformin initiators and 37.4% (n=5,173) of 

sulfonylurea initiators died during follow-up (median: 6.0 years; total: 696,725 person-years; range of age 

at death: 51-107 years). The UK CPRD had similar results for the effect of metformin vs. sulfonylureas 

on all-cause mortality in the full study population (Fig. 2c), with an overall hazard ratio of 0.66 (95% CI: 

0.61;0.71). Results of subgroup analyses revealed evidence for a stronger effect of metformin among 

patients with a younger age at treatment initiation (≤70 years), and patients with higher baseline BMI, but 

there was no difference by sex (Fig. 2d). The age-stratified analysis described above yielded similar 

results (Extended Data Table 4). 

Our harmonized DRIAD-EHR approach—with analyses conducted in two very different patient 

populations and carefully adjusted for baseline differences in age and other risk factors—demonstrates a 

robust reduction in the hazard of death in patients treated with metformin compared to those treated with 

sulfonylureas, consistent with previous reports17,18. In both cohorts, we note that the survival curves 

between the two treatment groups separate approximately three years after treatment initiation, and that 

this separation persists for a long time (12 years observed in US RPDR and 16 in UK CPRD).  

 

Metformin reduced the hazard of dementia onset in the US and UK cohorts compared to 

sulfonylureas, but the risk differences between the drugs over time were clinically negligible 

Death is a competing event that precludes the development of dementia, but the use of a 

competing risks analysis in previous studies8,16 has been limited: death has been considered as a 

competing event for dementia only in a proportional hazards model where the hazard ratio is the measure 

of treatment effect. Here, we emulated a target trial of metformin vs. sulfonylureas in cognitively 

asymptomatic type II diabetics, estimating both the time-invariant hazard ratio and the time-dependent 

cumulative incidence function (CIF) for dementia, using a causal competing risks framework. We defined 

the average treatment effect (ATE) as the difference between risk functions corresponding to two 

potential outcomes (for definitions, see Methods). 

In the US RPDR cohort, 7.7% (n=869) of metformin initiators and 12.3% (n=241) of sulfonylurea 

initiators were diagnosed with dementia during follow-up (median: 5.0 years; total: 71,191 person-years; 

range of dementia onset age: 57-113 years). In a cause-specific Cox PH regression model with IPTW for 

emulation of baseline randomization, the estimated cause-specific hazard ratio for dementia was 0.81 

(95% CI: [0.69;0.94]) for metformin initiators relative to sulfonylurea initiators (Fig. 3a). In the UK 

CPRD cohort, 5.9% (n=5,561) of metformin initiators and 12.3% (n=1,699) of sulfonylurea initiators 
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were diagnosed with dementia during follow-up (median: 6.0 years; total: 695,281 person-years; range of 

dementia onset age: 51-114 years). The estimated cause-specific hazard ratio for dementia was 0.86 (95% 

CI: [0.77;0.96]) for metformin initiators, relative to sulfonylurea initiators (Fig. 3b), very similar to the 

US RPDR cohort. 

In the time-dependent CIF analysis, the five-year risk (for definition, see Methods) of developing 

dementia in the US RPDR cohort was 7.2% (95% CI: [6.7;7.8]%) among metformin initiators and 8.8% 

(95% CI: [7.5;10]%) among sulfonylurea initiators, yielding a risk difference (for definition, see 

Methods) of -1.6% (95% CI: [-3.1;-0.17]%) (Figs. 4a,c). In the UK CPRD cohort, the five-year risk 

difference was smaller at -0.35% (95% CI: [-0.68;-0.031]%) (Figs. 4b,d). Although the hazard ratios for 

dementia in the UK CPRD and US RPDR were similar, the risk differences over time for both death and 

dementia were strikingly dissimilar in the two cohorts (Fig. 4).  

First, while the dementia risk difference between metformin and sulfonylureas was minimal in the 

US RPDR, it always showed a slight benefit for metformin over sulfonylureas in this cohort. However, 

the risk difference observed in the UK CPRD changed over time, and the point of no risk difference 

between the two drugs was reached at about 7.5 years (Fig. 4). The seemingly discordant hazards ratio 

and CIF results in the UK CPRD sample are likely because metformin has a protective effect on both the 

hazard of dementia (HR=0.86, 95% CI: [0.77;0.96]) and the hazard of competing death (HR=0.64, 95% 

CI: [0.59;0.69]), yielding more “survivors” over time in the metformin group, and thus more individuals 

at risk of developing dementia.  

Second, the risk differences for both death and dementia were much closer to each other in the 

US RPDR than in the UK CPRD cohort. These differences between the two cohorts could potentially be 

explained by different population structures, particularly their baseline age distribution (Extended Data 

Fig. 1). The UK CPRD cohort had a higher death rate than the US RPDR one, affecting the total number 

of patients at risk over time (Extended Data Fig. 2). The comparison of the absolute cumulative hazards 

of dementia and death in a competing risks approach revealed additional differences between the UK 

CPRD and US RPRD cohorts, in terms of both the magnitude and trajectory of diagnosed dementia 

(Extended Data Fig. 3). In the US RPDR cohort, the rates of diagnosed dementia in both treatment arms 

were higher than the death rates, whereas the opposite pattern was observed in the UK CPRD. These 

underlying differences likely explain the differing risk curves for death and dementia between the two 

cohorts.  

Overall, the benefits of metformin observed here can be interpreted in terms of both delaying 

dementia onset (Fig. 4, blue curves) and prolongating life without dementia (Fig. 4, orange curves). 

Notably, the risk difference for death was of larger magnitude in the UK CPRD than in the US RPDR 

cohort (respectively, a 10% vs. 5% reduction in risk after an average of 12 years of follow-up, Figs. 4c-d). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2021. ; https://doi.org/10.1101/2021.08.10.21261747doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.10.21261747
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 7 

This was a result of a higher overall death rate in the UK CPRD cohort, relative to the rate of dementia 

onset.  Conversely, in the US RPDR cohort, the overall rate of death was lower than the rate of dementia 

onset (Extended Data Fig. 3). 

To assess the robustness of our results to modeling choices, we conducted a sensitivity analysis 

by using a nonparametric approach, thereby relaxing the proportional hazards assumption. Of note, the 

PH assumption held for both cause-specific hazards in the US RPDR cohort, while there was evidence of 

a deviation from this assumption in the UK CPRD cohort in terms of the hazards of death. However, this 

deviation was not large enough to affect our conclusions (Extended Data Figs. 4,5).   

 

Average treatment effect on dementia onset was greater among patients aged <=70 in the US RPDR 

Since age is the principal risk factor for dementia, we further investigated the effect modification 

of metformin as compared to sulfonylureas by the age at treatment initiation. Stratifying the US RPDR 

cohort into two groups (age ≤70 and age >70), we found that the ATE of metformin vs. sulfonylureas on 

dementia onset observed in the full sample was mainly driven by the younger stratum (Fig. 3a), i.e., 

treatment initiation at age ≤70 (HR=0.69, 95% CI: [0.54;0.88]). Conversely, the effect of metformin on 

dementia onset was reduced for patients who started antidiabetic treatment at age >70 (HR=0.94, 95% CI: 

[0.79;1.13]). However, there were fewer patients who started antidiabetic treatment at age >70 than 

earlier (38% vs. 62%) and the older stratum had a shorter length of follow-up (median: 4.1 vs. 5.6 years; 

total: 22,960 vs. 48,231 person-years). Nevertheless, the age-specific finding in the US RPDR cohort 

suggests that metformin may be especially beneficial for those who initiate treatment at a younger age. 

The difference in treatment effect between age groups was less clear in the larger UK CPRD 

cohort, with a HR of 0.82 (95% CI: [0.67;0.99]) in patients aged ≤70, and of 0.88 (95% CI: [0.77;0.99]) 

in those aged >70 (Fig. 3b). Similar results were obtained using the risk difference: a stronger effect of 

metformin on dementia onset was observed in the US RPDR cohort, as compared to the UK CPRD, in 

patients who initiated treatment before age 70 (Extended Data Fig. 6).   

 

Difference in post-treatment HbA1C levels was not clinically significant for metformin vs. 

sulfonylurea initiators 

Since baseline HbA1C levels did not modify the effect of metformin, we also explored whether the drug 

acted primarily by a better control of blood sugar. For this, we applied a repeated measures mixed effects 

model on all HbA1C values recorded three months after treatment initiation and beyond. In the US RPDR 

cohort, 10,180 (77%) patients had HbA1C data available: 8,794 (78%) and 1,386 (71%) among 

metformin and sulfonylurea initiators, respectively. Interestingly, we found that although the average 

level of HbA1C was lower (p < 0.00001) in metformin vs. sulfonylurea initiators, the effect size was not 
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clinically significant (95% CI: [-0.2601;-0.1511], see Extended Data Table 5). This suggests that the 

putative effect of metformin on dementia risk is likely through mechanisms other than the control of 

blood sugar.  

 

Metformin reduced the expression of innate immune modulators and APOE levels in cultured 

human neural cells 

The actions of metformin in human neurons have not been characterized well, despite 

pharmacokinetic evidence that metformin achieves biologically active concentrations in the CSF19. For 24 

and 72 hours, we treated cultured differentiated human neural cells comprised of neurons, glia, and 

oligodendrocytes20 with metformin and glyburide (one of the sulfonylureas). We used two biologically 

relevant concentrations, 10 and 40 µM, which approximate CSF and plasma concentrations19, respectively 

(Fig. 5a). Following deep RNA-sequencing, we identified differentially expressed genes that were 

significantly altered in a dose-dependent manner (Fig. 5b, Extended Data Fig. 7). After treatment 

exposure, genes with the largest change were different between the two drugs, with greater effect sizes 

seen for glyburide, relative to metformin, at 72 hours. Pathway analysis revealed that metformin-altered 

genes were enriched in pathways related to the extracellular matrix, whereas glyburide-altered genes were 

enriched in pathways related to cholesterol metabolism (Extended Data Table 6).  

Next, we limited the analysis to elements of the human secretome, since they are measurable in 

the CSF21 (Fig. 5c, Extended Data Table 7). To reflect subacute drug-induced profiles, we considered the 

72-hour timeframe. Osteopontin (SPP1) emerged as the secreted protein with the greatest reduction in 

RNA levels at 72 hours and the greatest change overall. Previous work reported elevated levels of 

osteopontin in the serum of aging individuals22 and in the CSF of AD patients, correlating with cognitive 

decline22. Moreover, elevated levels of SPP1 in microglia were detected in AD mouse models and human 

brains23. By looking at gene expression profiles of postmortem brain specimens in the ROSMAP24 and 

Mt. Sinai brain bank25 cohorts, we observed that SPP1 levels were elevated in tissue from the frontal and 

temporal lobes of patients with AD, relative to age-matched controls (Fig. 5d). Finally, we observed that 

RNA levels of APOE in cultured human neural cells were significantly reduced by metformin treatment 

(Extended Data Table 6). Together, the reduced gene expression of an innate immune modulator and a 

genetically relevant protein by metformin in human neural cells suggest a mechanism to diminish aging in 

the brain and thereby contribute to the delayed onset of clinical symptoms of dementia in type II diabetic 

patients. 

 

DISCUSSION 
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In this study, we emulated a target trial of metformin vs. sulfonylureas in type II diabetic patients 

in two distinct EHRs. Although the length of follow-up varies across patients and prescribing patterns 

change over time, the advantage of observational studies is the potential for much longer follow-up 

periods than RCTs. This increased length of follow-up is of special importance, since many dementia risk 

factors likely operate over a long period of time26,27. After balancing key baseline demographic variables 

in the metformin and sulfonylurea cohorts by IPTW, we conducted an intention-to-treat analysis with a 

one-year run-in in two patient populations drawn from vastly diverse settings. One cohort was from a 

healthcare system anchored in two large tertiary care hospitals in the US and another from a nation-wide 

primary care network in the UK. Despite differences in medical practice, data collection, timing and 

length of follow-up, patterns of missingness, and known and unknown sources of bias, we found 

consistent evidence of metformin’s benefit for overall survival and for dementia onset, relative to 

sulfonylureas.  While prior studies only estimated a cause-specific hazard ratio for the impact of treatment 

on risk of dementia, in the CIFs from our competing risk framework we were able to account for the 

treatment effect on both outcomes jointly. Relative to sulfonylurea initiators, metformin initiators had a 

reduced hazard of dementia onset in both cohorts. This study corroborates previous observational 

studies10,11,17,18,28 on the benefits of metformin on dementia risk in type II diabetics. Our competing risks 

analysis also shows how the risk of dementia depends on the baseline mortality rate of the population, a 

potential explanation of the neutral10,29 or deleterious11 effect of metformin on dementia onset seen in 

some other studies. To our knowledge, this work is the first attempt to comprehensively address 

competing death in a study of metformin and dementia, with a rigorous causal framework harmonized 

across two EHR databases.  

The risk difference offers a nuanced view over time that is not captured by the time-invariant HR 

metric, which was similar across the two cohorts. An additional value of this observational study for 

planning future clinical trials is that it explores the source of the signal in subpopulations defined by 

criteria that could readily be implemented as inclusion and exclusion criteria. Our age-stratified analysis 

indeed demonstrated that type II diabetic patients aged 70 or younger at treatment initiation benefited 

most from metformin’s effect on cognitive health.  

 

Further, our analysis of HbA1C over time in the US RPDR showed a clinically negligible benefit 

among metformin vs. sulfonylurea initiators, indicating that the mechanism for metformin’s effects on 

dementia onset and survival is unlikely to be simply a byproduct of better diabetic control. Moreover, our 

in-vitro systems pharmacology analysis in cultured human neural cells treated with metformin and 

glyburide identified over 100 differentially expressed genes, particularly affecting signaling networks 

implicated in aging. The secreted protein SPP1 emerges as a candidate CSF biomarker for metformin’s 
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action in the central nervous system (CNS). SPP1 was elevated in the CSF of MCI and mild AD patients 

in two independent studies20,21. Further, greater levels of SPP1 correlated with cognitive decline in these 

patients21. SPP1 also elevated in response to TREM2 activation in microglia30 in brains with AD 

pathology23,31. Lowering SPP1 levels in the CNS may thus be a unique mechanism of neuroprotection by 

metformin. Clinical investigators may consider adding elevated levels of SPP1 in the CSF as inclusion 

criteria for a clinical trial of metformin in subjects with preclinical AD biomarkers. 

There are many strengths in our DRIAD-EHR approach. First, in this observational study, our 

two samples were followed for up to 16 years. Given that the preclinical stages of dementia can last 20 

years32, this study is examining a therapeutically relevant timeframe which is not feasible in randomized 

clinical trials. Second, we harmonized our analyses in two distinct EHR databases. The concordance of 

the hazard ratio estimates for both the survival and dementia outcomes across these two distinct patient 

populations indicates robust signals4,5. Third, we developed and implemented a causal competing risks 

framework, to account for death prior to developing dementia. By analyzing the cumulative incidence of 

death and dementia in parallel in both cohorts, we found that the mortality rate within a given population 

could have a significant impact on the cumulative risk of dementia, suggesting that a 3-5 year mortality 

index should be included as a criterion in clinical trials evaluating the efficacy of metformin to prevent 

the onset of dementia. Fourth, in complementary mechanistic studies, we analyzed gene expression 

changes in relevant human neural cell types at drug concentrations commensurate with observed levels in 

the plasma and CSF. 

Nevertheless, this study has several limitations. First, while we addressed many sources of 

confounding, there were likely others that were unavailable or inadequately measured. In particular, the 

level of education was systematically unavailable in either dataset, of concern since it is known to affect 

both the exposure and outcomes of interest in this study. Additionally, relevant lifestyle factors like diet 

and physical activity33 were unavailable. Furthermore, the strong effect of age, the changes in prescribing 

patterns of sulfonylureas and metformin over the observation period34,35, and the complex differences 

observed in age at baseline, length of follow-up, and calendar time across the two treatments raises the 

possibility of residual confounding. Beyond this, in EHR, data missingness is very often informative and 

can lead to biases in study results36-38. Second, the absence of linkage to claims data in the US RPDR 

cohort prevented us from verifying that patients were truly treatment initiators, or from verifying the 

length of exposure by confirming that prescriptions were filled and refilled at the expected rate. Third, 

since this study was an intention-to-treat analysis, it did not include potential add-on drugs incorporated 

later in the patient’s clinical course or consider antidiabetic treatment switches. Thus, transition from 

monotherapy to a dual (or more) hypoglycemic regimen could be a possible source of confounding for 

both dementia and death outcomes. Fourth, this study might suffer from measurement errors in the 
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primary outcome of interest39. Dementia is under-diagnosed and under-recorded, both in the US40 and 

UK41,42. Patients and their families may fail to mention symptoms to their primary care physicians and 

physicians might not routinely screen for cognitive health. Even when such symptoms are recognized and 

described directly or indirectly in physicians' notes, the relevant diagnostic code or prescription used here 

as a proxy for the disease might not be present ever—or may not appear until late in the course. In other 

cases, dementia might be overcoded43,44. Hence, in the future, we aim to deploy text mining and natural 

language processing techniques on clinical notes, radiologic image analysis, and other clinical data to 

better identify subjects with dementia and more precisely determine the timing of disease onset. Fifth, 

while our study was conducted in two different populations, both are primarily white and have access to 

health care. While the UK CPRD population is fairly representative of the UK population, the US RPDR 

population is limited to a single region, less diverse, and more advantaged than the US population as a 

whole. Sixth, in our mechanistic studies, we approximated chronic exposure to metformin and glyburide 

through relatively short durations, in cultured human neural cells that did not include all the cell types in 

the brain, including microglia. Besides, metformin might act by chronic changes in signaling networks in 

unrepresented cell types that were not evaluated in these studies.  

Applying a causal competing risks framework to estimate the effects of metformin compared to 

sulfonylureas among type II diabetic patients showed consistent findings across two disparate datasets. 

These robust EHR findings were buttressed by in-vitro analyses of human neural cells at 

pharmacologically relevant concentrations that revealed novel actions of metformin, relative to glyburide 

and to its actions in other cell types. Together, this multi-dimensional DRIAD-EHR approach uncovered 

four pragmatic insights that can be incorporated into clinical trial design: first, an estimate of efficacy 

among asymptomatic individuals that is validated in two distinct databases; second, the importance of 

treating mortality as a competing risk for clinical trials that last three to five years; third, enrolling people 

aged less than 70 (or perhaps less than 75 in non-diabetics, among whom the onset of dementia is, on 

average, later); and fourth, a novel, mechanistically relevant CSF biomarker, SPP1, for recruitment into 

the clinical trial that can also serve as a pharmacodynamic mechanism of action. These clinical trials of 

metformin in cognitively intact non-diabetics will determine whether these promising results can be 

translated into future prevention strategies of dementia in a cost-effective manner. 

 

ACKNOWLEDGMENTS 

We thank Alexander Soukas, Victor Castro, and Peter K. Sorger for helpful discussions. The authors 

thank Shawn Murphy, Henry Chueh, and the Partners Health Care Research Patient Data Registry group 

for facilitating use of their database. This study is based in part on data from the Clinical Practice 

Research Datalink database obtained under license from the UK Medicines and Healthcare products 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2021. ; https://doi.org/10.1101/2021.08.10.21261747doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.10.21261747
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 12 

Regulatory Agency. However, the interpretation and conclusions contained in this article are those of the 

authors alone and not necessarily those of the NHS, the NIHR, or the Department of Health. The results 

published here are in part based on data obtained from the AMP-AD Knowledge Portal 

(doi:10.7303/syn2580853). These data were generated from postmortem brain tissue collected through the 

Mount Sinai VA Medical Center Brain Bank, led by Dr. Eric Schadt from Mount Sinai School of 

Medicine, by the Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, and by the 

following sources: The Mayo Clinic Alzheimer's Disease Genetic Studies, led by Dr. Nilufer Taner and 

Dr. Steven G. Younkin, Mayo Clinic, Jacksonville, FL using samples from the Mayo Clinic Study of 

Aging, the Mayo Clinic Alzheimer's Disease Research Center, and the Mayo Clinic Brain Bank. We 

thank the NIH R01 AG058063 (awarded to M.W.A), P30 AG062421 (awarded to B.T.H.), a CART grant 

(awarded to M.W.A.), an administrative supplement to U54 CA22508 (awarded to M.W.A.), IBM 

Research (awarded to R.E.W. and S.N.F.), the Abdul Latif Jameel Clinic for Machine Learning in Health 

grant (awarded to R.E.W. and S.N.F.), the UK Dementia Research Institute which receives its funding 

from UK DRI Ltd, funded by the UK Medical Research Council (awarded to I.T.), the Alzheimer's 

Society and Alzheimer's Research UK, support by the British Heart Foundation Centre for Research 

Excellence at Imperial College (awarded to I.T.), the Hellenic Foundation for Research and Innovation 

(HFRI) (awarded to I.T.), and the General Secretariat for Research and Technology (GSRT) (awarded to 

I.T.) for support.  

 

 

AUTHOR CONTRIBUTIONS 

I.T., D.B., S.D., and M.W.A. conceived of the study; M.L.C., B.V.L., C.M., and S.D. curated data and 

performed analyses on the RPDR EHR dataset; B.Z. and B.S. curated data and performed analyses on the 

CPRD EHR dataset; I.T. and L.M. supervised the CPRD EHR dataset analysis; M.L.C., B.V.L., B.Z., 

C.M., Y.-H.S., R.A.B., and S.D. conceived the analysis and wrote code for the competing risks analysis; 

K.E., S.R., A.S., and S.B. generated and analyzed data from the in-vitro systems pharmacology studies; 

M.L.C., B.Z., B.V.L., C.M., S.F., R.E.W., D.B., S.D., and M.W.A. wrote the first draft; and all authors 

revised the manuscript. S.N.F, R.E.W., and M.W.A. secured funding for the study. 

 

COMPETING INTERESTS 

The authors declare the following competing interests:  

B.T.H. is a member of the SAB and owns shares in Dewpoint. He also serves on an advisory panel for 

Biogen, and his laboratory has current research funding from AbbVie. His wife is an employee and 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2021. ; https://doi.org/10.1101/2021.08.10.21261747doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.10.21261747
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 13 

shareholder of Novartis. R.A.B. serves on an advisory board for Biogen. M.W.A. is a consultant for 

Transposon Rx and receives research support from IFF.  

 

REFERENCES  

1 Pushpakom, S. et al. Drug repurposing: progress, challenges and recommendations. 

Nature Reviews Drug Discovery 18, 41-58, doi:10.1038/nrd.2018.168 (2018). 

2 Hernan, M. A. & Robins, J. M. Using Big Data to Emulate a Target Trial When a 

Randomized Trial Is Not Available. Am J Epidemiol 183, 758-764, 

doi:10.1093/aje/kwv254 (2016). 

3 Hernan, M. A., Brumback, B. & Robins, J. M. Marginal structural models to estimate the 

causal effect of zidovudine on the survival of HIV-positive men. Epidemiology 11, 561-

570, doi:10.1097/00001648-200009000-00012 (2000). 

4 Kohane, I. S. et al. What Every Reader Should Know About Studies Using Electronic 

Health Record Data but May be Afraid to Ask. J Med Internet Res, doi:10.2196/22219 

(2021). 

5 in Reproducibility and Replicability in Science     (2019). 

6 Barzilai, N., Crandall, J. P., Kritchevsky, S. B. & Espeland, M. A. Metformin as a Tool to 

Target Aging. Cell Metab 23, 1060-1065, doi:10.1016/j.cmet.2016.05.011 (2016). 

7 Kulkarni, A. S. et al. Metformin regulates metabolic and nonmetabolic pathways in 

skeletal muscle and subcutaneous adipose tissues of older adults. Aging Cell 17, 

doi:10.1111/acel.12723 (2018). 

8 Campbell, J. M., Bellman, S. M., Stephenson, M. D. & Lisy, K. Metformin reduces all-

cause mortality and diseases of ageing independent of its effect on diabetes control: A 

systematic review and meta-analysis. Ageing Res Rev 40, 31-44, 

doi:10.1016/j.arr.2017.08.003 (2017). 

9 Hou, Y. et al. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol 15, 

565-581, doi:10.1038/s41582-019-0244-7 (2019). 

10 Scherrer, J. F. et al. Association Between Metformin Initiation and Incident Dementia 

Among African American and White Veterans Health Administration Patients. Ann Fam 

Med 17, 352-362, doi:10.1370/afm.2415 (2019). 

11 Imfeld, P., Bodmer, M., Jick, S. S. & Meier, C. R. Metformin, other antidiabetic drugs, 

and risk of Alzheimer's disease: a population-based case-control study. J Am Geriatr Soc 

60, 916-921, doi:10.1111/j.1532-5415.2012.03916.x (2012). 

12 Andersen, P. K., Borgan, O., Gill, R. D. & Keiding, N. Statistical Models Based on 

Counting Processes.  (1993). 

13 Nalichowski, R., Keogh, D., Chueh, H. C. & Murphy, S. N. Calculating the benefits of a 

Research Patient Data Repository. AMIA Annu Symp Proc, 1044 (2006). 

14 Herrett, E. et al. Data Resource Profile: Clinical Practice Research Datalink (CPRD). Int 

J Epidemiol 44, 827-836, doi:10.1093/ije/dyv098 (2015). 

15 Marcum, Z. A. et al. Mortality Associated with Metformin Versus Sulfonylurea 

Initiation: A Cohort Study of Veterans with Diabetes and Chronic Kidney Disease. J Gen 

Intern Med 33, 155-165, doi:10.1007/s11606-017-4219-3 (2018). 

16 Bannister, C. A. et al. Can people with type 2 diabetes live longer than those without? A 

comparison of mortality in people initiated with metformin or sulphonylurea 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2021. ; https://doi.org/10.1101/2021.08.10.21261747doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.10.21261747
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 14 

monotherapy and matched, non-diabetic controls. Diabetes Obes Metab 16, 1165-1173, 

doi:10.1111/dom.12354 (2014). 

17 Sluggett, J. K. et al. Metformin and Risk of Alzheimer's Disease Among Community-

Dwelling People With Diabetes: A National Case-Control Study. J Clin Endocrinol 

Metab 105, doi:10.1210/clinem/dgz234 (2020). 

18 Wium-Andersen, I. K., Osler, M., Jorgensen, M. B., Rungby, J. & Wium-Andersen, M. 

K. Antidiabetic medication and risk of dementia in patients with type 2 diabetes: a nested 

case-control study. Eur J Endocrinol 181, 499-507, doi:10.1530/EJE-19-0259 (2019). 

19 Labuzek, K. et al. Quantification of metformin by the HPLC method in brain regions, 

cerebrospinal fluid and plasma of rats treated with lipopolysaccharide. Pharmacol Rep 

62, 956-965, doi:10.1016/s1734-1140(10)70357-1 (2010). 

20 Song, Y. et al. A dynamic view of the proteomic landscape during differentiation of 

ReNcell VM cells, an immortalized human neural progenitor line. Sci Data 6, 190016, 

doi:10.1038/sdata.2019.16 (2019). 

21 Paterson, R. W. et al. A targeted proteomic multiplex CSF assay identifies increased 

malate dehydrogenase and other neurodegenerative biomarkers in individuals with 

Alzheimer's disease pathology. Transl Psychiatry 6, e952, doi:10.1038/tp.2016.194 

(2016). 

22 Comi, C. et al. Osteopontin is increased in the cerebrospinal fluid of patients with 

Alzheimer's disease and its levels correlate with cognitive decline. J Alzheimers Dis 19, 

1143-1148, doi:10.3233/JAD-2010-1309 (2010). 

23 Sala Frigerio, C. et al. The Major Risk Factors for Alzheimer's Disease: Age, Sex, and 

Genes Modulate the Microglia Response to Abeta Plaques. Cell Rep 27, 1293-1306 

e1296, doi:10.1016/j.celrep.2019.03.099 (2019). 

24 Bennett, D. A. et al. Religious Orders Study and Rush Memory and Aging Project. J 

Alzheimers Dis 64, S161-S189, doi:10.3233/JAD-179939 (2018). 

25 Wang, M. et al. The Mount Sinai cohort of large-scale genomic, transcriptomic and 

proteomic data in Alzheimer's disease. Sci Data 5, 180185, doi:10.1038/sdata.2018.185 

(2018). 

26 Cummings, J., Lee, G., Ritter, A., Sabbagh, M. & Zhong, K. Alzheimer's disease drug 

development pipeline: 2019. Alzheimers Dement (N Y) 5, 272-293, 

doi:10.1016/j.trci.2019.05.008 (2019). 

27 Oxford, A. E., Stewart, E. S. & Rohn, T. T. Clinical Trials in Alzheimer's Disease: A 

Hurdle in the Path of Remedy. Int J Alzheimers Dis 2020, 5380346, 

doi:10.1155/2020/5380346 (2020). 

28 Orkaby, A. R., Cho, K., Cormack, J., Gagnon, D. R. & Driver, J. A. Metformin vs 

sulfonylurea use and risk of dementia in US veterans aged >/=65 years with diabetes. 

Neurology 89, 1877-1885, doi:10.1212/WNL.0000000000004586 (2017). 

29 Scherrer, J. F. et al. Metformin and Sulfonylurea Use and Risk of Incident Dementia. 

Mayo Clin Proc 94, 1444-1456, doi:10.1016/j.mayocp.2019.01.004 (2019). 

30 Zhou, Y. et al. Human and mouse single-nucleus transcriptomics reveal TREM2-

dependent and TREM2-independent cellular responses in Alzheimer's disease. Nat Med 

26, 131-142, doi:10.1038/s41591-019-0695-9 (2020). 

31 Krasemann, S. et al. The TREM2-APOE Pathway Drives the Transcriptional Phenotype 

of Dysfunctional Microglia in Neurodegenerative Diseases. Immunity 47, 566-581 e569, 

doi:10.1016/j.immuni.2017.08.008 (2017). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2021. ; https://doi.org/10.1101/2021.08.10.21261747doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.10.21261747
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 15 

32 Jack, C. R., Jr. et al. NIA-AA Research Framework: Toward a biological definition of 

Alzheimer's disease. Alzheimers Dement 14, 535-562, doi:10.1016/j.jalz.2018.02.018 

(2018). 

33 Livingston, G. et al. Dementia prevention, intervention, and care: 2020 report of the 

Lancet Commission. Lancet 396, 413-446, doi:10.1016/S0140-6736(20)30367-6 (2020). 

34 Wilkinson, S. et al. Changing use of antidiabetic drugs in the UK: trends in prescribing 

2000-2017. BMJ Open 8, e022768, doi:10.1136/bmjopen-2018-022768 (2018). 

35 Soukas, A. A., Hao, H. & Wu, L. Metformin as Anti-Aging Therapy: Is It for Everyone? 

Trends Endocrinol Metab 30, 745-755, doi:10.1016/j.tem.2019.07.015 (2019). 

36 Lin, K. J. et al. Identifying Patients With High Data Completeness to Improve Validity of 

Comparative Effectiveness Research in Electronic Health Records Data. Clin Pharmacol 

Ther 103, 899-905, doi:10.1002/cpt.861 (2018). 

37 Haneuse, S. et al. Learning About Missing Data Mechanisms in Electronic Health 

Records-based Research: A Survey-based Approach. Epidemiology 27, 82-90, 

doi:10.1097/EDE.0000000000000393 (2016). 

38 Haneuse, S. & Daniels, M. A General Framework for Considering Selection Bias in 

EHR-Based Studies: What Data Are Observed and Why? EGEMS (Wash DC) 4, 1203, 

doi:10.13063/2327-9214.1203 (2016). 

39 Wolters, F. J. et al. Twenty-seven-year time trends in dementia incidence in Europe and 

the United States: The Alzheimer Cohorts Consortium. Neurology 95, e519-e531, 

doi:10.1212/WNL.0000000000010022 (2020). 

40 2020 Alzheimer's disease facts and figures. Alzheimers Dement, doi:10.1002/alz.12068 

(2020). 

41 Pujades-Rodriguez, M. et al. The diagnosis, burden and prognosis of dementia: A record-

linkage cohort study in England. PLoS One 13, e0199026, 

doi:10.1371/journal.pone.0199026 (2018). 

42 Ford, E. et al. Identifying undetected dementia in UK primary care patients: a 

retrospective case-control study comparing machine-learning and standard 

epidemiological approaches. BMC Medical Informatics and Decision Making 19, 248, 

doi:10.1186/s12911-019-0991-9 (2019). 

43 Ostbye, T., Taylor, D. H., Jr., Clipp, E. C., Scoyoc, L. V. & Plassman, B. L. 

Identification of dementia: agreement among national survey data, medicare claims, and 

death certificates. Health Serv Res 43, 313-326, doi:10.1111/j.1475-6773.2007.00748.x 

(2008). 

44 Chen, Y., Tysinger, B., Crimmins, E. & Zissimopoulos, J. M. Analysis of dementia in the 

US population using Medicare claims: Insights from linked survey and administrative 

claims data. Alzheimers Dement (N Y) 5, 197-207, doi:10.1016/j.trci.2019.04.003 (2019). 

45 Benchimol, E. I. et al. The REporting of studies Conducted using Observational 

Routinely-collected health Data (RECORD) statement. PLoS Med 12, e1001885, 

doi:10.1371/journal.pmed.1001885 (2015). 

46 Imam, T. H. Changes in metformin use in chronic kidney disease. Clin Kidney J 10, 301-

304, doi:10.1093/ckj/sfx017 (2017). 

47 VanderWeele, T. J. Principles of confounder selection. Eur J Epidemiol 34, 211-219, 

doi:10.1007/s10654-019-00494-6 (2019). 

48 Lesko, C. R. & Lau, B. Bias Due to Confounders for the Exposure-Competing Risk 

Relationship. Epidemiology 28, 20-27, doi:10.1097/EDE.0000000000000565 (2017). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2021. ; https://doi.org/10.1101/2021.08.10.21261747doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.10.21261747
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 16 

49 Brookhart, M. A. et al. Variable selection for propensity score models. Am J Epidemiol 

163, 1149-1156, doi:10.1093/aje/kwj149 (2006). 

50 Ding, P., VanderWeele, T. J. & Robins, J. M. Instrumental variables as bias amplifiers 

with general outcome and confounding. Biometrika 104, 291-302, 

doi:10.1093/biomet/asx009 (2017). 

51 Guerreiro, R. & Bras, J. The age factor in Alzheimer's disease. Genome Med 7, 106, 

doi:10.1186/s13073-015-0232-5 (2015). 

52 Chatterjee, S. et al. Type 2 Diabetes as a Risk Factor for Dementia in Women Compared 

With Men: A Pooled Analysis of 2.3 Million People Comprising More Than 100,000 

Cases of Dementia. Diabetes Care 39, 300-307, doi:10.2337/dc15-1588 (2016). 

53 Riedel, B. C., Thompson, P. M. & Brinton, R. D. Age, APOE and sex: Triad of risk of 

Alzheimer's disease. J Steroid Biochem Mol Biol 160, 134-147, 

doi:10.1016/j.jsbmb.2016.03.012 (2016). 

54 van der Flier, W. M. & Scheltens, P. Epidemiology and risk factors of dementia. J Neurol 

Neurosurg Psychiatry 76 Suppl 5, v2-7, doi:10.1136/jnnp.2005.082867 (2005). 

55 Kivimaki, M. et al. Association between socioeconomic status and the development of 

mental and physical health conditions in adulthood: a multi-cohort study. Lancet Public 

Health 5, e140-e149, doi:10.1016/S2468-2667(19)30248-8 (2020). 

56 Wei, W. Q. et al. Combining billing codes, clinical notes, and medications from 

electronic health records provides superior phenotyping performance. J Am Med Inform 

Assoc 23, e20-27, doi:10.1093/jamia/ocv130 (2016). 

57 Corraini, P., Olsen, M., Pedersen, L., Dekkers, O. M. & Vandenbroucke, J. P. Effect 

modification, interaction and mediation: an overview of theoretical insights for clinical 

investigators. Clin Epidemiol 9, 331-338, doi:10.2147/CLEP.S129728 (2017). 

58 Mao, H., Li, L., Yang, W. & Shen, Y. On the propensity score weighting analysis with 

survival outcome: Estimands, estimation, and inference. Stat Med 37, 3745-3763, 

doi:10.1002/sim.7839 (2018). 

59 Vakulenko-Lagun, B. et al. causalCmprsk: Nonparametric and Cox-Based Estimation of 

average treatment effects in Competing Risks, <https://cran.r-

project.org/web/packages/causalCmprsk/index.html> (2021). 

60 Cole, S. R. et al. Estimation of the standardized risk difference and ratio in a competing 

risks framework: application to injection drug use and progression to AIDS after 

initiation of antiretroviral therapy. American journal of epidemiology 181, 238-245, 

doi:10.1093/aje/kwu122 (2015). 

61 Andersen, P. K., Geskus, R. B., de Witte, T. & Putter, H. Competing risks in 

epidemiology: possibilities and pitfalls. Int J Epidemiol 41, 861-870, 

doi:10.1093/ije/dyr213 (2012). 

62 Stensrud, M. J. & Hernán, M. A. Why Test for Proportional Hazards? JAMA 323, 1401-

1402, doi:10.1001/jama.2020.1267 (2020). 

63 Hernan, M. A. The hazards of hazard ratios. Epidemiology 21, 13-15, 

doi:10.1097/EDE.0b013e3181c1ea43 (2010). 

64 Ash, Peter E. A. et al. Unconventional Translation of <em>C9ORF72</em> GGGGCC 

Expansion Generates Insoluble Polypeptides Specific to c9FTD/ALS. Neuron 77, 639-

646, doi:10.1016/j.neuron.2013.02.004. 

65 Rubin, D. B. & Schenker, N. Multiple imputation in health-care databases: an overview 

and some applications. Statistics in medicine 10, 585-598 (1991). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2021. ; https://doi.org/10.1101/2021.08.10.21261747doi: medRxiv preprint 

https://cran.r-project.org/web/packages/causalCmprsk/index.html
https://cran.r-project.org/web/packages/causalCmprsk/index.html
https://doi.org/10.1101/2021.08.10.21261747
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 17 

66 <https://bcbio-nextgen.readthedocs.io/> ( 

67 Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for 

differential expression analysis of digital gene expression data. Bioinformatics 26, 139-

140, doi:10.1093/bioinformatics/btp616 (2010). 

68 Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 

1739-1740, doi:10.1093/bioinformatics/btr260 (2011). 

69 Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for 

interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102, 15545-

15550, doi:10.1073/pnas.0506580102 (2005). 

70 Macron, C., Lane, L., Núñez Galindo, A. & Dayon, L. Deep Dive on the Proteome of 

Human Cerebrospinal Fluid: A Valuable Data Resource for Biomarker Discovery and 

Missing Protein Identification. Journal of Proteome Research 17, 4113-4126, 

doi:10.1021/acs.jproteome.8b00300 (2018). 

71 Bihlmeyer, N. A. et al. Novel methods for integration and visualization of genomics and 

genetics data in Alzheimer's disease. Alzheimers Dement 15, 788-798, 

doi:10.1016/j.jalz.2019.01.011 (2019). 

72 Yoshida, K. <(https://cran.r-project.org/web/packages/tableone/vignettes/smd.html) > 

(2020). 

73 Austin, P. C. An Introduction to Propensity Score Methods for Reducing the Effects of 

Confounding in Observational Studies. Multivariate Behav Res 46, 399-424, 

doi:10.1080/00273171.2011.568786 (2011). 

 

 
FIGURE LEGENDS 

 

Fig. 1 | Consort Diagrams for US RPDR and UK CPRD. (a) Flowchart of inclusion and exclusion 

criteria of study population in RPDR (b) Flowchart of inclusion and exclusion criteria of study population 

in CPRD. 

 

Fig. 2 | Metformin reduces all-cause mortality relative to sulfonylureas among type II diabetic 

patients aged >50 years at treatment initiation. (a, c) Kaplan-Meier survival curves for metformin and 

sulfonylurea initiators with 95% Confidence Intervals (CI). N=# of patients at baseline, D=# of deaths 

during follow-up. Hazard Ratios (HR) were estimated using the Cox Proportional Hazards (PH) model, 

with only treatment as a covariate, and baseline covariate distributions between treatment arms balanced 

by Inverse Propensity score of Treatment Weighting (IPTW). (b, d) Forest plots presenting all-cause 

mortality HRs overall and stratified by age, sex, and BMI level at baseline, with sulfonylurea initiators as 

the reference group. Covariate balancing using IPTW was conducted in each stratum independently. 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2021. ; https://doi.org/10.1101/2021.08.10.21261747doi: medRxiv preprint 

https://bcbio-nextgen.readthedocs.io/
https://cran.r-project.org/web/packages/tableone/vignettes/smd.html
https://doi.org/10.1101/2021.08.10.21261747
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 18 

Fig. 3 | Metformin reduces incident dementia relative to sulfonylureas in type II diabetic patients 

aged >50 years at treatment initiation. HRs were estimated using the Cox PH model for the cause-

specific hazards of dementia, with only treatment as a covariate and baseline covariate distributions 

between treatment arms balanced by IPTW. (a, b) Forest plots present HRs overall and stratified by age, 

sex, and BMI level at baseline, with sulfonylureas as the reference group. N=# of patients at baseline, 

Onsets=# of patients with dementia onset during follow-up and prior to death. Covariate balancing using 

IPTW was conducted in each stratum independently. 

 

Fig. 4 | Risk differences in dementia onset over time are negligible for metformin initiators, as 

compared to sulfonylureas. Cumulative incidence functions (CIF) or risk curves, along with their 95% 

CIs, were estimated using the Cox model for the cause-specific hazards, with only treatment as a 

covariate and baseline covariate distributions between treatment arms balanced by IPTW. (a, b) CIF 

curves for dementia onset (in blue hues) and competing death (in orange hues) for metformin vs. 

sulfonylurea initiators. Follow-up times are up to 12 and 16 years in the US RPDR (a) and the UK CPRD 

(b) cohorts, respectively. (c, d) Risk difference curves for dementia onset (in blue) and competing death 

(in orange), in the US RPDR (c) and the UK CPRD (d) cohorts, respectively. A negative risk difference 

value during certain time periods indicates that initiation of metformin is beneficial, as compared to 

sulfonylureas. 

 

Fig. 5 | Differential gene expression in human neural cells triggered by metformin and glyburide: 

markedly reduced levels of the AD biomarker SPP1 (osteopontin). (a) Differentiated human ReN VM 

cells into neural cells were treated with metformin or glyburide at two different concentrations, for either 

24 or 72h. (b) Genes with largest dose-dependent change in expression over 24 and 72h, for either 

metformin or glyburide—top 5 increased and top 5 decreased. (c) Genes expressing secreted proteins with 

greatest differential between metformin and glyburide. (d) SPP1 RNA levels in 4 different brain regions: 

AD vs. Controls (DLPFC=dorsolateral prefrontal cortex; PHG=parahippocampal gyrus; STS=superior 

temporal sulcus; TC=temporal cortex). 
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TARGET TRIAL 

SPECIFICATION 

EMULATION (US RPDR) EMULATION (UK CPRD) 

Eligibility criteria 

Age ≥ 50  Same  

No hypoglycemics No recorded prior exposure to any hypoglycemic agents 

No MCI*, dementia, or 

prescription of dementia 

drugs; normal cognitive 

testing 

No recorded diagnosis of dementia or 

MCI*, or use of dementia-specific 

drugs (see Extended Data Tables 8-9)  

No recorded diagnosis of dementia 

(MCI* diagnoses not available in 

CPRD) or use of dementia-specific 

drugs (see Extended Data Tables 10-11) 

No chronic kidney disease 
(metformin contraindication) 

No ICD*-9/10 code for chronic 
kidney disease or eGFR* < 45 

(Extended Data Table 1) 

No diagnosis of chronic kidney disease 
at or prior to baseline (Extended Data 

Table 2)  

Trial with one-year run in 

period conducted for a 

specified duration with 

history obtained at baseline 

and ongoing monitoring of 

outcomes 

• PCP* within Mass General 

Brigham Health Care system EHR* 

system 

• At least one visit during the 18 

months preceding baseline 

• At least one year of follow-up 

• No dementia or death in first year 

• At least one-year registration in CPRD 

practices before the first prescription 

• At least one year of follow-up 

• No dementia or death in first year 

Treatment strategies 

Treatment arm: metformin 

monotherapy  

Control arm: sulfonylurea 

monotherapy 

Initiation of metformin or 

sulfonylurea from 1/2007-9/2017 (see 

Extended Data Fig. 8 for the number 

of new prescriptions per year) 

Initiation of metformin or sulfonylurea 

from 1/2001-5/2017, with ≥ 2 

monotherapy prescriptions for first 12 

months (see Extended Data Fig. 9 for 

the number of new prescriptions per 

year) 

Treatment assignment 

Double-blind, randomized 

treatment assignment 

Emulated randomization by balancing baseline confounders using IPTW* for 

treatment choice 

Outcomes 

Diagnosis of MCI* or 

dementia 

Diagnosis of MCI/Dementia by: 

ICD*-9/10 codes (Extended Data 

Table 8) OR at least one dementia-

specific drug prescription (Extended 

Data Table 9) 

Diagnosis of dementia by: Medcodes in 

CPRD or ICD*-9/10 codes in linked 

HES* or ONS* database (Extended 

Data Table 10) OR at least one 

dementia-specific drug prescription 

(Extended Data Table 11) 

Time to death Time to death recorded in EHR* 

Follow-up 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2021. ; https://doi.org/10.1101/2021.08.10.21261747doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.10.21261747
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 20 

From baseline and ends at 

dementia onset, death, lost to 

follow-up, or end of study 

From the date of initial prescription of drug until the date of dementia incidence, 

death, last encounter date, 9/2018 (US RPDR) or 5/2018 (UK CPRD), 

whichever occurred first 

Causal contrast 

Intention-to-treat effect Observational analog of intention-to-treat effect 

Statistical analysis 

Intention-to-treat analysis of 

primary outcomes (dementia 

and death) using Cox PH 

Intention-to-treat analysis using Cox Proportional Hazards (PH) regression 

model and a competing risks framework accounting for death prior to dementia 

Subgroup analyses by age, sex, and BMI* level at baseline 

 

 

Table 1 | Specification and emulation of a target trial of antidiabetic drug metformin vs. 

sulfonylureas on the risk of death and dementia, using observational data from Electronic Health 

Records of the US RPDR and the UK CPRD. BMI=Body Mass Index; eGFR=estimated Glomerular 

Filtration Rate; HES=Hospital Episode Statistics; ICD=International Classification of Diseases; 

IPTW=Inverse Propensity score of Treatment Weighting; MCI=Mild Cognitive Impairment; ONS=Office 

for National Statistics; PCP=Primary Care Physician. 
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Table 2 | Baseline characteristics of eligible individuals when emulating a target trial of metformin 

vs. sulfonylurea initiators on the risk of death and dementia in the US RPDR (2007-2017) and the 

UK CPRD (2001-2017). SES (US RPDR) and IMD (UK CPRD) are distinct, country-specific 

socioeconomic indicators, intended for comparison within—rather than across—the two cohorts. 

BMI=Body Mass Index; COPD=Chronic Obstructive Pulmonary Disease; CVD=Cardio-Vascular 

Disease; HbA1C=glycosylated hemoglobin. IMD=Index of Multiple Deprivation (official measure of 

relative deprivation by small geographic region in the UK). IMD, smoking status, HbA1C, and BMI had 

7%, 2%, 21%, and 3% of missing values in the UK CPRD, respectively. The corresponding statistics 

presented in the table are valid percentages out of patients without missing information. **Stroke and 

CVD indicators were collapsed. 
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Fig. 1 | Consort Diagrams for US RPDR and UK CPRD.  

 

Flowchart of inclusion and exclusion criteria of study population in US RPDR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

excluded 

excluded 

excluded 

excluded 

Participants without a record 

of a hypoglycemic agent 

(N=358,447) 

Participants with first 

antidiabetic prescription 

before 2007 

OR those born after 1954  

OR those without a Partners’ 

Healthcare PCP** 

(N=18,318) 

Participants with antidiabetic 

polytherapy at baseline 

OR those with monotherapy 

other than metformin or 

sulfonylurea 

(N=12,921) 

Participants without a visit  

in the 18 months  

preceding baseline  

OR those without a visit at 

least one year after baseline  

(N=5,030) 

Participants who had 

dementia before (N=1,125) 

OR within a year from 

baseline (N=319) 

OR with chronic kidney 

disease at baseline (N=759) 

(N=2,203) 

Total number of participants in 

the RPDR* DataMart as of 

September 2018  

(N=410,110) 

Participants with first 

antidiabetic prescription in 2007 

or after, aged >= 54 at baseline, 

and with a Partners’ PCP* 

(N=33,345) 

Participants with at least one 

visit in the 18 months preceding 

baseline, and with at least one 

year of potential follow-up   

(N=15,394) 

Participants with antidiabetic 

monotherapy at baseline 

(N=20,424) 

Participants without dementia 

before baseline, or within a year 

(N=13,191) 

Participants with at least one 

record of a hypoglycemic agent 

 (N=51,663) 

excluded 
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Flowchart of inclusion and exclusion criteria of study population in UK CPRD 

 

  

b 

excluded 

excluded 

excluded 

excluded 

Participants without a record 

of a hypoglycemic agent 

(N=6,316,763) 

Participants with first 

antidiabetic prescription 

before 2001 

OR aged < 50 at baseline 

OR < 1 year registration 

before baseline 

(N=112,565) 

Participants with antidiabetic 

polytherapy OR 

monotherapy other than 

metformin or sulfonylureas 

in the first year of treatment 

(N=47,950) 

Participants who had 

dementia or died before 

OR within a year from 

baseline OR had < 1 year 

follow-up 

(N=15,776) 

Participants with chronic 

kidney disease at baseline 

(N=12,119) 

Total number of participants 

aged over 50 years in the CPRD 

GOLD database as of May 2018  

(N=6,613,198) 

Participants with first 

antidiabetic prescription in 2001 

or after, aged >= 50 at baseline, 

and had >= 1 year registration 

(N=183,870) 

Participants with no dementia or 

death before or within a year 

from baseline, and with at least 

one year of follow-up 

(N=120,144) 

Participants with metformin or 

sulfonylurea monotherapy at 

baseline (N=135,920) 

Participants meeting our 

inclusion and exclusion criteria 

(N=108,025) 

Participants with at least one 

record of a hypoglycemic agent 

 (N=296,435) 

excluded 
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Fig. 2
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Fig. 3
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Fig. 4 
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Fig. 5 
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METHODS 

I. Data sources 

The data used in the study are from two large-scale EHR databases: the Research Patient Data Registry in 

the United States at Mass General Brigham Healthcare (US RPDR) and the Clinical Practice Research 

Datalink in the United Kingdom (UK CPRD).  

US RPDR. The study cohort was selected from the RPDR registry13. RPDR is a longitudinal centralized 

clinical data registry with ~6.5 million patients mainly from the Boston area as of June 2020. The data are 

collected from EHR systems within Mass General Brigham (MGB) Healthcare (formerly Partners 

Healthcare), comprising two major academic hospitals, as well as several community hospitals and 

community health centers in the Boston area. Death records are updated periodically from the US Social 

Security Death Index (2007-2017). Use of RPDR data for this study was approved by the institutional 

review board (IRB) of MGB.  

 

UK CPRD. The study cohort was selected from the CPRD database14.  CPRD is a longitudinal national 

primary care database, with ~17 million patients from 13 regions across the UK. The data are collected 

from EHR systems in general practice physician (GP) practices. GP practices can enroll the CPRD data 

system on an ongoing basis and can leave it at any time. Over 700 GP practices (8% of total GP practices) 

have contributed data to CPRD and the mean follow-up time for patients included in CPRD is around 

eight years. Death records are updated periodically from the UK Office of National Statistics (ONS). 

Additionally, data linkages were established with secondary care data from Hospital Episode Statistics 

(HES) as well as with small-area measures of social deprivation (2001-2017). Use of CPRD data for this 

study was approved by the Independent Scientific Advisory Committee (ISAC) for Medicines and 

Healthcare products Regulatory Agency (MHRA) database research (protocol number: 19_065R). 

 

Both the US RPDR and the UK CPRD data includes patient demographics; encounter details such as 

dates, providers, diagnoses, and procedures; medical notes, drug prescriptions, and laboratory test results. 

We reported our findings according to the RECORD reporting guidelines45.  

 

II. Study population 

 

The eligibility criteria satisfied by the US RPDR and the UK CPRD populations are: 
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Criterion US RPDR UK CPRD 

a) Time period spanned by the 

observational study 

For the emulated trial in the 

RPDR database, we included 

patients with initial prescriptions 

of metformin or sulfonylureas 

between January 2007 and 

September 2017. 

For the emulated trial in the 

CPRD database, we included 

patients with initial prescriptions 

of metformin or sulfonylureas 

between January 2001 and May 

2017. 

b) Minimum age at baseline We included patients over 50 years old at the first prescription date 

(time 0, or baseline). 

c) Prior history of primary care 

within the system, in order to:  

 

- allow sufficient time for 

baseline patient information to 

be recorded and reduce the 

likelihood of data missingness 

 

- ensure the patient is a new 

antidiabetic drug user at baseline 

and maximize the duration of 

their follow-up 

Have a primary care physician 

(PCP) within MGB before the 

first prescription of antidiabetic 

drugs. To identify patients with 

a MGB PCP, the presence of at 

least one of the following was 

required: i) a CPT code for 

preventative medicine services, 

ii) an annual exams/wellness 

visit in the EHR, or iii) an 

encounter from selected 

departments (family medicine, 

general practice, general internal 

medicine, or preventative care). 

Have at least one-year 

registration in a CPRD practice 

before the first prescription of 

antidiabetic drugs. 

d) Metformin- and sulfonylurea-

monotherapy assignment 

The assignment of patients to 

the metformin- and the 

sulfonylurea-monotherapy 

group was based on the first 

record of prescription of either 

drug. Only one prescription was 

required. Prescriptions of 

antidiabetic medications was 

obtained from RPDR (see 

Methods, section III). The 

The assignment of patients to 

the metformin- and the 

sulfonylurea-monotherapy 

group was based on the first 

record of prescription of either 

drug. At least two consistent 

prescriptions during the initial 

12-month treatment period were 

required. Prescriptions of 

antidiabetic medications were 
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metformin monotherapy group 

included patients who were 

prescribed at baseline only 

metformin; the sulfonylurea 

monotherapy group included 

patients who at baseline were 

prescribed only sulfonylureas. 

obtained from CPRD using 

British National Formulary 

codes (see Methods, section III). 

The metformin monotherapy 

group included patients who 

were exposed only to metformin 

during their initial 12-month 

treatment period; the 

sulfonylurea monotherapy group 

included patients who were 

exposed only to sulfonylureas 

during their initial 12-month 

treatment period. 

e) Absence of dementia 

diagnosis at baseline 

Have no dementia diagnosis or dementia-specific drug prescription 

before the baseline date (see Section IV). 

f) Over one year of follow-up Have one-year of follow-up after treatment initiation. 

Have no dementia or death record during the first year of follow-up. 

g) Absence of chronic kidney 

disease (CKD) diagnosis at 

baseline 

Have no CKD diagnosis at the time of metformin- or sulfonylurea-

monotherapy treatment initiation, since CKD is a contraindication 

for metformin.46 

Resulting sample size A total of 13,191 patients in 

RPDR met these eligibility 

criteria and were included in the 

analyses (see Fig. 1a for the US 

RPDR consort diagram). 

A total of 108,025 eligible 

patients in CPRD met these 

eligibility criteria and were 

included in the analyses (see 

Fig. 1b for the UK CPRD 

consort diagram). 

 

III. Exposure assessment 

In both cohorts, any patients in combination therapy at baseline, including with insulin, were excluded. 

We first identified individuals who met the eligibility criteria and assigned them to the treatment indicated 

in their medical record at baseline. The sulfonylurea monotherapy group included patients who were 

exposed only to sulfonylureas, including first generation (tolbutamide, chlorpropamide, tolazamide, or 

acetohexamide) and second generation (gliclazide, glibenclamide, glipizide, glimepiride, gliquidone, 
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glibornuride, or glymidine sodium). Similarly, the metformin monotherapy group included those who 

were exposed only to metformin (Extended Data Figs. 8-9). 

IV. Dementia outcome ascertainment  

In both the US RPDR and the UK CPRD cohorts, the date of dementia onset was defined as the first 

dementia diagnosis date or the first prescription date of dementia-specific drugs, whichever occurred 

earlier. 

US RPDR. In RPDR, dementia incidence was defined by the presence of either one or several dementia 

diagnosis codes (expertly curated list of International Classification of Diseases (ICD) codes including: a) 

ICD10 codes: 290.X, 294.X, and 331.X; b) ICD9 codes: 780.93, G30.X, and G31.X (Extended Data 

Table 8), and/or by the initiation of drugs primarily used for dementia (Donepezil, Galantamine, 

Rivastigmine, and their respective brand names Aricept, Razadyne, Exelon (Extended Data Table 9)). 

UK CPRD. In CPRD, dementia incidence was defined by the presence of either one or several dementia 

diagnosis codes (expertly curated list including: a) a selected set of CPRD Medcodes: see Extended Data 

Table 10 for the detailed code list; b) ICD 9/10 codes in linked HES or ONS databases: see Extended 

Data Table 11 for the detailed code list), and/or by the initiation of drugs primarily used for dementia 

(Donepezil, Galantamine, Rivastigmine, or Memantine (Extended Data Table 11)).  

We performed an intention-to-treat analysis. We were interested in assessing the comparative 

effectiveness of metformin- vs. sulfonylurea-monotherapy on time-to-dementia-onset in the presence of 

competing death, in the population of people who survived a year post baseline without dementia. 

V. Covariates 

Confounder selection. We considered all available covariates that potentially influence both the 

treatment assignment and one or both outcomes, or strongly related to at least one of the outcomes: 

dementia or death47,48. To harmonize the confounders included in the dementia onset and death model, we 

considered covariates that were influencing either outcome.  Solely data-driven approaches to covariate 

selection can negatively affect the precision of the estimates and even amplify the residual bias49,50, and 

are a particular concern in EHR research, where informative missingness is the rule37,38. When adjusting 

for sources of confounding, both VanderWeele47 and Brookhart et al.50 recommend including covariates 

that are weakly related to the treatment assignment but are strongly related to the outcome of interest.  
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Specifically, we included the following covariates. Age is the largest risk factor for dementia51 and death, 

and hence was included as a covariate. Since the UK CPRD observational study was spanning a longer 

time period (2000-2017) than the US RPDR (2007-2017), the calendar year of the first prescription was 

added to control for temporal changes in prescribing practices, mortality trends, and age-specific 

incidences of dementia11. Given that the US RPDR cohort captures patients who initiated after the new 

antidiabetic treatment recommendations formulated in 2006, there were no specific concerns about a 

potential shift in prescription patterns. It is unknown whether sex affects antidiabetic treatment 

assignment, but it strongly relates to the death outcome and may affect the dementia outcome beyond its 

effect on survival39,52,53. In addition, there might be sex-based differences in disease detection and 

reporting in the medical records, resulting in women having a higher incidence of dementia than men, as 

documented in the EHR. Therefore, we included both age at baseline (as a continuous covariate) and sex 

in the model. Hypertension, cardiovascular diseases (CVD), and stroke are also associated with dementia, 

and hence were also considered54. We included body mass index (BMI) at treatment initiation, and 

baseline levels of HbA1C, which measures the average blood sugar levels over a period of about three 

months and the severity of diabetes. Socioeconomic status (SES) is associated with both dementia and 

death outcomes55. Finally, cancer is associated with death. For a patient to be categorized as having a 

history of cancer at baseline, we required at least two instances of cancer ICD codes in the EHR. The 

choice was based on previous literature, which suggested that accuracy is highest with two instances of 

cancer ICD codes56.  

In both cohorts, information on the following covariates before the baseline date was extracted: age at the 

first prescription, sex, SES (index of multiple deprivation (IMD) in the UK CPRD and median annual 

household income by zip code in the US RPDR), BMI (<25, 25-30, ≥30 kg/m2, or missing), HbA1C 

(<7%, 7-10%, >10%, or missing), and comorbidities (hypertension, CVD, stroke, and cancer). Additional 

covariates which were not available in the US RPDR dataset were extracted in the UK CPRD cohort, 

including smoking status (non-smoker, current smoker, ex-smoker, or missing), and presence of chronic 

obstructive pulmonary disease (COPD) before baseline. Whereas the US RPDR cohort mainly includes 

patients living in the Boston area, the UK CPRD cohort is representative of patients nationally. To adjust 

for the geographical heterogeneity, the region of residence was additionally incorporated in the UK 

CPRD (as a categorical covariate with 12 levels and the reference). 

Emulation of baseline randomization. The covariates defined above were used to emulate baseline 

randomization. We adjusted for confounding by rebalancing the metformin- and sulfonylurea-treatment 

groups, using Inverse Propensity score Treatment Weighting (IPTW). For both our analyses, all-cause 

mortality and competing risks, we used the same IPTW approach and the same set of confounders. The 
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contribution of each participant was reweighted to achieve balanced treatment arms with respect to a set 

of measured confounders.  

 

In the US RPDR, we chose not to include two covariates, SES and history of stroke. In the UK CPRD, the 

IMD covariate was included, and the history of stroke was relatively rare (7%) and was combined with 

CVD in a single covariate for simplicity. In the US RPDR study population, there was essentially no 

variability in the SES variable, as 96% of the cohort had a family income greater than the US poverty 

threshold, and there was almost no difference between the treatment groups (96% and 97% among 

metformin and sulfonylurea initiators). For stroke, there was somewhat more variability—12% of the US 

RPDR cohort had an indication of prior stroke at treatment initiation, but there was almost no difference 

between the treatment groups (11.9% of metformin and 12.1% of sulfonylurea initiators).  

 

Let 𝐴 be the treatment assignment random variable with 𝐴 = 1 for metformin and 𝐴 = 0 for 

sulfonylureas. Let 𝐶 be a set of confounders. We estimated propensity scores defined as follow: 𝑝𝑠𝑖 =

𝑃( 𝐴 = 𝑎𝑖 ∣∣ 𝐶 = 𝑐𝑖 ) for individual i with treatment 𝐴 = 𝑎𝑖 and covariates 𝐶 = 𝑐𝑖, by fitting a logistic 

regression model. We denote the estimates of 𝑝𝑠𝑖 by 𝑝𝑠𝑖̂. Subject-specific weights were obtained by 𝑤𝑖
∗̂ =

1/𝑝𝑠𝑖̂, i.e., by inverse-probability of being assigned to the actual treatment 𝐴 = 𝑎𝑖. To reduce the 

influence of potentially extreme weights, we used stabilized weights3, defined as 𝑤𝑖̂ = 𝑃̂(𝐴 = 𝑎𝑖)/

𝑃̂( 𝐴 = 𝑎𝑖 ∣∣ 𝐶 = 𝑐𝑖 ) = 𝑃̂(𝐴 = 𝑎𝑖)𝑤𝑖
∗̂. 

 

Our choice of weights as described above corresponds to the ATE for the overall cohort, either the US 

RPDR or the UK CPRD, with a covariate composition as detailed in Table 2 of the main text.  

 

Assessment of covariate balance between treatment groups. The achieved balance for age is presented 

in Extended Data Fig. 10, while overall covariate balance is summarized in Extended Data Fig. 11.  In the 

estimation of treatment effects in strata of age, of sex and of BMI, we conducted separate analyses in each 

subgroup of patients57 and estimated the IPTW weights for each stratum of the covariate. 

 

Covariate missingness. In both cohorts, we quantified missingness rates for each covariate (see notes to 

Table 2), and missing values in these variables were treated as a separate category. For each categorical 

variable affected by missingness in the US RPDR (i.e., BMI and HbA1C), a binary indicator was added in 

the propensity score model. Similarly, for each categorical variable affected by missingness in the UK 

CPDR (i.e., BMI, HbA1C, smoking status), a binary indicator was added in the propensity score model.  
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US RPDR. In the RPDR cohort, there were missing values in both the BMI (32%) and HbA1C (38%) 

variables at antidiabetic treatment initiation. Missingness affected sulfonylurea- more than metformin-

initiators, as 42% of them were missing BMI information at baseline and 52% did not have an HbA1C 

measure (Table 2). In the propensity score model, we treated missing data as a separate category, for both 

the baseline BMI and HbA1C variables. Further, we combined the two categories of missing BMI and 

BMI<25 into one, assuming that the baseline BMI would be more likely to be captured in the medical 

records if it were >25. Additionally, we noted that the effects of missing BMI and BMI<25 indicators on 

treatment assignment were similar, and thus we collapsed the two into one reference category.  

UK CPRD. Similarly, sulfonylurea initiators had more missing values than metformin initiators in the 

CPRD cohort, as 21%, 35% and 5% of them were missing BMI, HbA1C and smoking status information 

at baseline, respectively. 

VI. Statistical analyses 

Estimation of treatment effect on all-cause mortality 

For a single time-to-death outcome, we estimated the Cox proportional hazards model and the 

nonparametric Kaplan-Meier survival curves for both inverse-probability-of-treatment-weighted 

treatment arms. The latter model allows to estimate robustly the time-varying causal survival curves58, 

while the former model provides a one-number summary of the treatment effect through a fixed hazard 

ratio. We used the Cox proportional hazards model  

ℎ1(𝑡) = ℎ0(𝑡) 𝑒𝑥𝑝(𝛽)                                 

assuming that the hazards of death are proportional in two counterfactual worlds, a world where everyone 

receives metformin, ℎ1(𝑡), and a world where everyone receives sulfonylureas, ℎ0(𝑡), with a 

proportionality factor 𝐻𝑅 = 𝑒𝑥𝑝(𝛽).  

Technically, to estimate the effect of metformin on all-cause mortality, we considered the same causal 

framework as for the competing risks (detailed below) but only for a single outcome, time-to-death. This 

means that both our analyses rely on the same causal assumptions (𝐴1), (𝐴2), and (𝐴3), and the 

assumption of independent censoring. Practically, for both cases we used our R package, causalCmprsk, 

to estimate the causal survival curves.59   
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To allow some time for the antidiabetic drug to have an effect, we introduced a one-year lag: in our trial 

emulations, the follow-up started a year after treatment initiation. Therefore, the effect measures we 

estimated are to be interpreted for the cohort of patients who survive at least a year post baseline.  

Estimation of treatment effect on dementia in the presence of competing death  

In this section, we provide details on statistical methods used for the estimation of the intention-to-treat 

effect of metformin versus sulfonylureas on the risk of dementia in the presence of competing death.  

To allow some time for the antidiabetic drug to have an effect on dementia, a one-year lag was 

introduced: in our trial emulations, the follow-up started a year after treatment initiation. Therefore, effect 

measures are to be interpreted for the cohort of patients who are at risk for both events, dementia and 

death, a year post baseline. Patients who developed dementia within twelve months post antidiabetic 

treatment initiation may well have had cognitive problems at baseline and would likely have not met the 

eligibility criteria of any randomized clinical trial. Similarly, patients who died in the first year likely had 

a high mortality risk and would not be included in an actual clinical trial.  

1) Notation 

Let 𝑇 denote the time from treatment initiation to dementia onset or death (without prior dementia), 

whichever comes first. Let 𝐸 denote the indicator of the type of event, with 𝐸 = 1 if  𝑇 corresponds to 

dementia onset, and 𝐸 = 2 if  𝑇 corresponds to death. If neither dementia nor death is observed during the 

follow-up period, then 𝑇 is censored by the time to the last visit, and 𝐸 = 0. It is important to note that we 

only consider here death without having prior dementia, i.e., the direct transition to death that does not go 

through the dementia state (see Extended Data Fig. 12). Dementia and death (without prior dementia) are 

two mutually exclusive outcomes, and it is assumed that treatment can potentially affect both. The 

observed data are assumed to be 𝑛 independent observations of the quadruplet (𝑇, 𝐸, 𝐴, 𝐶), i.e., 

(𝑡𝑖, 𝑒𝑖, 𝑎𝑖, 𝑐𝑖), for 𝑖 = 1, … , 𝑛.  

2) Assumptions 

Let (𝑇𝑎, 𝐸𝑎), for 𝑎 = 0, 1 denote the potential outcomes that would be observed if a patient were to 

receive treatment 𝑎. Our causal assumptions are the following:  

 (𝑨𝟏) No unmeasured confounding: treatment assignment 𝐴 is independent of potential outcomes given 

𝐶, i.e.: 
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𝐴 ⊥ (𝑇𝑎, 𝐸𝑎)| 𝐶, for 𝑎 = 0, 1 

(𝑨𝟐) Positivity: 

0 < 𝑃(𝐴 = 𝑎 | 𝐶) < 1, for 𝑎 = 0, 1 

(𝑨𝟑) SUTVA (Stable Unit Treatment Value Assumption): the outcome of every patient does not 

depend on the treatment of others (non-interference), and the outcome does not depend on the way a 

treatment was assigned (consistency).  

Additionally, we assume that given 𝐴, the time to the last visit (censoring time) is independent of the 

outcome (𝑇, 𝐸).  

3) Measures of treatment effect 

Let ℎ𝑘
𝑎(𝑡) (𝑎 = 0, 1;  𝑘 = 1, 2) be the single-world cause-specific hazards of transitioning to states 1 or 2 

in a world corresponding to treatment 𝑎 = 0, 1 (see Extended Data Fig. 12). This quantity is defined as 

follows: 

ℎ𝑘
𝑎(𝑡) = lim

Δ𝑡→0

1

Δ𝑡
𝑃( 𝑡 ≤ 𝑇𝑎 < 𝑡 + Δ𝑡, 𝐸𝑎 = 𝑘 ∣ 𝑇𝑎 ≥ 𝑡 ), for 𝑘 = 1, 2. 

The single-world cumulative incidence functions (CIF) are defined by: 

𝐶𝐼𝐹𝑎(𝑡, 𝑘) = 𝐸ൣ𝐼(𝑇𝑎≤𝑡,𝐸𝑎=𝑘)൧ = 𝑃(𝑇𝑎 ≤ 𝑡, 𝐸𝑎 = 𝑘) = න 𝑆𝑎(𝑠)ℎ𝑘
𝑎(𝑠)𝑑𝑠

𝑡

0

, for 𝑘 = 1, 2           ሾ𝟏ሿ 

where 𝑆𝑎(𝑡) is an overall survival function in the counterfactual world corresponding to treatment a, i.e, 

𝑆𝑎(𝑡) is the probability of not having any event, neither dementia nor death, by  time 𝑡: 𝑆𝑎(𝑡) =

𝑒𝑥𝑝 ቄ− ׬ ℎ1
𝑎(𝑠)𝑑𝑠

𝑡

0
− ׬ ℎ2

𝑎(𝑠)𝑑𝑠
𝑡

0
ቅ = 𝑆1

𝑎(𝑡)𝑆2
𝑎(𝑡), 

where 𝑆1
𝑎(𝑡) = 𝑒𝑥𝑝 ቄ− ׬ ℎ1

𝑎(𝑠)𝑑𝑠
𝑡

0
ቅ and 𝑆2

𝑎(𝑡) = 𝑒𝑥𝑝 ቄ− ׬ ℎ2
𝑎(𝑠)𝑑𝑠

𝑡

0
ቅ.  

From ሾ𝟏ሿ, it is clear that the risk of dementia, denoted by 𝐶𝐼𝐹𝑎(𝑡, 1) (𝑎 = 0, 1), depends on the cause-

specific hazard of death, denoted by ℎ2
𝑎(𝑡) (𝑎 = 0, 1), through the overall survival function 𝑆𝑎(𝑡) (𝑎 =

0, 1). The function 𝐶𝐼𝐹𝑎(𝑡, 𝑘) (𝑎 = 0, 1;  𝑘 = 1, 2), which is often called risk61, represents the absolute 

probability of failing from cause 𝑘 = 1, 2 by time 𝑡, in the counterfactual world corresponding to 

treatment 𝑎 = 0, 1.  
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We emphasize that a risk function, 𝐶𝐼𝐹𝑎(𝑡, 𝑘) (𝑎 = 0, 1;  𝑘 = 1, 2), is much more intuitive for 

interpretation and communication of findings than a hazard (or rate) parameter, ℎ𝑘
𝑎(𝑡) (𝑎 = 0, 1;  𝑘 =

1, 2). The latter represents an instantaneous probability of failure from cause 𝑘 at time 𝑡, conditional on 

still being at risk at time 𝑡, in the counterfactual world corresponding to treatment 𝑎 = 0, 1 60,61.  

In our emulations of a target trial, we used the two following measures of treatment effect.  

a) The hazard ratios for both events are defined by: 

𝐻𝑅𝑘(𝑡) =
ℎ𝑘

1(𝑡)

ℎ𝑘
0(𝑡)

, for 𝑘 = 1, 2 

Notice that here the ratios 𝐻𝑅𝑘(𝑡) (𝑘 = 1, 2) can depend on time 𝑡, since they are defined in complete 

generality regardless of the statistical model used for estimation of hazard functions ℎ𝑘
𝑎(𝑡) (𝑎 = 0, 1;  𝑘 =

1, 2). However, it is often assumed that 𝐻𝑅𝑘(𝑡) (𝑘 = 1, 2) are time-invariant and equal to a constant 

value  𝐻𝑅𝑘 (𝑘 = 1, 2) for all time points 𝑡, which follows from assuming the Cox proportional hazards 

model (PH) for ℎ𝑘
𝑎(𝑡) (𝑎 = 0, 1;  𝑘 = 1, 2), as defined by ሾ2ሿ below. The PH assumption cannot be tested 

in general, since only one potential outcome is observed for every person. However, it can be tested or 

checked graphically under causal assumptions (𝐴1), (𝐴2), and (𝐴3) listed above.  

Although the time-invariant hazard ratios 𝐻𝑅𝑘 (𝑘 = 1, 2) are problematic parameters for causal inference 

due to their non-collapsibility62-64, they are traditionally used as effect measures in the medical literature. 

To conform with previous research on antidiabetic drugs and their effects on dementia, we thus 

considered hazard ratios in our target trial emulations as well.  

b) The risk difference functions are defined by: 

𝑅𝐷(𝑡, 𝑘) = 𝐸 ቂ𝐼൫𝑇1≤𝑡,𝐸1=𝑘൯ቃ − 𝐸 ቂ𝐼൫𝑇0≤𝑡,𝐸0=𝑘൯ቃ = 𝐶𝐼𝐹1(𝑡, 𝑘) − 𝐶𝐼𝐹0(𝑡, 𝑘), for 𝑘 = 1,2. 

𝑅𝐷(𝑡, 𝑘) (𝑘 = 1, 2) is the average treatment effect (ATE) on getting outcome k by time t. We chose the 

risk difference as a summary of a treatment effect, but other options, e.g., risk ratios, could be considered 

as well.  

4) Estimation  
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Assuming the proportional hazards model. Under assumptions (𝐴1), (𝐴2), and (𝐴3), we checked 

graphically that both 𝐻𝑅𝑘(𝑡) (𝑘 = 1, 2) do not depend on 𝑡. This allowed us to use the Cox PH models 

for both transitions: 

ℎ𝑘
0(𝑡) = ℎ0𝑘(𝑡); ℎ𝑘

1(𝑡) = ℎ0𝑘(𝑡) 𝑒𝑥𝑝(𝛽𝑘), for 𝑘 = 1, 2.                                    ሾ𝟐ሿ 

Model ሾ𝟐ሿ assumes that cause-specific hazards for dementia are proportional in two counterfactual 

worlds, a world where everyone receives metformin and a world where everyone receives sulfonylureas, 

with a proportionality factor 𝐻𝑅1 = 𝑒𝑥𝑝(𝛽1). Similarly, according to model ሾ𝟐ሿ, the hazards ℎ2
1(𝑡) and 

ℎ2
0(𝑡) corresponding to the direct transition to death (without prior dementia) are assumed to be 

proportional with a proportionality factor 𝐻𝑅2 = 𝑒𝑥𝑝(𝛽2).  

Details on the estimation procedure for treatment effect measures. The estimators of 𝐻𝑅𝑘 , 

𝐶𝐼𝐹𝑎(𝑡, 𝑘) (𝑎 = 0, 1;  𝑘 = 1, 2), and 𝑅𝐷(𝑡, 𝑘) (𝑘 = 1, 2) are obtained by plugging in the estimators of 𝛽𝑘 

and ℎ0𝑘(𝑡) (𝑘 = 1, 2). The estimator of 𝛽𝑘 (𝑘 = 1, 2) is the solution of a weighted version of the Cox 

score equation (Cox, 1972) and the estimator of the cumulative baseline hazard function 𝐻0𝑘(𝑡) =

׬ ℎ0𝑘(𝑠)𝑑𝑠
𝑡

0
(𝑘 = 1, 2) is a weighted version of the Breslow-type estimator with a plugged-in 𝛽𝑘̂ 12  The 

estimator of 𝐻𝑅𝑘 is 𝐻𝑅𝑘
෣ = 𝑒𝑥𝑝൫𝛽𝑘̂൯ (𝑘 = 1, 2) and 𝑅𝐷(𝑡, 𝑘) is given by: 𝑅𝐷̂(𝑡, 𝑘) = 𝐶𝐼𝐹1

෣(𝑡, 𝑘) −

𝐶𝐼𝐹0
෣(𝑡, 𝑘), 𝑓𝑜𝑟 𝑘 = 1, 2 (for more details, see ref. 59). 

 

 

෍ 𝑤𝑖̂𝐼(𝑒𝑖 = 𝑘) ቈ𝑎𝑖 −
σ 𝑤𝑗̂

𝑛
𝑗=1 𝑎𝑗 𝑒𝑥𝑝൫𝛽𝑘𝑎𝑗൯ 𝐼൫𝑡𝑗 ≥ 𝑡𝑖൯

σ 𝑤𝑗̂
𝑛
𝑗=1 𝑒𝑥𝑝൫𝛽𝑘𝑎𝑗൯ 𝐼൫𝑡𝑗 ≥ 𝑡𝑖൯

቉

𝑛

𝑖=1

= 0 

where 𝑤𝑖̂ are the weights emulating baseline randomization defined above. 

a) The estimator of the cumulative baseline hazard function 𝐻0𝑘(𝑡) = ׬ ℎ0𝑘(𝑠)𝑑𝑠
𝑡

0
(𝑘 = 1, 2) is a 

weighted version of the Breslow-type estimator with a plugged-in 𝛽𝑘̂ 12:  

𝐻0𝑘̂(𝑡) ෍
𝑤𝑖̂𝐼(𝑡𝑖 ≤ 𝑡)

σ 𝑤𝑗̂𝑗 𝑒𝑥𝑝൫𝛽𝑘̂𝑎𝑗൯ 𝐼൫𝑡𝑖 ≤ 𝑡𝑗൯
𝑖: 𝑒𝑖=𝑘

 

b) The estimator of 𝐻𝑅𝑘  is 𝐻𝑅𝑘
෣ = 𝑒𝑥𝑝൫𝛽𝑘̂൯ (𝑘 = 1, 2).  
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c) The estimator of 𝐶𝐼𝐹𝑎(𝑡, 𝑘) is given by:  

𝐶𝐼𝐹𝑎
෣(𝑡, 𝑘) = ෍

𝑤𝑖̂ 𝑒𝑥𝑝ቀ−𝐻01̂(𝑡𝑖)𝑒𝛽1̂𝑎 − 𝐻02̂(𝑡𝑖)𝑒𝛽2̂𝑎ቁ

σ 𝑤𝑗̂𝑗 𝑒𝑥𝑝൫𝛽𝑘̂𝑎𝑗൯ 𝐼൫𝑡𝑖 ≤ 𝑡𝑗൯
, 𝑓𝑜𝑟 𝑎 = 0, 1;  𝑘 = 1, 2

𝑖: 𝑒𝑖=𝑘,𝑡𝑖≤𝑡

 

d) The estimator of 𝑅𝐷(𝑡, 𝑘) is given by: 𝑅𝐷̂(𝑡, 𝑘) = 𝐶𝐼𝐹1
෣(𝑡, 𝑘) − 𝐶𝐼𝐹0

෣(𝑡, 𝑘), 𝑓𝑜𝑟 𝑘 = 1, 2. 

We estimated the 95% confidence intervals for all the parameters using the Bayesian bootstrap65, where a 

bootstrap sample comprises an original cohort, but every subject’s contribution is reweighted with a 

random bootstrap weight 𝑤𝑖
𝑏𝑠 = 𝑉𝑖/𝑉ത 𝑓𝑜𝑟 𝑖 = 1, . . . , 𝑛, where 𝑉1, … , 𝑉𝑛 ∼ 𝐸𝑥𝑝(1) are independent, and 

𝑉ത =
1

𝑛
σ 𝑉𝑖

𝑛
𝑖=1 .  

For each bootstrap replication, we repeated the steps of fitting the logistic regression to obtain the 

balancing weights, and the steps a)-e), in order to obtain estimates for all the parameters, i.e., β𝑘 , 𝐻0𝑘(𝑡), 

𝐶𝐼𝐹𝑎(𝑡, 𝑘) (𝑎 = 0, 1;  𝑘 = 1, 2), and 𝑅𝐷(𝑡, 𝑘) (𝑘 = 1, 2) for each of the bootstrap samples.  

The Bayesian bootstrap is a better and more stable alternative to the standard bootstrap in survival data, 

since it does not have a problem of ties, and since the risk sets in all Bayesian bootstrap replications 

change at the same time points as in the original sample. T̄he 95% confidence interval was obtained as 

2.5th and 97.5th percentiles from the distributions of bootstrap estimates. For the time-dependent 

parameters such as 𝐶𝐼𝐹𝑎(𝑡, 𝑘) (𝑎 = 0, 1;  𝑘 = 1, 2) or 𝑅𝐷(𝑡, 𝑘) (𝑘 = 1, 2), the confidence intervals were 

obtained pointwise for every 𝑡. In our target trial emulations, we used 500 bootstrap replications.   

Checking a proportional hazards assumption using a nonparametric framework. Under assumptions 

(𝐴1), (𝐴2), and (𝐴3), we checked graphically that both 𝐻𝑅𝑘(𝑡) (𝑘 = 1, 2) do not depend on 𝑡. We did 

this by using the nonparametric framework which does not assume any structure for the hazard functions 

ℎ𝑘
𝑎(𝑡) (𝑎 = 0, 1;  𝑘 = 1, 2).  

In the all-cause mortality analyses, we tested the PH assumption using other approaches as well. These 

include the global test based on Schoenfeld residuals and a log-rank test. The tests indicated that the 

proportional hazards assumption was not violated in the US RPDR cohort. However, given that the 

graphical check revealed violation of the PH assumption in the UK CPRD cohort, we used nonparametric 

estimates of causal survival curves based on IPTW Kaplan-Meier estimates.    

VII. Systems pharmacological analysis of metformin and sulfonylureas in human neural cells  
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Both 10μM and 40μM of metformin or glyburide were added to differentiated human ReNcell VM neural 

cultures for 72 hours (drugs were refreshed at 48 hours). At 72 hours, RNA was isolated using RNease 

mini kit (catalog #74104, Qiagen, Germantown, MD). RNA quality was verified using Bioanalyzer 

(Agilent, 2100 Bioanalyzer Systems); all samples scored RINs of > 9.0. RNA sequencing library 

preparation was performed with the TruSeq Stranded mRNA Library Prep Kit (Illumina) following the 

manufacturer’s protocol at half reaction volume. Input for each sample consisted of 500ng of RNA and 

5ul of 1:500 diluted ERCC spike-in mix (Ambion). Libraries were amplified for 12 cycles during the final 

amplification step. Libraries were sequenced on a NextSeq RNA sequencer (Illumina). Raw sequencing 

reads were aligned against the hg38 (build 94) reference and quantified using the bcbio-nextgen RNA-seq 

analysis pipeline66. Differential gene expression between compound-treated samples and DMSO controls 

was performed by the R package edgeR version 3.26.567. Genes were subsequently sorted by the resulting 

log-fold change values and queried against canonical pathways in the Molecular Signatures Database68 

using Gene Set Enrichment Analysis69. Secreted genes were identified by detection in human CSF 

proteome70. The differential expression analysis of the human SPP1 gene in gene expression profiles of 

AD brains from AMP-AD datasets was conducted as follows. The aligned RNAseq data was provided as 

input to differential gene expression analysis contrasting advanced Braak stages (Braak V, VI) versus 

controls (Braak 0, I, II) in the ROSMAP, Mount Sinai Brain Bank and Mayo Brain Bank cohorts as 

described elsewhere70,71. Differentiated human ReNcell VM neural cells were grown for various times in 

the presence of 10 µM or 40 µM of metformin or glyburide. At prespecified time points, the medium was 

withdrawn, and human SPP1 protein levels were analyzed by ELISA (ThermoFisher). The results were 

analyzed using ANOVA with drug and concentrations as covariates with post-hoc Tukey tests used to test 

for significant findings. 

 

VIII. Data availability 

US RPDR. Researchers can obtain an anonymized version of the study dataset from the authors upon 

request and completion of the MGB Health data use agreement for the use of RPDR data. This agreement 

ensures the privacy of MGB patients and compliance with US regulatory standards and has been 

approved by the MGB IRB. 

UK CPRD. According to the UK Data Protection Act, information governance restrictions (to protect 

patient confidentiality) prevent data sharing via public deposition. Therefore, CPRD data that support the 

findings of this study are not publicly available. Data extracts can be requested by applying to the Clinical 

Practice Research Datalink for data spanning the years 2000 to 2018 (https://www.cprd.com). The code to 

process the data is available from the authors upon request. 
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Metformin/Glyburide RNA-seq. https://www.synapse.org/#!Synapse:syn22213067  

 

 

IX. Code availability 

The R package, causalCmprsk, developed for the competing risks analysis is available at CRAN59. 
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EXTENDED DATA FIGURES 

 

   

 
 

 

Extended Data Fig. 1 | Density curves for patient age at baseline. Both the US RPDR (blue) and the 

UK CPRD cohorts (salmon) are graphed.  
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Extended Data Fig. 2 | Proportion of patients at risk over time among metformin and sulfonylurea 

initiators. Both the US RPDR and the UK CPRD cohorts are graphed.  
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Extended Data Fig. 3 | Absolute cumulative hazard of dementia onset and death. Cumulative risk 

curves in the (a) US RPDR and (b) UK CPRD cohorts for metformin and sulfonylurea initiators.  
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Extended Data Fig. 4 |  Comparison of the log of hazard ratios estimated via the Cox PH model vs. 

the nonparametric approach, for both dementia onset and death. (a) US RPDR and (b) UK CPRD 

cohorts, metformin vs. sulfonylureas (reference).  
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Extended Data Fig. 5 | Risk differences between metformin and sulfonylureas for two competing 

outcomes, dementia onset and death. Estimates from a Cox PH model and a nonparametric approach in 

the (a) US RPDR and (b) UK CPRD cohorts.  
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Extended Data Fig. 6 | Results of the competing risks analyses in the stratum of patients of aged ≤ 

70 at baseline. CIF curves for dementia onset and death in the (a) US RPDR and (b) UK CPRD cohorts. 

Risk differences between metformin and sulfonylureas (reference) in dementia onset and in death in the 

(c) US RPDR and (d) UK CPRD cohorts.  
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Extended Data Fig. 7 | Full list of genes with dose-dependent changes in expression for metformin 

and glyburide. Drugs treated differentiated human neural ReNcells at two concentrations (10 or 40µM) 

for either 24h or 72h.  
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Extended Data Fig. 8 | Number of new prescriptions for metformin and sulfonylureas per 

year in the US RPDR. 
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Extended Data Fig. 9 | Number of new prescriptions for metformin and sulfonylureas per year in 

the UK CPRD.   
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Extended Data Fig. 10 | Density curves for patient age at baseline, stratified by treatment group, 

before and after IPTW. (a) US RPDR cohort. (b) UK CPRD cohort.  
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Extended Data Fig. 11 | Overall covariate balance before and after IPTW. (a) US RPDR cohort. (b) 

UK CPRD cohort. The standardized mean difference72 is a measure of distance between two group means 

(for metformin and sulfonylurea initiators) in terms of one or more variables (definitions of standardized 

mean differences for both binary and continuous covariates were adopted from previous work73). It is 

often used in practice as a measure of balance of individual covariates before and after propensity score 

weighting. As it is standardized, comparison across variables on different scales is made possible.  
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Extended Data Fig. 12 | A single-world competing risks model with two events, namely dementia 

and death prior to dementia.  
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EXTENDED DATA TABLES 

 

Extended Data Table 1 | US CKD diagnosis codes / eGFR criterion table (Excel file). 

Extended Data Table 2 | UK CKD diagnosis codes (Excel file). 
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Outcome event Age categories 

(year) 

US RPDR 

N Cases HR (95% CI) P 

All-cause 

mortality 

≤65 4669 187 0.58 (0.40-0.85) 0.005 

>65 8522 562 0.58 (0.48-0.69) <0.001 

≤75 10614 478 0.53 (0.43-0.66) <0.001 

>75 2577 271 0.63 (0.50-0.81) <0.001 

Dementia 

incidence 

≤65 4669 273 0.57 (0.42-0.78) <0.001 

>65 8522 837 0.96 (0.80-1.14) 0.608 

≤75 10614 677 0.77 (0.63-0.94) 0.011 

>75 2577 433 0.90 (0.73-1.10)

  

0.310 

 
 

Extended Data Table 3 | Subgroup analysis stratified by baseline age in US RPDR cohort. 
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Outcome event Age categories 

(year) 

UK CPRD 

N Cases HR (95% CI) P 

All-cause 

mortality 

≤65 52570 3851 0.53 (0.43-0.65) <0.001 

>65 55455 14263 0.72 (0.67-0.77) <0.001 

≤75 89747 11008 0.60 (0.54-0.67) <0.001 

>75 18278 7106 0.76 (0.71-0.82) <0.001 

Dementia 

incidence 

≤65 52570 919 0.73 (0.51-1.05) 0.091 

>65 55455 6341 0.89 (0.80-0.99) 0.032 

≤75 89747 3876 0.83 (0.70-0.98) 0.026 

>75 18278 3384 0.88 (0.78-1.00) 0.048 

 
 

Extended Data Table 4 | Subgroup analysis stratified by baseline age in the UK CPRD cohort. 
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Extended Data Table 5 | Tabulated results of repeated measures mixed effects model for HbA1C 

patient data post-baseline, in the US RPDR. Estimates of fixed effects (above) and random effects 

(below) are provided. Difference in post-baseline HbA1C levels was not clinically significant (i = patient; 

j = observation). 
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Extended Data Table 6 | Differential gene expression between drug and DMSO vehicle: metformin 

24h and 72h; glyburide 24h and 72h and pathway analysis (Excel file). 
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Human Gene Name logFC 

SPP1 (osteopontin) -2.34745 

BRINP2 -2.31312 

PTGDS (prostaglandin D2 synthetase) -1.68581 

ADAM12 -1.56585 

FAM20C (extracellular serine threonine kinase) -1.22483 

TFRC -1.16368 

CD44 -1.13569 

TF -1.07581 

ANGPTL2 -0.99027 

NOG 1.064732 

SFRP4 1.071367 

IL16 1.114638 

MATN2 1.166752 

GLB1L2 1.16997 

SLIT1 1.202582 

MASP1 1.239591 

COCH 1.272685 

PI16 1.277536 

VSTM2L 1.304698 

A2ML1 1.361365 

RELN 1.409874 

CRISPLD2 1.464841 

TNR (Tenascin) 1.574132 

LDLRAD2 (LDLR Associated D 2) 1.820836 

CILP (Cartilage intermediate layer protein) 2.070604 

VWA5B1 2.251385 

 
 

Extended Data Table 7 | Genes encoding secreted protein products whose RNA expression levels 

changed by more than 2x in response to exposure for 72 hours to 40 µM metformin relative to 40 

µM glyburide in differentiated human ReNcells. Gene names in gray were not detected in CSF 

proteomic analysis conducted by TMT-LC/MS (1) or Olink methodologies. 
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Extended Data Table 8 | US dementia diagnosis codes (Excel File). 

Extended Data Table 9 | US dementia/antidiabetic drugs (Excel File). 

Extended Data Table 10 | UK dementia diagnosis codes (Excel File). 

Extended Data Table 11 | UK dementia/antidiabetic drug codes (Excel File). 
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