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Abstract 

Posterior urethral valves (PUV) are the commonest cause of end-stage renal 

disease in children, but the genetic architecture of this disorder remains largely 

unknown. To address this, we analyzed whole-genome sequencing (WGS) data from 

132 unrelated PUV cases and 23,727 controls of mixed ancestry. We observed 

enrichment of rare structural variation intersecting with candidate cis-regulatory 

elements, particularly inversions predicted to affect chromatin looping (P=3.1x10-5). 

We also identified statistically significant associations with common variants at 

12q24.21 (P=7.8x10-12; OR 0.4) and uncommon variants at 6p21.1 (P=2x10-8; OR 

7.2), that were replicated in an independent European cohort. Bayesian fine mapping 

and functional annotation mapped these loci to the transcription factor TBX5 and 

planar cell polarity gene PTK7, respectively, providing insights into the biological 

pathways underlying PUV. These findings demonstrate that a well-controlled diverse 

ancestry WGS approach can reveal the genetic architecture of a complex disorder 

by increasing power for disease locus discovery and facilitating fine-mapping of 

causal variants. 
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Introduction 

Posterior urethral valves (PUV) are the commonest cause of end-stage renal 

disease (ESRD) in children, affecting 1 in 4,000 male births1,2 and resulting in 

congenital bladder outflow obstruction. PUV is a uniquely male disorder, with a 

quarter of those affected developing ESRD (i.e., requirement for dialysis or kidney 

transplantation) before the age of 30 years.3,4 PUV is often associated with renal 

dysplasia, vesicoureteral reflux (VUR) and bladder dysfunction which are poor 

prognostic factors for renal survival.3 Management involves endoscopic valve 

ablation in infancy to relieve the obstruction, however the majority of affected 

children have long-term sequelae related to ongoing bladder dysfunction.5  

 

During embryogenesis, the bladder, prostate, and urethra develop from the 

endoderm-derived urogenital sinus, while the distal mesonephric (Wolffian) duct 

forms the base of the bladder (trigone) before integrating into the prostatic urethra to 

become the ejaculatory ducts in males.6 Abnormal integration of the mesonephric 

duct into the posterior urethra or persistence of the urogenital membrane have both 

been proposed as possible mechanisms underlying PUV,6 but the exact biological 

processes involved remain poorly understood.  

 

Although usually sporadic, familial clustering and twin studies suggest a genetic 

component underlying PUV.7–10 Monogenic causes of anatomical and functional 

congenital bladder outflow obstruction have been described (BNC2 in urethral 

stenosis and atypical PUV,11 HPSE2 and LRIG2 in urofacial syndrome,12,13 CHRM3 

in prune-belly like syndrome,14 and MYOCD in congenital megabladder15), however 
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a monogenic etiology for classical PUV has not been identified.  Case reports and 

microarray studies have linked PUV with chromosomal abnormalities16–18 and rare 

copy number variants (CNVs),19–22 suggesting structural variation may be important, 

but the underlying genetic architecture has so far remained largely uncharacterized. 

 

Here, we use whole-genome sequencing (WGS) in a large mixed ancestry cohort to 

investigate how common, low-frequency, and rare single-nucleotide and structural 

variation contribute to this complex disorder. Through genome-wide association 

analysis we identify two novel genetic loci that implicate TBX5 (T-Box Transcription 

Factor 5) and PTK7 (Protein Tyrosine Kinase 7), thereby providing insights into the 

biological mechanisms underpinning PUV. In addition, we demonstrate that a well-

controlled diverse ancestry WGS approach can increase power for disease locus 

discovery and facilitate the fine-mapping of causal variants.      

 

Subjects and Methods 

The 100,000 Genomes Project (100KGP) 

The Genomics England dataset23 (v10) consists of whole-genome sequencing 

(WGS) data, clinical phenotypes encoded using Human Phenotype Ontology24 

(HPO) codes, and retrospective and prospectively ascertained National Health 

Service (NHS) hospital records for 89,139 individuals recruited with cancer, rare 

disease, and their unaffected relatives. Ethical approval for the 100KGP was granted 

by the Research Ethics Committee for East of England – Cambridge South (REC 

Ref 14/EE/1112). Fig. S1 details the study workflow.  
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Cases were recruited from 13 NHS Genomic Medicine Centers across the UK as 

part of the 100KGP ‘Congenital anomalies of the kidneys and urinary tract (CAKUT)’ 

cohort with the following inclusion criteria: CAKUT with syndromic manifestations in 

other organ systems; isolated CAKUT with a first-degree relative with CAKUT or 

unexplained CKD; multiple distinct renal/urinary tract anomalies; CAKUT with 

unexplained end-stage kidney disease before the age of 25 years. Those with a 

clinical or molecular diagnosis of ADPKD or ARPKD, or who had a known genetic or 

chromosomal abnormality were excluded. 136 male individuals with a diagnosis of 

posterior urethral valves (PUV) were identified using the HPO term “HP:0010957 

congenital posterior urethral valve”.  

 

All cases underwent assessment via the clinical interpretation arm of the 100KGP to 

determine a molecular diagnosis. This process involved the examination of protein-

truncating and missense variants from an expert-curated panel of 57 CAKUT-

associated genes followed by multi-disciplinary review and application of ACMG25 

criteria to determine pathogenicity. CNVs affecting the 17q12 region (ISCA-37432-

Loss), which includes HNF1B, were also assessed. No pathogenic/likely pathogenic 

variants were identified in genes previously associated with congenital bladder 

outflow obstruction (HPSE2, LRIG2, CHRM3, MYOCD, BNC2). Two 

pathogenic/likely pathogenic variants affecting the 17q12 locus and FOXC1 were 

identified in two individuals, but these were not deemed to be causal for PUV (see 

Supplemental Note).  

 

The control cohort consisted of 27,660 unaffected relatives of non-renal rare disease 

participants, excluding those with HPO terms and/or hospital episode statistics 
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(HES) data consistent with kidney disease or failure. By utilizing a case-control 

cohort sequenced on the same platform, we aimed to minimize confounding by 

technical artefacts. 

DNA preparation and extraction 

99% of DNA samples were extracted from blood and prepared using EDTA, with the 

remaining 1% sourced from saliva, tissue, and fibroblasts. Samples underwent 

quality control assessment based on concentration, volume, purity, and degradation. 

Libraries were prepared using the Illumina TruSeq DNA PCR-Free High Throughput 

Sample Preparation kit or the Illumina TruSeq Nano High Throughput Sample 

Preparation kit. 

Whole-genome sequencing, alignment, and variant calling 

Samples were sequenced with 150bp paired-end reads using an Illumina HiSeq X 

and processed on the Illumina North Star Version 4 Whole Genome Sequencing 

Workflow (NSV4, version 2.6.53.23), comprising the iSAAC Aligner (version 

03.16.02.19) and Starling Small Variant Caller (version 2.4.7). Samples were aligned 

to the Homo Sapiens NCBI GRCh38 assembly. Alignments had to cover ≥ 95% of 

the genome at ≥15X with mapping quality > 10 for samples to be retained. Samples 

achieved a mean of 97.4% coverage at 15X with a median genome-wide coverage 

of 39X. Samples with <2% cross-contamination as determined by the VerifyBamID 

algorithm were kept. Copy number and structural variant (>50bp) calling was 

performed using CANVAS26 (version 1.3.1) and MANTA27 (version 0.28.0) 

respectively. CANVAS determines coverage and minor allele frequencies (MAF) to 
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assign copy number (>10kb) whereas MANTA combines paired and split-read 

algorithms to detect structural variants (< 10kb).   

gVCF annotation and variant-level quality control 

gVCFs were aggregated using gvcfgenotyper (Illumina, version: 2019.02.26) with 

variants normalized and multi-allelic variants decomposed using vt28 (version 

0.57721). Variants were retained if they passed the following filters: missingness ≤ 

5%, median depth ≥ 10, median GQ ≥ 15, percentage of heterozygous calls not 

showing significant allele imbalance for reads supporting the reference and alternate 

alleles (ABratio) ≥ 25%, percentage of complete sites (completeGTRatio) ≥ 50% and 

P value for deviations from Hardy-Weinberg equilibrium (HWE) in unrelated samples 

of inferred European ancestry ≥ 1×10-5. Male and female subsets were analyzed 

separately for sex chromosome quality control. Per-variant minor allele count (MAC) 

was calculated across the case-control cohort. Annotation was performed using 

Variant Effect Predictor29 (VEP, version 98.2) including CADD30 (version 1.5), and 

allele frequencies from publicly available databases including gnomAD31 (version 3) 

and TOPMed32 (Freeze 5). Variants were filtered using bcftools33 (version 1.11).  

Relatedness estimation and principal components analysis  

A set of 127,747 high quality autosomal LD-pruned biallelic single nucleotide variants 

(SNVs) with MAF > 1% was generated using PLINK34 (v1.9). SNVs were included if 

they met all the following criteria: missingness < 1%, median GQ ≥ 30, median depth 

≥ 30, AB Ratio ≥ 0.9, completeness ≥ 0.9.  Ambiguous SNVs (AC or GT) and those 

in a region of long-range high LD were excluded. LD pruning was carried out using 

an r2 threshold of 0.1 and window of 500kb. SNVs out of HWE in any of the AFR, 
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EAS, EUR or SAS 1000 Genomes populations were removed (pHWE < 1 ×10-5). 

Using this variant set, a pairwise kinship matrix was generated using the PLINK235 

implementation of the KING-Robust algorithm36 and a subset of unrelated samples 

was ascertained using a kinship coefficient threshold of 0.0884 (2nd degree 

relationships). Two cases and 1,354 controls were found to be related by this 

method and were removed, leaving 134 cases and 26,306 controls. Ten principal 

components were generated using PLINK235 for ancestry-matching and for use as 

covariates in the association analyses.  

Ancestry-matching of cases and controls  

Given the mixed-ancestry composition of the cohort we employed a case-control 

ancestry-matching algorithm to optimize genomic similarity and minimize the effects 

of population structure. A custom R script (see Code availability) was used to match 

cases to controls within a distance threshold calculated using the top ten principal 

components weighted by the percentage of genetic variation explained by each 

component (Fig. S2). Only controls within a user-defined specified distance of a case 

were included with each case having to match a minimum of two controls to be 

included in the final cohort. A total of two cases and 2,579 controls were excluded 

using this approach, leaving 132 cases and 23,727 controls for further analysis.  

Aggregate rare coding variant analysis 

Single variant association testing is underpowered when variants are rare and a 

collapsing approach which aggregates variants by gene can be adopted to boost 

power. We extracted coding SNVs and indels with MAF < 0.1% in gnomAD,31 

annotated with one of the following: missense, in-frame insertion, in-frame deletion, 
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start loss, stop loss, stop gain, frameshift, splice donor or splice acceptor. Variants 

were further filtered by CADD30 (v1.5) score using a threshold of ≥20 corresponding 

to the top 1% of all predicted deleterious variants in the genome. Variants meeting 

the following quality control filters were retained: MAC ≤ 20, median site-wide depth 

in non-missing samples > 20 and median GQ ≥ 30. Sample-level QC metrics for 

each site were set to minimum depth per sample of 10, minimum GQ per sample of 

20 and ABratio P value > 0.001. Variants with significantly different missingness 

between cases and controls (P<10-5) or >5% missingness overall were excluded. We 

employed SAIGE-GENE37 (v0.42.1) to ascertain whether rare coding variation was 

enriched in cases on a per-gene basis exome-wide. SAIGE-GENE utilizes a 

generalized mixed-model to correct for population stratification and cryptic 

relatedness as well as a saddlepoint approximation and efficient resampling 

adjustment to account for the inflated type 1 error rates seen with unbalanced case-

control ratios. It combines single-variant score statistics and their covariance 

estimate to perform SKAT-O38 gene-based association testing, upweighting rarer 

variants using the beta(1,25) weights option. SKAT-O38 is a combination of a 

traditional burden and variance-component test and provides robust power when the 

underlying genetic architecture is unknown. Sex and the top ten principal 

components were included as fixed effects when fitting the null model. A Bonferroni 

adjusted P value of 2.58×10-6 (0.05/19,364 genes) was used to determine the 

exome-wide significance threshold. 

Structural variant analysis 

Structural variants (>50bp) that intersect by a minimum of 1bp with a) at least one 

exon (GENCODE39; version 29) or b) an ENCODE40 candidate cis-regulatory 
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element (cCRE) were extracted using BEDTools41 (version 2.27.1). Variants were 

retained if they fulfilled the following quality filters: Q-score ≥ Q10 (CANVAS26) or 

QUAL ≥ 20, GQ ≥ 15, and MaxMQ0Frac < 0.4 (MANTA27). Variants without paired 

read support, inconsistent ploidy, or depth >3x the mean chromosome depth near 

breakends were excluded.  

 

ENCODE40 cCREs are 150-350bp consensus sites of chromatin accessibility 

(DNase hypersensitivity sites) with high H3K4me3, high H3K27ac, and/or high CTCF 

signal in at least one biosample. A list of 926,535 cCREs encoded by 7.9% of the 

human genome was downloaded from UCSC Table Browser using the 

encodeCcreCombined track (updated 20/05/2020). This includes ~668,000 distal 

enhancer-like signature (dELS) elements, ~142,000 proximal enhancer-like 

signature (pELS) elements, ~57,000 CTCF-only elements, ~35,000 promoter-like 

signature (PLS) and ~26,000 DNase-H3K4me3 elements (promoter-like signals > 

200bp from a transcription start site). 

 

Variants were separated and filtered by SV type (deletion, duplication, CNV, 

inversion); those with a minimum 70% reciprocal overlap with common SVs from a) 

dbVar42 or b) 12,234 cancer patients from the 100KGP were removed. The dbVar 

NCBI curated dataset of SVs (nstd186) contains variant calls from studies with at 

least 100 samples and AF > 1% in at least one population, including gnomAD31, 

1000 Genomes (Phase 3)43 and DECIPHER.44 To create a dataset of common SVs 

from the 100KGP cancer cohort, variants were merged using SURVIVOR45 (v1.0.7), 

allowing a maximum distance of 300bp between pairwise breakpoints, and those 

with AF > 0.1% retained. After removal of overlapping common variants, SVs in the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 10, 2021. ; https://doi.org/10.1101/2021.08.09.21261801doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.09.21261801
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

case-control cohort were filtered to keep those with AF < 0.1% and aggregated 

across 19,907 autosomal protein-coding genes and five cCRE types. Exome-wide 

gene-based and genome-wide cCRE-based burden analysis was carried out using 

custom R scripts. The burden of rare autosomal SVs in cases and controls was 

enumerated by comparing the number of individuals with ≥1 SV using a two-sided 

Fisher’s Exact test. The Wilcoxon-Mann-Whitney test was used to compare median 

SV size. Bonferroni adjustment for the number of genes (P=0.05/19,907=2.5x10-6) 

and cCRE/SV combinations (P=0.05/20=2.5x10-3) tested was applied. 

GWAS 

Genome-wide single variant association analysis was carried out using the R 

package SAIGE46 (version 0.42.1) which uses a generalized logistic mixed model 

(GLMM) to account for population stratification, and is recommended for use in 

mixed-ancestry cohorts.47 2,000 randomly selected high-quality, autosomal, bi-allelic, 

LD-pruned SNVs with MAF > 5% were used to generate a genetic relationship matrix 

and fit the null GLMM. Sex and the top ten principal components were used as fixed 

effects. SNVs and indels with MAF > 0.1% and that passed the following quality 

control filters were retained: MAC ≥ 20, missingness < 1%, HWE P > 10-6 and 

differential missingness P > 10-5. A score test48 for association was performed for 

17,091,503 variants (mixed-ancestry GWAS) and 15,447,192 variants (European-

only GWAS). When case-control ratios are unbalanced, as in our study (1:180), type 

1 error rates are inflated because the asymptotic assumptions of logistic regression 

are invalidated. Like SAIGE-GENE, SAIGE employs a saddlepoint approximation49 

to calibrate score test statistics and obtain more accurate P values than the normal 

distribution.  
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At each of the genome-wide significant loci we used SAIGE to perform a) conditional 

analysis to identify secondary independent associations and b) high resolution single 

variant analysis using all variants with MAC ≥ 3 to ascertain whether the observed 

signal was being driven by rare variation. Epistasis between the lead variants was 

assessed using logistic regression in PLINK34 (version 1.9). One limitation of SAIGE 

is that the betas estimated from score tests can be biased at low MACs and 

therefore odds ratios for variants with MAF < 1% were calculated separately using 

allele counts in R. The R packages qqman50 and GWASTools51 were used to create 

Manhattan and Q-Q plots, and LocusZoom52 to visualize regions of interest.  

Replication 

The replication cohort consisted of 398 individuals with PUV; 336 recruited from 

Poland and Germany as part of the CaRE for LUTO (Cause and Risk Evaluation for 

Lower Urinary Tract Obstruction) Study, and 62 from Manchester, UK. None of the 

individuals had been recruited to the 100KGP. All were of self-reported European 

ancestry. KASP (Kompetitive Allele-Specific PCR) genotyping of the lead variants at 

the top four loci using a threshold of P < 5x10-7 was carried out: rs10774740 at 

12q24.21, rs144171242 at 6p21.1, rs1471950716 at 10q11.21, rs199975325 at 

14q21.1. The peri-centromeric location of rs1471950716 at 10q11.21 caused the 

genotyping assay to fail and another variant with evidence of association 

(rs137855548; P=1.46x10-6) was used instead. The control cohort consisted of 

10,804 genetically determined European individuals recruited to the cancer arm of 

the 100KGP, excluding those with kidney, bladder, prostate, or childhood 

malignancy. Allele counts at each variant were compared between cases and 
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controls using a one-sided Cochran-Armitage trend test. A Bonferroni-corrected P < 

0.0125 (0.05/4) was used to adjust for the number of loci tested. Power to detect or 

refute association at each locus was calculated as > 0.9. 

Bayesian fine-mapping  

We applied PAINTOR53 (v3.1), a statistical fine-mapping method which uses an 

empirical Bayes prior to integrate functional annotation data, linkage disequilibrium 

(LD) patterns and strength of association to estimate the posterior probability (PP) of 

a variant being causal. Variants at each genome-wide significant locus with P < 0.05 

were extracted. Z-scores were calculated as effect size (β) divided by standard error. 

LD matrices of pairwise correlation coefficients were derived using EUR 1,000 

Genomes[Citation error] (Phase 3) imputed data as a reference, excluding variants with 

ambiguous alleles (A/T or G/C). Each locus was intersected with the following 

functional annotations downloaded using UCSC Table Browser54: GENCODE39 (v29) 

transcripts (wgEncodeGencodeBasicV29, updated  2019-02-15), PhastCons55 

(phastConsElements100way, updated 2015-05-08), ENCODE40 cCREs 

(encodeCcreCombined, updated 2020-05-20), transcription factor binding clusters 

(encRegTfbsClustered, updated 2019-05-16), DNase I hypersensitivity clusters 

(wgEncodeRegDnaseClustered, updated 2019-01-08)  and H1 Human embryonic 

stem cell Hi-C data (h1hescInsitu from Krietenstein et al., 202056). A total of 351 

variants at 12q24.21 and 166 variants at 6p21.1 were analyzed under the 

assumption of one causal variant per locus.  
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Functional annotation 

To explore the functional relevance of the prioritized variants we used FUMA57 

(v1.3.6a) to annotate the genome-wide significant loci. This web-based tool 

integrates functional gene consequences from ANNOVAR58, CADD30 scores to 

predict deleteriousness, RegulomeDB score to indicate potential regulatory 

function59 and 15-core chromatin state (predicted by ChromHMM for 127 tissue/cell 

types)60 representing accessibility of genomic regions. Positional mapping (where a 

variant is physically located within a 10kb window of a gene), GTEx (v8) eQTL data61 

(using cis-eQTLs to map variants to genes up to 1Mb apart) and Hi-C data to detect 

long-range 3D chromatin interactions is used to prioritize genes that are likely to be 

affected by variants of interest. GWAS summary statistics were used as input with 

genomic positions converted to GRCh37 using the UCSC54 liftOver tool. 

 

In addition, we intersected prioritized variants with the following epigenomic datasets 

from male H1-BMP4 derived mesendoderm cultured cells generated by the 

ENCODE Project40 and Roadmap Epigenomics62 Consortia using the UCSC 

Genome Browser54: ENCFF918FRW_ENCFF748XLQ_ENCFF313DOD (cCREs, 

GRCh38); ENCFF918FRW_ENCFF748XLQ_ENCFF313DOD_ENCFF313DOD 

(H3K27ac ChIP-seq, GRCh38); 

ENCFF918FRW_ENCFF748XLQ_ENCFF313DOD_ENCFF748XLQ (H3K4me3 

ChIP-seq, GRCh38); 

ENCFF918FRW_ENCFF748XLQ_ENCFF313DOD_ENCFF918FRW (DNase-seq, 

GRCh38); E004 H1 BMP4 Derived Mesendoderm Cultured Cells ImputedHMM 

(hg19). Hi-C interactions from H1 mesendoderm cells63 and topologically associated 
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domains (TADs) were visualized with the 3D Interaction Viewer and Database (see 

Web resources).  

Gene and gene-set analysis 

MAGMA64 (v1.6) was used to test the joint association of all variants within a 

particular gene or gene-set using the GWAS summary statistics. Aggregation of 

variants increases power to detect multiple weaker associations and can test for 

association with specific biological or functional pathways. MAGMA uses a multiple 

regression approach to account for LD between variants, using a reference panel 

derived from 10,000 Europeans in the UK Biobank (release 2b). Variants from the 

GWAS were assigned to 18,757 protein coding genes (Ensembl build 85) with 

genome-wide significance defined as P=2.67x10-6 (0.05/18,757). Competitive gene-

set analysis was then performed for 5,497 curated gene sets and 9,986 Gene 

Ontology (GO) terms from MsigDB65 (version 7.0) using the results of the gene 

analysis. Competitive analysis tests whether the joint association of genes in a gene-

set is stronger than a randomly selected set of similarly sized genes. Bonferroni 

correction was applied for the total number of tested gene sets 

(P=0.05/15,483=3.23x10-6).      

Identification of TFBS   

The JASPAR 202066 CORE collection track (UCSC Genome Browser54, updated 

2019-10-13) was utilized to identify significant (P < 10-4) predicted TFBS that might 

intersect with the lead variants. The JASPAR database consists of manually curated, 

non-redundant, experimentally defined transcription factor binding profiles for 746 

vertebrates, of which 637 are associated with human transcription factors with known 
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DNA-binding profiles. Sequence logos based on position weight matrices of the DNA 

binding motifs were downloaded from JASPAR 2020.66  

GWAS and PheWAS associations 

The NHGRI-EBI GWAS Catalog67 and PheWAS data from the UK Biobank (see Web 

resources) were interrogated to determine known associations of the lead variants. 

Summary statistics were downloaded from the NHGRI-EBI GWAS Catalog67 for 

study GCST00289068 on 17/03/2021. PheWAS statistics were generated using 

imputed data from White British participants in the UK Biobank using SAIGE, 

adjusting for genetic relatedness, sex, birth year and the first four principal 

components.  

Power  

Statistical power for single-variant association under an additive model for the 

discovery and replication cohorts was calculated using the R package (genpwr).69 

Fig. S8 shows the power calculations for the mixed-ancestry GWAS at varying allele 

frequencies and odds ratios. 

 

Results 

We analyzed WGS data from 132 unrelated male probands with PUV and 23,727 

non-PUV controls (unaffected relatives without known kidney disease), recruited to 

the UK 100,000 Genomes Project (100KGP)23 (see Fig. S1 for study workflow). The 

available dataset (version 10) combined WGS data, clinical phenotypes standardized 
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using Human Phenotype Ontology (HPO) codes, and comprehensive hospital clinical 

records for 89,139 individuals with cancer, rare disease, and their unaffected 

relatives. None of the cases included had received a definitive genetic diagnosis 

through the clinical arm of the 100KGP. Two individuals had a pathogenic and likely 

pathogenic variant affecting HNF1B and FOXC1, respectively, but these were not 

considered causal for PUV (see Supplemental Note). Given the small number of 

recruited cases with this rare disorder, we chose to jointly analyze individuals from 

diverse ancestral backgrounds, thereby preserving sample size and boosting power. 

To mitigate confounding due to population structure whilst using this mixed ancestry 

approach we employed two strategies. First, we carried out ancestry-matching of 

cases and controls using weighted principal components (Fig. S2), and second, we 

utilized a generalized logistic mixed model to account for relatedness between 

individuals. Clinical characteristics and genetic ancestry of the cases and controls 

are detailed in Table S1.  

Monogenic causes of PUV are rare 

We first aimed to determine whether there was any evidence of gene-based 

enrichment of rare coding variation in cases. Single-variant association tests can be 

underpowered when variants are rare and collapsing variant data into specific 

regions or genes can increase power and aid gene discovery. We therefore 

aggregated rare (gnomAD31 allele frequency [AF] < 0.1%), predicted deleterious 

(protein-truncating, or combined annotation dependent depletion [CADD]30 score ≥ 

20) single-nucleotide variants (SNVs) and small indels by gene, comparing the 

burden between cases and controls on an exome-wide basis. No significant 

enrichment was detected in any of the 19,364 protein-coding genes analyzed after 
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correction for multiple testing (Fig. 1A). The median number of variants tested per 

gene was 41 (IQR 47). None of the genes previously associated with congenital 

bladder outflow obstruction (BNC2, HPSE2, LRIG2, CHRM3, MYOCD) showed 

evidence of enrichment. Table S2 lists the genes identified with P < 0.01. The 

absence of gene-based enrichment confirms previous observations that monogenic 

causes of non-familial PUV are rare and suggests other types of genetic variation 

may play a more important role in this disorder.  

Structural variation affecting regulatory elements is enriched 

Large, rare CNVs have been identified in patients with PUV using conventional 

microarrays19–22, however high-coverage WGS enables detection of smaller 

structural variants (SVs) with superior resolution70,71, and allows the identification of 

balanced rearrangements including inversions. We therefore aimed to detect 

association with different types of SVs, by comparing the burden of rare (MAF < 

0.1%) autosomal SVs on an exome-wide and cis-regulatory element basis.  

 

We first focused our analysis on rare SVs that were potentially gene-disrupting by 

extracting those that intersected with at least one exon. Although we observed an 

increased burden of all SV types in cases compared with controls, this only reached 

statistical significance for inversions (P=2.1x10-3) when corrected for the multiple SV 

comparisons performed (Table S3). No difference in SV size between the cohorts 

was seen. Furthermore, exome-wide gene-based burden analysis did not detect any 

gene-level enrichment of rare SVs overall or when stratified by type (Table S4), 

indicating that rare structural variation does not appear to affect any single gene 

more frequently in PUV than controls.  
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Given the tightly controlled transcriptional networks that govern embryogenesis we 

hypothesized that regulatory regions may be preferentially affected by rare structural 

variation. To investigate this, we identified rare (MAF < 0.1%) autosomal SVs that 

intersected with 926,535 genome-wide candidate cis-regulatory elements (cCREs) 

curated by ENCODE40. A significant enrichment of cCRE-intersecting SVs was 

observed for inversions (61.4% vs 47.1%, P=1.2x10-3) and duplications (78.8% vs 

67.5%, P=5.0x10-3) (Table S3). While the median size of inversions was larger in 

cases, this was not statistically significant (129kb vs 94kb, P=0.12).  

 

To further characterize this enrichment, we repeated the burden analysis stratifying 

by cCRE subtype (distal enhancer-like signature [dELS], proximal enhancer-like 

signature [pELS], promoter-like signature [PLS], CTCF-only and DNase-H3K4me3) 

and demonstrated a consistent signal across all cCREs for inversions (Fig.1B), most 

significantly affecting CTCF-only elements (49.2% vs 31.7%, P=3.1x10-5, Table S5). 

These elements act as chromatin loop anchors suggesting that inversions affecting 

these regions may potentially alter long-range regulatory mechanisms mediated by 

chromatin conformation. Duplications affecting pELS elements were also significantly 

enriched in cases (29.5% vs 16.8%, P=2.7x10-4). 

Variation at 12q24.21 and 6p21.1 is associated with PUV  

To determine the contribution of common and low-frequency variation to PUV, we 

carried out a genome-wide association analysis of 17,091,503 variants with MAF > 

0.1%. The genomic inflation factor (λ) of 1.05 confirmed population stratification was 

well controlled in this mixed ancestry cohort (Fig. S3). Statistically significant 
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(P<5x10-8) associations were detected at two loci (Fig. 2 and Table 1). At 12q24.21, 

the lead intergenic variant (rs10774740) was common (MAF 0.37) and reached 

P=7.81x10-12 (OR 0.40; 95% CI 0.31-0.52; Fig. 3A). A rare (MAF 0.007) variant 

(rs144171242) at 6p21.1, located in an intron of PTK7, was also significant at 

P=2.02x10-8 (OR 7.20; 95% CI 4.08-12.70; Fig. 4A). Table S6 details the summary 

statistics for variants with P<10-5. Conditional analysis did not identify secondary 

independent signals at either locus and epistasis was not detected between the two 

lead variants (P=0.10). Gene and gene-set analysis was carried out to assess the 

joint effect of common and low-frequency variants and identify potential functional 

pathways associated with PUV, however, no genes (Table S7) or pathways (Table 

S8) reached statistical significance after correction for multiple testing.  

12q24.21 and 6p21.1 replicate in an independent cohort 

We carried out a replication study in an independent European cohort consisting of 

398 individuals with PUV: 336 from Poland and Germany, partially recruited through 

the CaRE for LUTO (Cause and Risk Evaluation for Lower Urinary Tract Obstruction) 

Study, and 62 from the UK. 10,804 European individuals recruited to the cancer arm 

of the 100KGP were used as controls. The UK PUV patients and the 100KGP cancer 

control cohort had not been included in the discovery genetic analyses. The lead 

variants at the top four loci with P<5x10-7 were tested for replication. Association at 

both genome-wide significant lead variants was replicated although with smaller 

effect sizes (Table 1): rs10774740 (P=1.9x10-3; OR 0.78; 95% CI 0.67-0.91) and 

rs144171242 (P=4.5x10-3; OR 2.17; 95% CI 1.25-3.76). Two further loci with 

suggestive evidence of association (10q11.2; rs1471950716; P=1.45x10-7 and 

14q21.1; rs199975325; P=2.52x10-7) did not replicate (Table S9).  
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Mixed ancestry analysis increases power for discovery 

To ascertain whether the observed associations were being driven by a specific 

ancestry group, we next repeated the GWAS using a subgroup of genetically defined 

European individuals (88 cases and 17,993 controls) and 15,447,192 variants with 

MAF > 0.1%. The 12q24.21 locus remained genome-wide significant (Fig. S4), 

however the lead variant (rs2555009) in the region showed weaker association 

(P=4.02x10-8; OR 0.43; 95% CI 0.12-0.73) than rs10774740, the lead variant in the 

mixed ancestry analysis (Table 10). Interestingly the two variants were not in strong 

linkage disequilibrium (LD; r2=0.54). The lead variant at 6p21.1 from the mixed 

ancestry analysis did not reach genome-wide significance in the European-only 

study (rs144171242; P=3.60x10-5; OR 5.90; 95% CI 2.88-12.11) suggesting that this 

signal may be driven partly by non-Europeans. P values and effect sizes were 

strongly correlated between the mixed ancestry and European-only GWAS (Fig. S5) 

demonstrating that inclusion of mixed ancestry individuals to increase sample size 

can be an effective way to boost power and discover novel loci, even in a small 

cohort. 

 

As the numbers of African, South Asian, and admixed ancestry individuals were too 

small to reliably carry out subgroup association analyses and subsequent meta-

analysis, we instead compared ancestry-specific allele frequencies, effect sizes and 

directions for the two lead variants. Interestingly, rs10774740 (T) had a higher allele 

frequency in individuals of African ancestry (MAF 0.74) compared to European (MAF 

0.37) and South Asian (MAF 0.35) populations, however the effect size and direction 

was similar between the groups (Fig. S6). rs144171242 (G) was present at a lower 

allele frequency in South Asian (MAF 0.002) compared to European (MAF 0.008) 
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individuals and was not seen in the African ancestry group. The effect size of this 

rare variant was higher in the South Asian than European population (Fig. S6), which 

may explain why it only reached genome-wide significance after inclusion of South 

Asian individuals. Finally, comparison with population allele frequencies from 

gnomAD31 demonstrated that although there is large variation in the allele frequency 

of rs10774740 between ancestries this is away from, not towards, the case allele 

frequency and confirms that the detected associations are not being driven by 

differences in allele frequency between populations (Fig. S6).  

 

Fine-mapping predicts lead variants to be causal  

WGS enables further interrogation of loci of interest at high resolution. We therefore 

repeated the mixed ancestry analysis at each genome-wide significant locus using 

all variants with minor allele count ≥ 3, to determine whether additional ultra-rare 

variants might be driving the observed association signals. Both rs10774740 at 

12q24.21 and rs144171242 at 6p21.1 remained most strongly associated, 

suggesting they are likely to be causal. Comparison of the different LD patterns seen 

across African, European, and South Asian population groups at these loci 

demonstrate how a combined ancestry approach can leverage differences in LD to 

improve the fine mapping of causal variants (Fig. S7).  

 

We next applied the Bayesian fine-mapping tool PAINTOR53 which integrates the 

strength of association, LD patterns and functional annotations to derive the 

posterior probability of a variant being causal. Using this alternative statistical 

approach, both lead variants were identified as having high probability of being 

causal: rs10774740 (posterior probability [PP] with no annotations 0.77, PP with 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 10, 2021. ; https://doi.org/10.1101/2021.08.09.21261801doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.09.21261801
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

annotations >0.99) and rs144171242 (PP with no annotations 0.83, PP with 

annotations >0.99). Conservation and ChIP-seq transcription factor binding clusters 

had the largest impact on posterior probabilities at 12q24.21 and 6p21.1, 

respectively. Validation of the lead variants using statistical fine mapping illustrates 

that the increased sensitivity and improved resolution of WGS compared with 

genotyping arrays may permit the direct identification of underlying causal variants, 

particularly in the context of examining rarer variants and multiple ancestries for 

which imputation performance may be limiting.47,72 

Functional annotation implicates TBX5 and PTK7 

To explore the functional relevance of these loci we next interrogated publicly 

available datasets via UCSC Genome Browser54 and used Functional Mapping and 

Annotation (FUMA)57 to prioritize candidate genes. Given the urinary tract is derived 

from both embryonic mesoderm and endoderm, where possible we used 

experimental data obtained from male H1 BMP4-derived mesendoderm cultured 

cells. 

 

The common, non-coding, intergenic lead variant (rs10774740) at the 12q24.21 

locus is predicted to be deleterious (CADD score 15.54) and intersects with a 

conserved element (chr12:114228397-114228414; logarithm of odds score 33) that 

is suggestive of a putative transcription factor binding site (TFBS) (Fig. 3B), however 

review of experimentally defined TF binding profiles66 did not identify any known 

interactions with DNA-binding motifs at this position. Interrogation of epigenomic 

data from ENCODE40 revealed rs10774740 is located ~35bp away from a candidate 

cis-regulatory element (cCRE, EH38E1646218), which although has low-DNase 
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activity in mesendoderm cells, displays a distal enhancer-like signature in cardiac 

myocytes. We did not identify any cis-eQTL associations with rs10774740, but using 

experimental Hi-C data generated from H1 BMP4-derived mesendoderm cells63,73 

we were able to determine that this locus is within the same topologically-associated 

domain (TAD) as the transcription factor TBX5 (Fig. 4C). Chromatin interactions 

mapped this intergenic locus directly to the promoter of TBX5 (false discovery rate 

[FDR] 2.80x10-13, Fig. 4D).  

 

At the 6p21.1 locus, the non-coding lead variant (rs144171242) is in an intron of the 

inactive tyrosine kinase PTK7. This rare variant has a low CADD score (0.93) and 

lacks any known eQTL or relevant chromatin interaction associations. Interrogation 

of epigenomic annotations from ENCODE40 revealed rs144171242 intersects a 

cCRE (EH38E2468259) with low DNase activity in mesendoderm cells, but with a 

distal enhancer-like signature in neurons (Fig. 4B). NIH Roadmap Epigenomics 

Consortium62 data suggests rs144171242 may have regulatory activity in 

mesendoderm cells, classifying this region as transcribed/weak enhancer 

(12TxEnhW) using the imputed ChromHMM 25-chromatin state model (Fig. 4B). In 

addition, interrogation of the JASPAR 202066 database of experimentally defined TF 

binding profiles revealed rs144171242 intersects with the DNA-binding motifs of 

FERD3L, ZNF317 and Zic2 (Fig. 4C), suggesting rs144171242 may potentially affect 

PTK7 expression via disruption of TF binding (Fig. 4D).  

rs10774740 is associated with prostate cancer  

Interrogation of the NHGR/EBI GWAS Catalog67 revealed the risk allele rs10774740 

(G) is associated with prostate cancer aggressiveness68 (P=3x10-10; OR 1.14; 95% 
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CI 1.09-1.18). PheWAS data from the UK Biobank demonstrated the protective allele 

rs10774740 (T) also has a protective effect in female genitourinary phenotypes: 

urinary incontinence (P=8.3x10-12; OR 0.90; 95% CI 0.87-0.92), female stress 

incontinence (P=7.9x10-10; OR 0.89; 95% CI 0.85-0.92), genital prolapse (P=1.1x10-

9; OR 0.92; CI 0.89-0.94) and symptoms involving the female genital tract (P=1.7x10-

8; OR 0.90; 95% CI 0.87-0.94). No known GWAS or PheWAS associations were 

identified for rs144171242.   

Discussion 

Using a mixed ancestry whole-genome sequencing approach we have 

unambiguously identified genetic loci associated with PUV and implicated TBX5 and 

PTK7 in its underlying pathogenesis. Inclusion of different ancestry groups in our 

study increased our power to detect novel associations despite a small sample size, 

and in combination with WGS, allowed identification of the likely causal variants. A 

lack of genomic inflation and subsequent replication in an independent cohort 

indicate these associations are robust and not the result of confounding due to 

population structure. In addition, we detected an enrichment of rare structural 

variants affecting candidate cis-regulatory elements and demonstrate that 

monogenic causes of PUV are not a common feature. 

 

The majority of genetic association studies are carried out in individuals of European 

ancestry, however with next-generation sequencing allowing unbiased variant 

detection as well as improved statistical methodology to mitigate confounding by 

population structure, it is widely recognized that increasing ancestral diversity in 

genetic studies is scientifically and ethically necessary.47 GWAS findings have been 
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shown to replicate across populations in a variety of common diseases,74–81 

suggesting sharing of common causal variants between ancestries despite 

differences in allele frequencies and effect sizes.82 Furthermore, the benefit of 

combining population groups has been clearly demonstrated in trans-ancestry meta-

analyses,83–85 where differences in LD structure are specifically utilized to improve 

the resolution of fine-mapping. Mixed ancestry rare variant analyses are also a 

useful way to boost power for gene discovery through increased sample size,86 with 

the ‘collapsing’ approach used to aggregate rare variants removing concerns 

regarding differing allele frequencies across population groups. On this basis we 

opted to combine individuals regardless of ancestral background and used a 

generalized mixed model association test with saddlepoint approximation to 

maximize the signal from the resulting mixed ancestry, case-control imbalanced 

dataset.    

 

We identified a significant protective effect of rs10774740 (T), highlighting that 

common variants can contribute to an individual's risk of a rare disease, as is 

increasingly being recognized, e.g. for neurodevelopmental disorders.87 The effect 

size and direction were consistent between African, European and South Asian 

ancestries, despite differences in allele frequency between the population groups. 

Using experimentally determined chromatin interaction data from mesendoderm cells 

we mapped this locus to the promoter of the transcription factor TBX5, which is 

known to cause autosomal dominant  Holt-Oram syndrome (MIM 142900), 

characterized by congenital cardiac septal defects and upper-limb anomalies.88,89 No 

eQTL data were available to determine how rs10774740 might affect TBX5 

expression, however, microarray data from mice demonstrate that Tbx5 is highly 
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expressed in the urogenital sinus, urethra and genital tubercle at E14,90 providing 

support for its role in lower urinary tract development. Interestingly, animal studies 

have shown that Tbx5 initiates an evolutionarily conserved bidirectional mesoderm-

endoderm signaling loop via the canonical Wnt pathway and Shh, which is essential 

for lung morphogenesis and cardiac septation.91 This suggests that Tbx5 may also 

coordinate other mesoderm-endoderm interactions during embryogenesis, 

potentially regulating the insertion of the distal mesonephric duct into the endoderm-

derived prostatic urethra.  

 

The association of the risk allele (G) with prostate cancer aggressiveness in men 

and genital prolapse and urinary incontinence in women raises the intriguing 

possibility that TBX5, which shows moderate expression in the adult bladder, is also 

associated with lower urinary tract phenotypes in adults. Of note, variation in 

candidate genes associated with other developmental anomalies have also been 

linked to malignancy in the same organ, e.g., FOXF1 with VACTERL (vertebral 

defects, anal atresia, cardiac defects, tracheo-esophageal anomalies, renal 

anomalies and limb anomalies) and Barrett’s esophagus,92 highlighting the common 

molecular pathways driving both embryogenesis and cancer.   

 

We also identified an association of the rare variant rs144171242 with PUV, located 

in an intron of PTK7 and predicted to have regulatory activity in mesendoderm cells. 

This variant was only seen in European and South Asian groups, suggesting it arose 

after migration from Africa. The inclusion of South Asian individuals, in whom the 

effect size of rs144171242 is larger, increased our power to detect association which 

was not genome-wide significant in the European-only analysis. PTK7 (protein 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 10, 2021. ; https://doi.org/10.1101/2021.08.09.21261801doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.09.21261801
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

tyrosine kinase 7) is an evolutionarily conserved transmembrane receptor required 

for vertebrate embryonic patterning and morphogenesis, and a key regulator of 

planar cell polarity (PCP) via the non-canonical Wnt pathway.93 The PCP pathway is 

critical for determining the orientation of cells in the plane of an epithelium, regulating 

a process called convergent extension whereby cells intercalate by converging in 

one axis and elongating in the perpendicular axis. Altered expression of PTK7 was 

initially observed in cancer,94,95 but rare missense variants in PTK7 have since been 

linked to neural tube defects96,97 and scoliosis98 in both humans and animal models, 

confirming a role in embryonic development. Ptk7 is highly expressed in the murine 

urethra and urogenital sinus at E1490 and mesoderm-specific conditional deletion of 

Ptk7 has been shown to affect convergent extension and tubular morphogenesis of 

the mesonephric duct at E18.5, leading to male sterility.99 Whether similar disruption 

in mesonephric duct morphogenesis is seen at E14 (corresponding to development 

of the urethra) remains to be seen but may provide insights into the biological 

mechanisms underpinning PUV.  

 

Rare CNVs have been associated with neurodevelopmental disorders44,100–103 and 

congenital malformations104,105 and recently shown to be enriched in patients with 

kidney and urinary tract anomalies22. However, our study, consistent with a previous 

microarray-based study by Verbitsky et al.,22 did not identify an increased burden of 

CNVs in individuals with PUV.  We observed a higher number of rare, exonic CNVs 

than Verbitsky et al.22 (82.6% vs 32.6%), most likely reflecting the increased 

sensitivity and resolution of WGS for SV detection as well as the difference in size 

threshold for inclusion (> 10kb compared to >100kb). Importantly, none of the CNVs 

recurrently affected a particular gene which, in combination with the lack of gene-
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based enrichment seen in our rare SNV/indel analysis, confirms previous 

observations that monogenic causes of PUV are rare, although our sample size 

would be underpowered to detect significant genetic heterogeneity.  

 

Intriguingly, we demonstrated an enrichment of rare inversions affecting cCREs. 

Current understanding of the functional relevance of inversions is limited as the 

balanced nature and location of breakpoints within complex repeat regions make 

detection challenging.106 Although usually considered neutral, inversions can directly 

disrupt coding sequences or regulatory elements, as well as predispose to other 

SVs, and have been associated with hemophilia A,107 Hunter syndrome,108 

neurodegenerative109 and autoimmune disease.110,111 The strongest signal we 

observed was for inversions affecting CTCF-only regions, potentially implicating 

disrupted chromatin looping in the underlying pathogenesis of PUV. The enrichment 

of rare inversions affecting cCREs raises the interesting possibility that non-specific 

perturbation of long-range regulatory networks or TADs could manifest as PUV, 

perhaps due to sensitivity of integration of the mesonephric duct into the posterior 

urethra to even minor abnormalities of gene expression. 

 

This study has several strengths. WGS enables ancestry independent variant 

detection, uniform genome-wide coverage, improved SV resolution and detection, as 

well as direct sequencing of underlying causal variants. Using case-control data from 

>20,000 individuals sequenced on the same platform also minimizes confounding by 

technical artefacts. Inclusion of diverse ancestries increased our power to detect 

both novel associations and the underlying causal variant, with the lack of genomic 
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inflation and subsequent replication indicating these associations are robust. 

Furthermore, we integrated GWAS, epigenomic and chromatin interaction data to 

ascertain the functional relevance of loci and identify biologically plausible genes.  

 

A limitation of this study is its relatively low statistical power to detect associations 

with small effects and future meta-analyses with larger cohorts are necessary to 

identify additional loci. Furthermore, while WGS offers improved SV resolution over 

microarrays, false positives may occur and are dependent on the SV calling 

algorithm used. Ideally, long-read sequencing and independent validation would be 

used to provide more comprehensive SV detection, especially of larger variants in 

complex, repetitive and GC-rich regions. Finally, although we have assessed the 

relevance of the associated loci using bioinformatic approaches and shown that 

publicly available experimental data support the association, the biological 

mechanisms linking these genes with PUV have yet to be elucidated.   

 

To our knowledge, this is the first study to utilize mixed ancestry WGS for 

association testing in a rare disease. Combining WGS data across ancestries 

increased power, revealed two novel loci for PUV and identified the likely causal 

variants through enhanced fine-mapping. Finally, integration of functional genomic 

data implicated TBX5 and PTK7 as playing a key role in the pathogenesis of PUV, 

an important but poorly understood disorder.  
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Supplemental Data  

 

Supplemental Appendix: Genomics England Research Consortium 

 

Supplemental Note: Pathogenic/likely pathogenic variants identified in PUV cases 

 

Figure S1 | Study workflow. The flowchart shows the number of samples included 

at each stage of filtering, the analytical strategies employed and the main findings 

(blue boxes). PUV, posterior urethral valves; MAF, minor allele frequency; GWAS, 

genome-wide association study; EUR, European; cCRE, candidate cis-regulatory 

element. 

 

Figure S2 | Ancestry matching. Principal component analysis showing the first 

eight principal components for matched cases (blue) and controls (black) and 

unmatched cases (orange) and controls (grey). Two cases and 2,579 controls were 

excluded from downstream analyses.  

 

Figure S3 | Q-Q plot for mixed-ancestry GWAS. Quantile-quantile (Q-Q) plot 

displaying the observed versus the expected –log10(P) for each variant tested. The 

grey shaded area represents the 95% confidence interval of the null distribution.   

 

Figure S4 | European GWAS. A genome-wide single-variant association study was 

carried out in 88 cases and 17,993 controls for 15,447,192 variants with MAF > 

0.1%. All cases and controls had genetically determined European ancestry. A, 

Manhattan plot with chromosomal position (GRCh38) denoted along the x axis and 
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strength of association using a –log10(P) scale on the y axis. Each dot represents a 

variant. The red line indicates the Bonferroni adjusted threshold for genome-wide 

significance (P < 5x10-8). The two genome-wide significant loci from the mixed 

ancestry GWAS are labelled. B, Quantile-Quantile (Q-Q) plot displaying the 

observed versus the expected –log10(P) for each variant tested. The grey shaded 

area represents the 95% confidence interval of the null distribution.   

 

Figure S5 | Correlation between mixed-ancestry and European GWAS. 

Comparison of A, -log10(P) and B, BETA from the mixed-ancestry and European-

only ancestry GWAS. All variants with P < 10-5 in both cohorts are shown. The 

shaded grey area represents the 95% confidence interval. 

 

Figure S6 | Comparison of ancestry-specific odds ratios and gnomAD allele 

frequencies. GWAS per-ancestry odds ratios for A, rs10774740 and B, 

rs144171242. Comparison of population minor allele frequencies from gnomAD with 

case and control allele frequencies from our data for C, rs10774740 and D, 

rs144171242. Error bars represent 95% confidence intervals. The dashed lines 

indicate the minor allele frequency observed in cases (orange) and controls (blue) 

with the shaded areas indicating 95% confidence interval for each group. No data 

was available for rs10774740 in the South Asian population. AFR, African/African-

American; AKJ, Ashkenazi Jewish; EAS, East Asian; EUR, European (non-Finnish); 

FIN, European (Finnish); LAT, Latino/Admixed-American; OTH, Other; SAS, South 

Asian.    
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Figure S7 | Linkage disequilibrium (LD) for reference populations in the 1000 

Genomes Project. LD plots for 503 European (EUR), 489 South Asian (SAS) and 

661 African (AFR) ancestry individuals from the 1000 Genomes Project (Phase 3). 

Haploview (v4.2) was used to compute pairwise LD statistics (r2) between variants 

for each population. The darker the shading, the higher the LD between variants. 

Black outlined triangles indicate haploblocks. A, LD plot for chr12:114,641,202-

114,691,202 (GRCh37) with the position of the lead variant rs10774740 represented 

by a green arrow; B, LD plot for chr6:43,063,094-43,113,094 (GRCh37) with the 

position of the lead variant rs144171242 represented by a green arrow. rs144171242 

was not seen in the AFR population group.       

 

Figure S8 | GWAS power calculation. Power calculations were performed at 

various minor allele frequencies (MAF) using 132 cases and 23,727 controls under 

an additive genetic model to achieve genome-wide significance of P<5x10-8.  

 

Table S1. Clinical characteristics and genetic ancestry. PUV, posterior urethral 

valves; PCA, principal components analysis; EUR, European; SAS, South Asian; 

AFR, African; AMR, Latino/Admixed American; VUR, vesico-ureteral reflux; UTI, 

urinary tract infection; ESRD, end-stage renal disease. 

 

Table S2. Exome-wide rare SNV/indel analysis. Results from SAIGE-GENE 

aggregate rare (MAF < 0.1%) coding variant association. Gene name and Ensembl 

identifier listed for all genes with P < 0.01. See supplemental data.   
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Table S3. Structural variant analysis. The burden of rare autosomal structural 

variants intersecting with a) at least one exon or b) a cis-regulatory element was 

compared between 132 cases and 23,727 controls. cCRE, candidate cis-regulatory 

element; PUV, posterior urethral valves; CNV, copy number variant; DEL, deletion; 

DUP, duplication; INV, inversion; OR, odds ratio; CI, 95% confidence interval, IQR, 

interquartile range.  

 

Table S5. Structural variant cCRE analysis. The burden of rare autosomal 

structural variants intersecting with each cis-regulatory element type was compared 

between 132 cases and 23,727 controls. cCRE, candidate cis-regulatory element; 

CNV, copy number variant; DEL, deletion; DUP, duplication; INV, inversion; dELS, 

distal enhancer-like signature; pELS, proximal enhancer-like signature; PLS, 

promoter-like signature; OR, odds ratio; CI, 95% confidence interval.  

 

Table S6. Mixed ancestry GWAS association statistics. Summary statistics for all 

variants with P < 10-5. Allele 2 refers to the effect allele. Allele 1 is the other allele. 

CHR, chromosome; POS, genomic position with reference to GRCh38; SE, standard 

error; AF, allele frequency. See supplemental data.  

 

Table S7. GWAS gene-based analysis. MAGMA was used to assess the joint 

effect of common and low-frequency variants across genes. Genes with P < 0.01 are 

listed. CHR, chromosome; START and STOP denote the genomic position with 

reference to GRCh37; NSNPS; the number of variants aggregated for each gene. 

See supplemental data.  
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Table S8. GWAS pathway analysis. MAGMA was used to assess the joint effect of 

common and low-frequency variants across different biological pathways. Pathways 

with P < 0.05 are listed. NGENES; the number of genes aggregated across each 

pathway; SE, standard error; GO, gene ontology. See supplemental data.  

 

Table S9. Replication study. The lead variants at the top four loci with P < 5x10-7 

were genotyped in an independent European cohort of 398 PUV cases and 10,804 

controls. P values in the replication cohort were calculated using a one-sided 

Cochran Armitage Trend test. OR, odds ratio; CI, 95% confidence interval.  

 

Table S10. Comparison of mixed ancestry and European GWAS association 

statistics. The lead variants at the top four loci with P < 5x10-7 are shown. OR, odds 

ratio; CI, 95% confidence interval. 
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Data and code availability 
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Table 1. Association statistics for significant genome-wide loci. The lead variant with the lowest P value at each locus is shown with 

genome-wide significance defined as P<5x10-8.  Genomic positions are with reference to GRCh38. Discovery P values were derived using 

SAIGE generalized logistic mixed model association test and replication P values using a one-sided Cochran Armitage Trend Test. CHR, 

chromosome; POS, position; OR, odds ratio; CI, confidence interval; EAF, effect allele frequency. 

 
              P value             OR (95% CI)                                  Case EAF                  Control EAF 

Lead variant CHR:POS Effect Allele Closest gene Discovery Replication Discovery Replication Discovery Replication Discovery Replication 

rs10774740 chr12:114228397 T TBX5 7.81x10-12 1.9x10-3 
0.40 

(0.31-0.52) 

0.78 

(0.67-0.91) 
0.19 0.31 0.37 0.36 

rs144171242 chr6:43120356 G PTK7 2.02x10-8 4.5x10-3 
7.20 

(4.08-12.70) 

2.17 

(1.25-3.76) 
0.05 0.02 0.01 0.01 
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Figure 1.

Figure 1 | Rare variant analysis. A, Manhattan plot of exome-wide rare coding variant analysis demonstrating
no significant gene-based enrichment after correction for multiple testing. Chromosomal position (GRCh38) is
shown on the x axis and strength of association using a –log10(P) scale on the y axis. Each dot represents a
gene. The red line indicates the Bonferroni adjusted threshold for exome-wide significance (P = 2.58x10-6).
Genes with P < 10-4 are labelled. B, The proportion of individuals with ≥1 rare autosomal structural variant
intersecting with an ENCODE cCRE in cases and controls was enumerated using a two-sided Fisher’s exact
test. Note that inversions affecting cCRE are enriched in PUV. Vertical black bars indicate 95% confidence
intervals. Unadjusted P values shown are significant after correction for multiple testing (P < 2.5x10-3 ). CNV,
copy number variant; DEL, deletion; DUP, duplication; INV, inversion; PUV, posterior urethral valves; dELS,
distal enhancer-like signature; pELS, proximal enhancer-like signature; PLS, promoter-like signature; cCRE,
candidate cis-regulatory element.
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Figure 2.

Figure 2 | Manhattan plot for mixed-ancestry GWAS. A genome-wide single-variant association study was
carried out in 132 unrelated PUV cases and 23,727 controls for 17,091,503 variants with MAF > 0.1%.
Chromosomal position (GRCh38) is denoted along the x axis and strength of association using a –log10(P)
scale on the y axis. Each dot represents a variant. The red line indicates the Bonferroni adjusted threshold for
genome-wide significance (P < 5x10-8). The gene in closest proximity to the lead variant at significant loci are
listed.
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Figure 3.

B

A

Figure 3 | 12q24.21. A, Regional association plot with chromosomal position (GRCh38) denoted along the
x axis and strength of association using a –log10(P) scale on the y axis. The lead variant (rs10774740) is
represented by a purple diamond. Variants are colored based on their linkage disequilibrium (LD) with the
lead variant using 1000 Genomes data from all population groups. B, Functional annotation of the lead
prioritized variant rs10774740 showing intersection with CADD score (v1.6), PhastCons conserved
elements from 100 vertebrates, and ENCODE H3K27ac ChIP-seq, H3K4me3 ChIP-seq and DNase-seq
from mesendoderm cells. ENCODE cCREs active in mesendoderm are represented by shaded boxes;
low-DNase (grey), DNase-only (green). GWAS variants with P < 0.05 are shown. Note that rs10774740
has a relatively high CADD score for a non-coding variant and intersects with a highly conserved
region. C, Heatmap of Hi-C interactions from H1 BMP4-derived mesendoderm cells demonstrating that
rs10774740 is located within the same topologically associating domain (TAD) as TBX5. TADs are
represented by blue triangles. Protein-coding genes are denoted in blue, non-coding genes in green. D,
Zoomed in circos plot illustrating significant chromatin interactions between 12q24.21 and the promoter
of TBX5. The outer layer represents a Manhattan plot with variants plotted against strength of association.
Only variants with P < 0.05 are displayed. Genomic risk loci are highlighted in blue in the second layer.
Significant chromatin loops detected in H1 BMP4-derived mesendoderm cultured cells are represented in
orange. PP, posterior probability derived using PAINTOR; cCRE, candidate cis-regulatory element.
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Figure 4.

PP > 0.99
rs144171242

Figure 4 | 6p21.1. A, Regional association plot with chromosomal position (GRCh38) along the x axis
and strength of association using a –log10(P) scale on the y axis. The lead variant (rs144171242) is
represented by a purple diamond. Variants are colored based on their linkage disequilibrium (LD) with the
lead variant using 1000 Genomes data from all population groups. B, Functional annotation of lead
prioritized variant rs144171242 showing intersection with ENCODE H3K27ac ChIP-seq, H3K4me3 ChIP-
seq and DNase-seq from mesendoderm cells. ENCODE cCREs active in mesendoderm are represented
by shaded boxes; low-DNase (grey), DNase-only (green) and distal enhancer-like
(orange). ChromHMM illustrates predicted chromatin states using Roadmap Epigenomics imputed 25-
state model for mesendoderm cells; active enhancer (orange), weak enhancer (yellow), strong
transcription (green), transcribed and weak enhancer (lime green). Predicted transcription factor binding
sites (TFBS) from the JASPAR 2020 CORE collection are indicated by dark grey shaded boxes. GWAS
variants with P < 0.05 are shown. Note that rs144171242 intersects with both a predicted regulatory
region and TFBS. C, Sequence logos representing the DNA-binding motifs of transcription factors
FERD3L and ZNF317. The black boxes indicate where the risk allele [G] may disrupt binding. PP,
posterior probability derived using PAINTOR; cCREs, candidate cis-regulatory elements.
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