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Abstract

A primary concern in epidemics is to minimize the probability of contagion, often
resorting to reducing the number of contacted people. However, the success of that
strategy depends on the shape of the dose-response curve, which relates the response of
the exposed person to the pathogen dose received from surrounding infected people. If
the reduction is achieved by spending more time with each contacted person, the
pathogen charge received from each infected individual will be larger. The extended
time spent close to each person may worsen the expected response if the dose-response
curve is concave for small doses. This is the case when the expected response is
negligible below a certain dose threshold and rises sharply above it. This paper
proposes a mathematical model to calculate the expected response and uses it to
identify the conditions when it would be advisable to reduce the contact time with each
individual even at the cost of increasing the number of contacted people.

Introduction 1

Within the recent effort on understanding the evolution of Covid-2019, an essay by S. 2

Mukherjee [1] poses two relevant questions regarding the initial viral dose that a 3

susceptible individual receives from an infected person: 4

Question 1: Does the initial dose affect the probability of infection? 5

Question 2: Does the initial dose affect the severity of the disease? 6

Though not asked by him, a pertinent question when investigating the propagation 7

of disease is 8

Question 3: Does the initial dose affect the subsequent infectiousness of the exposed 9

person? 10

These questions are related to two usual goals of epidemics management: reducing 11

the spread of diseases and the severity of the symptoms. 12

A key concept when answering the questions is the dose-response curve π(q), which 13

estimates the expected severity of the outcome as a function of the pathogen dose q. 14

This curve describes the probability or the expected severity of an outcome, such as 15

infectiousness, immunity, contagion, mild symptoms, severe symptoms, and death. 16

When investigating the spread of the disease, infectiousness and immunity are probably 17

crucial information, but it is also relevant to evaluate the symptoms and the death 18

probably. The dose-response curve was recently employed to describe how the 19

protection against COVID-19 from wearing masks depends on the environmental virus 20

concentration [2]. 21

It is difficult to answer the questions because it is often impossible to measure the 22

initial dose directly. There are relatively few papers focusing on these questions and 23
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even fewer trying to find the dose-response curve, π(q). Notwithstanding the difficulties, 24

question 1 has been explored for hematopoietic necrosis virus in trouts [3], antrax [4, 5] 25

cytomegalovirus [6, 7], herpes simplex virus-2 [8], HIV-1 [9–11], and SARS-Cov-2 [12]. 26

Question 2 was addressed for SARS-Cov-2 in [13]. Both questions were indirectly 27

addressed by exploring the microscopic dynamics of infection by poliomyelitis 28

viruses [14], Moloney sarcoma virus [15,16], and herpes simplex virus-2 [17]. 29

It is common for a person not to be able to avoid sharing limited space with other 30

people. Some examples are hospitals, transportation, classrooms, restaurants, and 31

workplaces. Still, in certain cases, the number of distinct people approached by each 32

person can be reduced or increased. For instance, students can be directed to change or 33

keep places at each new class [18]. Staff could alternate the patients and clients 34

attended in hospitals and restaurants. Rules could be applied to pedestrian traffic [19]. 35

Forced ventilation could be used in a closed environment to homogenize the pathogen 36

concentration, playing a role similar to altering the distance between people [20]. 37

If a person encounters many different people but stays for a short time with each of 38

them, he or she will be subject to a low exposition when meeting an infected person. 39

Conversely, if he or she encounters fewer people but stays longer with each person, the 40

chance of encountering a contagious person is lower; but the contamination received 41

from each infected person is higher. As it will be seen, even if the mean exposition is 42

the same in both cases, the standard deviation is different, and this difference can play 43

an essential role in the expected response. 44

This paper presents a simple mathematical model to quantify the expected outcome 45

of changing the number of contacts. It depends on four quantities: 46

γ Fraction of infectious people in the population. 47

Nc Number of contacted people, understood as the number of people that got close 48

enough to transmit the pathogen. 49

κτ/Q Ratio between the utmost pathogen charge (κτ), which would be received if 50

every person met was infected, and the charge expected to generate 50 % of the 51

maximum response (Q). 52

h Parameter that controls the concavity of the dose-response curve for low doses, with 53

the form 54

π(q) ∝ qh. (1)

for small values of q. 55

In the Materials and Methods section, we formulate the model, demonstrate the 56

importance of π(q)’s concavity with a normal distribution of pathogen dose, and apply 57

it to a population of infected people, best described by the binomial distribution of 58

pathogen doses. The numerical evaluation of the model is presented in the Results 59

section and analyzed in the Discussion section. 60

Materials and methods 61

The response curve 62

We will consider a person who stays close to other Nc people while engaged in certain 63

activity for a period of time T . The equivalent contact time of that person is defined as 64

τ =

Nc∑
i=1

∆ti =

∫ t0+T

t0

nc(t) dt = T n̄c, (2)
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where ∆ti is the time spent close to person i and nc(t) is the number of nearby people 65

at time t. The equivalent contact time is equal to the total time, T , multiplied by the 66

temporal average of the number of nearby people, n̄c. 67

The binary variable γi defines the infectious state of the person i, with the value 0 68

for non-infectious and 1 for infectious. The fraction of infectious people in the 69

population of size Npop ≥ Nc is γ = Npop
−1∑Npop

i=1 γi. As a simplifying hypothesis, we 70

assume that nearby infectious people transmit the pathogen to the exposed person with 71

the constant rate κ and that transmission is not possible from afar. Therefore, the 72

charge received from the person i is 73

qi = γiκ∆ti , (3)

and the total charge received is 74

q =

Nc∑
i=1

γiκ∆ti .p (4)

Brouwer at al [21] demonstrated that the concavity of the response curve for low 75

doses plays a crucial role in the transmission models of environmentally mediated 76

infectious diseases. Among the curves explored by the authors, only the Hill and the 77

Weibull distributions allow changing the concavity. As discussed in S1 Appendix, these 78

are distinct curves, but their parameters can be adjusted to achieve partial 79

superposition of one over the other within a curve’s sector. As it will be shown, most of 80

the intriguing results in this paper depend on the behavior of the curve with small 81

values of q. S1 Appendix provides information that allows estimating the values of the 82

parameters of the Weibull distribution that shall produce results similar to the Hill 83

curve in certain limits. 84

This work uses the Hill curve, but it is reasonable to assume that similar behaviors 85

would result with any function π(q) that possesses the following four properties: (a) it is 86

zero for q = 0; (b) it increases monotonically with q; (c) it approaches a value less than 87

or equal to one as q →∞; (d) its concavity near zero can be adjusted as the parameter 88

h in Eq. (1). 89

We write the dose-response curve as 90

π(q) =
qh

Qh + qh
, (5)

where the half response charge, Q, is the charge at which the expected response is half 91

of the maximum probability, reached when q →∞. When h > 1, this curve has an 92

inflection point, defined by d2π/dq2|qinfl = 0, at 93

qinfl = Q

(
h− 1

h+ 1

)1/h

. (6)

As shown in Fig. 1, when h ≤ 1, the curve is concave everywhere, and when h > 1, the 94

curve is convex at the left side of the inflection point and concave at the right side. For 95

h = 1, the expected response is proportional to the pathogen charge when this charge is 96

low. For h < 1, minute charges have a high expected response. For h > 1, the expected 97

response is negligible below a pathogen charge threshold. 98

The concavity of the response curve 99

When a group of people is submitted to the conditions described in the previous section, 100

with the probability P (q) of receiving the charge q, its mean charge and variance are 101

q̄ =

∫
qP (q) dq and σq

2 =

∫
(q − q̄)2P (q) dq , (7)
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Fig 1. The expected response. Plot of Eq. (5) for some values of h. The curves are
concave for h ≤ 1. When h > 1, the convex and the concave parts are, respectively, at
the left and right sides of the inflection point, marked as a circle.

and the expected response of this population is 102

π̄ =

∫
π(q)P (q) dq . (8)

Since the response curve is not a linear function and the population covers a range of 103

pathogen charges, the population’s expected response is not equal to the expected 104

response of the mean population charge, i.e., π̄ 6= π(q̄). 105

If the charge probability distribution is strongly peaked around q̄, with dπ/dq|q̄ ≈ 0, 106

π(q) may be approximated as a Taylor expansion up to the second-order around q̄ in 107

Eq. (8), resulting in 108

π̄ ≈ π(q̄) +
σq

2

2

d2π

dq2

∣∣∣∣
q̄

. (9)

This expression indicates that if two symmetric distributions of pathogen doses have the 109

same mean value, the wider one will have a higher expected response if the second 110

derivative is positive. Thus, broadly speaking, a wider population will have a higher 111

expected response if π(q) is convex in the vicinity of q̄, and a lower expected response 112

for concave vicinity. 113

Figure 2 highlights the dependence of the population’s expected response on the 114

concavity of the response curve and the population exposure distribution. If the 115

population exposure is strongly peaked, the population’s expected response is very close 116

to the value of the response curve at the mean population charge, as shown in Fig. 2A. 117

On the other hand, if the population charge is too diverse, the population’s expected 118

response falls unmistakably above or below the response curve, depending on the 119

concavity, as can be seen in Fig. 2B. According to Eq. (9), the expected response should 120

sit on the curve for the middle distributions of Fig. 2, since d2π/dq2 = 0 at their centers. 121

The difference observed in the percentages of Fig. 2B manifests the inadequacy of 122

Eq. (9) for large values of σq. 123

Uniformly divided contact time 124

The total exposure, Eq. (4), is a sum of Nc equally distributed random quantities 125

γiκ∆ti. We will now consider the situation where Nc and ∆ti are, respectively, 126

multiplied and divided by the same factor. This operation preserves the value of q̄ and, 127

by the Central Limit Theorem, makes standard deviation proportional to 1/
√
Nc. 128

A simple concrete situation that exhibits that behavior is an individual with an 129

equivalent contact time τ , which is equally divided among Nc other people, resulting in 130
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Fig 2. Expected response of a population. The solid line is Eq. (5) with h = 4,
with the convex part in blue and the concave part in red. The shaded areas are the
population distributions of the pathogen charge in arbitrary units, with the middle
distribution centered at the inflection point. The circles are the average expected
response of each distribution, given by Eq. (8). The percentages are the relative
difference of the average expected response from the response function at the center of
the distribution (π̄/π(q̄)− 1). The percentages between parenthesis are the same
quantities calculated with the approximation Eq. (9). A: Narrow charge distributions
(σq = 0.05) result in the population’s expected response close to the value of the
response curve at the mean charge. B: For broader distributions (σq = 0.25), the
population’s expected response is above or below the response curve, respectively, at the
convex and concave parts of the curve.
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the same time ∆ti = τ/Nc spent near each of them. From Eq. (4), the pathogen charge 131

received by this person is 132

q = κ
τ

Nc

Nc∑
i=1

γi =
NI

Nc
κτ , (10)

where NI is the number of infected people met. The utmost pathogen charge, κτ , is the 133

charge a person would receive if all people met were infected, i.e., if NI were equal to 134

Nc. Instead, the number of infected people follows the binomial distribution, 135

f(NI) =
(
Nc

NI

)
γNI (1− γ)Nc−NI . (11)

From the mean value, N̄I = γNc, and the standard deviation, σNI
=
√
Ncγ(1− γ), of 136

the binomial distribution, the mean value and the standard deviation of the total charge 137

received may be obtained, 138

q̄ = γκτ and σq = κτ

√
γ(1− γ)

Nc
. (12)

The standard deviation presents the 1/
√
Nc behavior mentioned above. 139

In the following lines, we obtain asymptotic expressions of π̄ at the limits Nc → 0 140

and Nc →∞. If the mean number of encounters with infected people is low enough, 141

NI = γNc � 1, most contacts with infected people will be with just one person. From 142

Eq. (10), the charge of such encounter is κτ/Nc, and the following approximation is 143

valid for the expected response 144

π̄ ≈ γNc π

(
κτ

Nc

)
if γNc � 1 . (13)

This expression is exact for NC = 1. By handing NC as a real number, the maximum of 145

Eq. (13) is approximately defined by dπ̄/dNc|Nmax
c

= 0, resulting in 146

Nmax
c ≈ 1

(h− 1)1/h

κτ

Q
if γNc � 1 . (14)

At the limit γNc � 1, the binomial distribution is strongly peaked around the mean 147

value, γκτ , and the corresponding expected response is 148

π̄ ≈ π(γκτ) if γNc � 1. (15)

The value of the Eq. (14) is not real for h < 1, and π̄ given by Eq. (8) grows 149

monotonically from Nc = 0 to Nc =∞. For h > 1, the existence of a maximum 150

Nmax
c > 1 requires π̄(Nc = 1) < π̄(Nc = 2), and from Eq. (13) results in 151

κτ < (2h − 2)1/hQ. (16)

If this condition is satisfied, there is a maximum at Nmax
c and two minima, at Nc = 1 152

and Nc =∞. By substituting Nc = 1 in Eq. (13) and making it equal to Eq. (15) with 153

Nc →∞ we obtain 154

κτ

Q

∣∣∣∣
×

=

(
γ1−h − 1

1− γ

)1/h

. (17)

At the left and the right of the this quantity, the global minimum is, respectively, at 155

Nc =∞ and Nc = 1. 156
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Fig 3. Gaussian distribution. Expected response as a function of σq, Eq. (7)-(8).
The symmetry of the distributions is preserved by truncating them at |q − q̄| > q̄. The
curves are plotted up to the highest σq allowed by the truncation for each value of q̄/Q.
The value of the curve with σq = 0 in Eq. (9) is shown as the percentage in the legend.
A: h = 0.25, B: h = 1, C: h = 4.

Results 157

The analytical approximations, Eq. (9), Eq. (13), and Eq. (15), help understand the 158

qualitative properties of the mean response. This section presents the exact numerical 159

calculation of π̄ from Eq. (8), with the Gaussian distribution and the binomial 160

distribution, Eq. (11). 161

The Gaussian population’s expected response illustrated by Fig. 2 suggests that the 162

contagion rate may be reduced by changing the distribution at the right of Fig. 2A to 163

2B, i. e., it is possible to reduce the expected response by making the distribution wider 164

at the concave part of the response curve. The the standard deviation increase leading 165

to a reduction in π̄ illustrates this behavior in Fig. 3A, Fig. 3B, and for 166

q̄/Q = 1.0, 1, 4 and 2.0 of Fig. 3C. The response of the distributions at the left of Fig. 2, 167

which is lower in Fig. 2A than in 2B, demonstrates the reverse behavior. I. e., making 168

the distribution thinner reduces the response at the convex part of the function, as 169

illustrated by the curves with q̄/Q = 0.5 and 0.7 of Fig. 3C. 170

Dividing the contact time with more people but spending proportionally less time 171

with each of them results in a thinner distribution with the same mean value. The 172

behavior demonstrated by the distributions at the left of Fig. 2 indicates that this 173

would be advisable for convex dose-response curves. 174

While the Gaussian distribution is a standard choice, more realistic pictures require 175

describing how the person divides the contact time among several people. The 176

minimalist model discussed above results in the binomial distribution, Eq. (11), 177

investigated below. 178

We will determine the number of contacted people, Nc, that minimizes the binomial 179

distribution’s expected response. That distribution emerges if a person can choose how 180

many people to meet, spending with each person a time inversely proportional to the 181

number of people met. For h ≤ 1, π̄ is a monotonically increasing function of Nc, as can 182

be seen in S6 Fig. Therefore, for h ≤ 1, as few people as possible should be contacted to 183

reduce the expected response. 184

In Fig. 4 we can see π̄ for the binomial distribution as a function of Nc for several 185

combinations of h, γ, and κτ , with h > 1. The values of Nmax
c predicted by Eq. (14), 186

represented by black dashed lines in Fig. 4, are in good agreement with the exact 187
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Fig 4. Binomial distribution. Expected response as a function of Nc. It is
calculated as a function of the number of contacts for the binomial distribution of
pathogen charge, Eq. (10)-(11) applied to Eq. (8). Although Nc is an integer variable,
the functions are shown as lines to make the plots less bulky. The dashed vertical lines
are the points of maximum predicted by the approximation Eq. (14). The hollow circles
are the points of maximum of each combination of h, κτ , and γ. The filled circles are
the values of π̄ at Nc →∞, calculated as π(γκτ), Eq. (15). A: κτ = Q, h = 1.4, B:
κτ = Q, h = 2, C: κτ = Q, h = 4, D: κτ = 2Q, h = 1.4, E: κτ = 2Q, h = 2, F: κτ = 2Q,
h = 4, G: κτ = 4Q, h = 1.4, H: κτ = 4Q, h = 2, I: κτ = 4Q, h = 4.
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calculation assigned as hollow circles. The value of π̄ with Nc →∞ is plotted as the 188

rightmost point of each function. 189

In order to minimize the expected response, it may be necessary to increase or 190

reduce the number of contacts, depending on the values of h, γ, and κτ/Q. From 191

Eq. (16), Nc = 1 is a maximum of π̄ if κτ ≤ 0.78Q, 1.5Q, and 1.97Q, respectively, for h 192

equal to 1.4, 2, and 4. As shown in Fig. (4), if this condition is satisfied, then π̄ is 193

monotonically decreasing with Nc, and the minimum expected response is obtained 194

when the number of contacted people is maximized. 195

The picture is more complex if with finite Nmax
c > 1. Figure 5 summarizes the 196

information required to determine how to reduce the expected response in each case. 197

The number of contacts that maximizes the expected response, Nmax
c , is plotted as a 198

function of κτ/Q in Fig. 5A-C for some combinations of h and γ. For low exposure time 199

(κτ/Q→ 0), the maximum is at Nmax
c = 1 and grows with κτ/Q in steps of unitary 200

height. When κτ/Q reaches a specific value, Nmax
c becomes infinite, signaling that, for 201

κτ/Q larger than that value, π̄ is a monotonically growing function of Nc, and that the 202

number of contacts must be minimized to reduce the expected response. 203

If Nmax
c is finite, it is necessary to inspect the boundary values of the expected 204

response, π̄(Nc = 1) and π̄(Nc =∞). These quantities are plotted in Fig. 5D-F, and 205

their crossing point, described by Eq. (17), are marked by circles. At the left of the 206

crossing point, π̄(Nc = 1) > π̄(Nc =∞) and at the right of the crossing point, 207

π̄(Nc = 1) < π̄(Nc =∞). To reduce the expected response of each combination of h 208

and γ, the number of contacts should be infinite for κτ/Q less than crossing value, and 209

the number of contacts should be 1 for κτ/Q bigger than the crossing value. The black 210

lines of Fig. 5G-I represent these frontiers as a continuous function of γ. 211

The above conclusion is only valid if Nc can be freely chosen in the interval 212

1 ≤ Nc ≤ ∞ (or that the maximum value of Nc is big enough to be considered infinite). 213

With other lower or upper limits for Nc, a specific calculation may be needed. However, 214

these calculations are unnecessary if the minimum allowed number of contacts is greater 215

than Nmax
c , when the number of contacts should always be maximized. Similarly, if the 216

maximum allowed number of contacts is less than Nmax
c , the number of contacts should 217

always be minimized. The color plot in Fig. 5G-I represents the value of Nc as a 218

function of γ and κτ/Q. 219

Discussion 220

This paper describes how people sharing a limited space in an epidemic respond to the 221

pathogen exposition from their companions. They cannot avoid being close to each 222

other but can change the time spent near each person. The mathematical model 223

supposes five simplifying hypotheses: (a) the number of contacted people changes but 224

the number of nearby people averaged on time is constant, (b) the same time is spent 225

near every person approached, (c) each contacted person can be infectious or not, with 226

no intermediate states, (d) the pathogen is received from nearby infectious people at 227

constant and identical rates, (e) distant people do not transmit the pathogen. 228

These hypotheses lead to a simple solution and make it evident what are the main 229

parameters controlling the results. However, more information is necessary to build a 230

detailed model, for example, regarding the viral shedding dynamics [22,23]. 231

Under the above hypothesis, reducing the number of people met leads to an increase 232

in the standard deviation, as expressed by the dependence on 1/
√
Nc of Eq. (12). Most 233

curves of π̄ in Fig. 3 decrease monotonically with σq, implying that cutting down the 234

number of contacted people, which increases σq, diminishes the response. However, 235

when h > 1, small values of q̄/Q generate monotonically growing functions (Fig. 3C 236

with q̄/Q = 0.5 and 0.7), originating a counter-intuitive behavior: decreasing the 237
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Fig 5. Properties of the population’s expected response. (a)-(c) Number of
contacts that result in a maximum probability of contagion for plots such as Fig. 4. The
continuous black line is the value predicted by Eq. (14). (a) h = 1.4, (b) h = 2, (c)
h = 4. (d)-(f) The dashed lines and the continuous line are the expected response,
respectively, at Nc = 1 and Nc =∞, both relative to the maximum expected response,
π̄max = π̄(Nmax

c ). The circles mark the crossings of π̄(Nc = 1) and π̄(Nc =∞) with the
same γ. (d) h = 1.4, (e) h = 2, (f) h = 4. (g)-(i) Equation (17), plotted as black lines,
separates the regions of the γ-κτ/Q phase space where the inequalities written on each
side of the curve are observed. The color represents the Nmax

c of each combination of γ
and κτ/Q. (g) h = 1.4, (h) h = 2, (i) h = 4.
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number of contacted people increases the standard deviation and the expected response. 238

The narrower distribution of the received pathogen charge is the cause of this startling 239

evenness curtailing in the expected response, observed in the convex part of the 240

response curve, Fig. 2. 241

The following argument clarifies the origin of the evenness curtailing. When the 242

distribution of received doses is wide, a large fraction of the population is exposed to 243

doses much higher or much lower than the average. If the response curve is convex, the 244

increase in the response of the overexposed people will be more significant than the 245

decrease in the response of the underexposed people, leading to a positive net effect. 246

The wider the distribution, the stronger the average response. 247

As expressed by Eq. (9), the responsible for evenness curtailing is not the reduction 248

in the average change but the change in the standard deviation. Increasing the number 249

of contacts while keeping the total contact time constant homogenizes the exposition 250

over a larger set of individuals, reducing the standard deviation. Therefore, even if the 251

simplifying hypotheses (b)-(e) are not assumed, increasing contacts should still lessen 252

the response in certain situations. 253

Unfortunately, little is known about a central aspect of this phenomenon: the 254

parameter h. In the S2 Appendix, we review some experimental works that provide 255

information suitable for estimating the value of h. By fitting Eq. (5) to the 256

experimental data, we find h ranging from 1.12 to 2.29. 257

As a concrete example of applying the approach presented here, let us imagine a 258

response curve with h = 2 and γ = 3 % of the population transmitting the pathogen. 259

This percentage is less than the fraction of exposed or infected individuals since these 260

patients may not be shedding the pathogen. From Fig. 5E, if κτ . 5.7Q, the mean 261

response will be lower for Nc →∞ than for Nc = 1. Suppose that a worker must spend 262

8 hours in a workplace, sharing a workstation with three colleagues, resulting in 263

τ = 24 h of equivalent contact time. Let us also assume that a 12 h exposition to an 264

infectious person, adding up to the charge Q = 12κ, leads to a contagious probability of 265

50 %. Therefore, the worker’s utmost pathogen charge is κτ = 2Q. If the workers keep 266

their place for the whole shift, they will contact the same three individuals through 267

their shift. In this case, Nc = 3 and from the data used to plot Fig. 4E we obtain a 268

contagion probability of 28 %. If the workers change places every 4 hours, Nc = 6 and 269

the contagion probability drops to 19 %. By changing place every 2 hours, Nc = 12 and 270

the contagious probability is 12 %. By comparing Fig. 4B and Fig. 4E, we conclude that 271

the reduction achieved by increasing Nc would be more robust if the fraction of 272

infectious people, γ, or if the utmost pathogen charge, κτ were lower. Increasing the 273

number of contacts alleviates more the response when γ and κτ are small and h is large. 274

Conclusions 275

Some conditions must be satisfied for the existence of evenness curtailing of response. 276

First, the expected response must be negligible for small pathogen charges and grow 277

sharply at a certain point. This condition is satisfied h > 1 in Fig. 1. The effect is more 278

substantial for large values of h, which translates into steeper curves. Second, the ratio 279

between the utmost pathogen charge, κτ , and the 50 % response charge, Q, must be 280

below a threshold. The lower the fraction of infected people in the population, γ, the 281

higher the threshold, represented by the black lines of Fig. 5G-I. Therefore the evenness 282

curtailing is observed in activities where the time spent close to other people is not high, 283

with the population primarily unexposed to the pathogen. People in such situations 284

during an epidemic with h > 1, should move around instead of staying too long near the 285

same neighbors. 286

The present analysis does not encompass the whole dynamics of such a complex 287
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phenomenon as the evolution of an epidemic. Nevertheless, it is a tool for 288

understanding specific responses in certain circumstances and clarifying the dynamics’ 289

details. Furthermore, it demonstrates the importance of investigating the precise shape 290

of the dose-response curve and determining the curve concavity, mainly for small 291

pathogen charges. 292
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