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Abstract14

Timely, accurate, and comparative data on human mobility is of paramount importance15

for epidemic preparedness and response, but generally not available or easily accessible.16

Mobile phone metadata, typically in the form of Call Detail Records (CDRs), represents17

a powerful source of information on human movements at an unprecedented scale. In18

this work, we investigate the potential benefits of harnessing aggregated CDR-derived19

mobility to predict the 2015-2016 Zika virus (ZIKV) outbreak in Colombia, when com-20

pared to other traditional data sources. To simulate the spread of ZIKV at sub-national21

level in Colombia, we employ a stochastic metapopulation epidemic model for vector-22

borne disease. Our model integrates detailed data on the key drivers of ZIKV spread,23

including the spatial heterogeneity of the mosquito abundance, and the exposure of the24

population to the virus due to environmental and socio-economic factors. Given the same25

modelling settings (i.e. initial conditions and epidemiological parameters), we perform26

in-silico simulations for each mobility network and assess their ability in reproducing the27

local outbreak as reported by the official surveillance data. We assess the performance28

of our epidemic modelling approach in capturing the ZIKV outbreak both nationally and29

sub-nationally. Our model estimates are strongly correlated with the surveillance data at30

the country level (Pearson’s r=0.92 for the CDR-informed network). Moreover, we found31

strong performance of the model estimates generated by the CDR-informed mobility net-32

work in reproducing the local outbreak observed at the sub-national level. Compared33

to the CDR-informed network, the performance of the other mobility networks is either34

comparatively similar or substantially lower, with no added value in predicting the local35

epidemic. This suggests that mobile phone data capture a better picture of human mobil-36

ity patterns. This work contributes to the ongoing discussion on the value of aggregated37

mobility estimates from CDRs data that, with appropriate data protection and privacy38

safeguards, can be used for social impact applications and humanitarian action.39
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1 Introduction40

In 2015-2016, a large-scale outbreak of Zika virus (ZIKV) infection affected the Americas and41

the Pacific. The epidemic was first confirmed in Brazil in May 2015 and rapidly reached a42

total of 50 countries and territories through the end of 2016 [1]. ZIKV infection is typically43

accompanied by mild illness, but following the increased incidence of neurological complications,44

including microcephaly in newborns and Guillain-Barrè syndrome, the WHO declared a Public45

Health Emergency of International Concern (PHEIC) [2] in February 2016, which lasted for46

nearly 10 months.47

First isolated in the Zika forest of Uganda in 1947, ZIKV is primarily transmitted by infected48

Aedes mosquitoes [3, 4], also responsible for transmitting other infectious diseases, including49

dengue, chikungunya, and yellow fever. Other ways of transmission have been reported, such as50

sexual and perinatal transmission [5, 6, 7, 8] and blood transmission through blood transfusion51

[9]. The likelihood of sustained local transmission of ZIKV is therefore fuelled by the presence of52

Aedes mosquitoes, whose spatial heterogeneity and seasonal variability are in turn regulated by53

the local environment and climate [10]. Since mosquitoes cannot fly too far, but tend to spend54

their lifetime around where they emerge, human population movement is likely responsible for55

ZIKV introduction to new regions with favourable local conditions for mosquitoes proliferation56

and sustained disease transmission [11].57

Human mobility is in fact a key driver of ZIKV spread as well as of several infectious diseases,58

increasing the disease prevalence by introducing new pathogens into susceptible populations,59

or by increasing social contacts between susceptible and infected individuals [12]. Timely,60

accurate, and comparative data on human mobility is therefore of paramount importance for61

epidemic preparedness and response, but generally not available or easily accessible. Traditional62

data, typically collected from censuses, is often inadequate due to lack of spatial and temporal63

resolution, or may be completely unavailable in developing countries. Mathematical models,64

such as the gravity model of migration or the radiation model, represent an alternative to65

overcome scarcity of traditional data by synthetically quantifying mobility patterns at different66

scale. However, more detailed data on mixing patterns is generally needed to capture the67

spatio-temporal fluctuations in disease incidence [13, 14].68

The recent availability of large amounts of geolocated datasets have revolutionized research69

in this field, enabling to quantitatively study individual and collective mobility patterns as70

generated by human activities in their daily life [15]. In this context, mobile phone metadata,71

typically in the form of Call Detail Records (CDRs), represents a powerful source of informa-72

tion on human movements. Created by telecom operators for billing purposes and summarising73

mobile subscribers’ activity (e.g. phone calls, text messages and data connections), CDRs rep-74

resents a relatively low-cost resource to draw a high-level picture of human mobility patterns at75

an unprecedented scale [12]. The availability of aggregated CDR-derived mobility has impacted76

several research fields [16], with significant applications to the spatial modelling of many infec-77

tious diseases, such as malaria [17, 18], dengue [19], cholera [20], rubella [21], Ebola [22, 23],78

and COVID-19 [24, 25, 26, 27, 28].79

In this study, we investigate the potential benefits of harnessing CDRs data to predict the80

spatio-temporal spread of Zika virus in Colombia, at sub-national level, during the 2015-201681

outbreak in the Americas [29]. We assess the potential improvement in predictive power of82

integrating aggregated cell phone-derived population movements into a spatially structured83

epidemic model, when compared to more traditional methods (e.g. census data and mobility84

models). For this, we examine different sources of human mobility, including i) CDRs data,85

derived from more than two billion encrypted and anonymized calls made by around seven86
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million mobile phone users in Colombia over a six-month period between December 2013 and87

May 2014 [30]; ii) the traditional data of commuting patterns from the 2005 Colombian census88

[31]; iii) the gravity model, which assumes that the number of trips increases with population89

size and decreases with distances [32]; and iv) the radiation model, which assumes that the90

mobility depends on population density [33]. After examining their ability to match the census91

patterns from a network’s point of view, we examine whether the observed discrepancies between92

networks affect the epidemic outcomes. To this end, we employ a metapopulation epidemic93

model to simulate the spatial spread of Zika virus as governed by the transmission dynamics94

of the virus through human-mosquito interactions and as promoted by population movements95

across the country. Given the same modelling settings (e.g. initial infections, epidemiological96

parameters), we perform in-silico simulations of the spatio-temporal progression of the epidemic97

and evaluate the human mobility patterns relevant to predicting the spread of ZIKV infections in98

Colombia. In more detail, here we follow the state-of-the-art computational modelling approach99

of the Global Epidemic and Mobility Model (GLEAM) [34] in the analysis of the epidemic100

spread of Zika virus in the Americas developed by Zhang et al. [35]. Our epidemic model101

integrates detailed data on spatial and seasonal heterogeneity driven by the presence of the102

vector and the exposure of the population to the vector itself due to socio-economic factors.103

This is because sustained local transmission of Zika virus is possible only in those areas where104

the local environment and climate favour the proliferation of mosquitoes [10], but at the same105

time the socio-economic factors modulate the exposure of the population to the vector itself,106

even when the environmental conditions are suitable for the transmission of the virus.107

In the absence of accurate data on the introduction of Zika virus in Colombia and following108

the evidence that many ZIKV infections were likely imported into Colombia throughout the109

epidemic [36], we use the simulation output of the computational model (GLEAM) developed110

by Zhang et al. [35] as initialization of our epidemic model. In particular, Zhang et al. [35]111

showed that ZIKV was likely introduced to Brazil between August 2013 and April 2014 (90%112

credible interval), in agreement with the genetic findings. The transmission of ZIKV in the113

Americas was in fact first confirmed in May 2015 in northeast Brazil, but epidemiological and114

genetic findings estimated that ZIKV arrived in Brazil much earlier, between October 2013 and115

April 2014 [37]. After that, ZIKV was likely introduced to Colombia between January and116

April 2015 [36], that is 6 to 9 months before the ZIKV outbreak was officially declared by the117

Colombian National Institute of Health in October 2015. Traditional disease monitoring was118

therefore not sufficient to capture the initial spread of infections in Colombia. Leveraging on119

such global approach allows us to inform our epidemic model with the travel-associated ZIKV120

infections entering Colombia, and potentially triggering local ZIKV transmission, to ultimately121

assess the impact of internal mobility patterns in predicting the spatio-temporal dynamics of122

ZIKV transmission in Colombia.123

2 Materials and Methods124

2.1 Epidemiological data125

We use weekly epidemiological reports from the Colombian National Institute of Health (INS)126

[38] that document the cumulative number of laboratory-confirmed and suspected cases of Zika127

virus disease by departments and districts (i.e. the major cities of Barranquilla, Buenaventura,128

Cartagena, and Santa Marta). Reports are accessible at the following URL: http://www.ins.129

gov.co/buscador-eventos/BoletinEpidemiologico/Forms/AllItems.aspx.130

From this, we computed the weekly number of new ZIKV cases by department for the131
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Fig. 1. Data layers by Colombian department. (A) Cumulative ZIKV incidence (per
100,000 population) reported by Colombia’s National Institute of Health in the period from Oc-
tober 4, 2015 (epidemiological week 2015-40) to October 2, 2016 (epidemiological week 2016-40).
(B) Population estimates by department. Population is mainly concentrated in the northern
and western part of the country, where most of the urban centres are located, whereas the
southern and eastern parts of Colombia are mostly sparsely inhabited. (C) Fraction of popu-
lation exposed to ZIKV due to environmental and socio-economic conditions (more details in
Section 4.1 of the Supplementary Material).

entire epidemic period, from the earliest reported cases in epidemiological week 2015-40 to132

epidemiological week 2016-40 (note that the INS declared the end of the epidemic on July 25,133

2016, in week 2016-30). The incidence data reported by district was included in the total number134

for the corresponding department. Due to the lack of data in the 2015-47 epidemiological report,135

suspected cases are calculated by interpolation. Note that the INS did not report the incidence136

in the Capital District, Bogotá, since most of the cases in the city originated in other reporting137

areas.138

With over 100,000 cases reported (of which approximately 8% laboratory confirmed), Colom-139

bia had the second highest number of reported cases among the 50 countries with autochthonous140

transmission during the 2015-2016 outbreak in the Americas. Data profiles by department of141

Colombia are reported in Table S1 in the Supplementary Material. Figure 1A shows the cu-142

mulative incidence of Zika virus cases per 100,000 population. The most affected areas were143

the departments of San Andres (727 cases/100,000), Norte De Santander (692 cases/100,000),144

and Casanare (670 cases/100,000). Note that underreporting due to the clinical similarities145

of mild symptoms associated with Zika, limited diagnostic capabilities, medically unattended146

cases, and asymptomatic infections (ranging from 50% to 80% [39, 40]), may have contributed147

significantly to underestimating the actual extent of the epidemic.148

2.2 Measuring human mobility in Colombia149

In this study, we examine different sources of human mobility in Colombia, including the i)150

CDR-informed mobility, ii) traditional census data, and iii) mathematical mobility models.151

From this, we create four different mobility networks of daily population movements between152

the 33 departments of Colombia. Note that, since we use a Markovian dynamics to model153

the migration process in the epidemic model (more details in Section 2.3), we symmetrize the154

4
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flows in each mobility network by averaging flows wij and wji (missing links are treated as null155

values, i.e. wij = 0).156

Population data is obtained from the database of the Gridded Population of the World157

project from the Socioeconomic Data and Application Center at Columbia University (SEDAC),158

consisting of population estimates in 2015 per grid-cell 1kmx1km (sedac.ciesin.columbia.159

edu). Figure 1B shows the distribution of population estimates by department.160

2.2.1 CDR-informed mobility network161

We use aggregated mobile phone data obtained from more than two billion encripted and162

anonymized metadata calls made over a six-month period, from December 2, 2013 to May 19,163

2014. The data consists of weekly origin-destination (OD) matrices of number of trips Twij164

from municipality i to municipality j occurred in week w and weekly number of active phone165

numbers nwi in municipality i in week w, where w goes from calendar week 2013-49 to calendar166

week 2014-21. Note that this data therefore do not refer to daily commuting patterns based on167

users’ most frequently visited locations, but comprise all type of movements. However, given168

the long observation period and large operator coverage, we assume that potential variability169

due to long-distance travels, weekly and/or seasonal fluctuations, major vacation periods, etc.,170

are smoothed when considering average values.171

From this, we generate the CDR-informed mobility network at the spatial resolution of172

departments, hereafter referred to as wCDRij , by averaging values over time and normalizing flows173

to match the same population size. In particular, we employ a standard weighting approach174

and compute weights based on the population sampling ratio ni/N
w
i in location i, where Ni is175

the resident population (see Figure S2 in the Supplementary Material). This way we correct for176

potential biases due to under- or over-sampling of the population, although population samples177

already show good agreement (Spearman’s ρ=0.87, p < 0.01). More details are provided in178

Section 2 of the Supplementary Material.179

2.2.2 Census network180

Commuting data refers to the 2005 Colombian census of the National Institute of Statistics [31].181

The data is in the form of an OD matrix of daily population movements between municipalities.182

We aggregate flows spatially into departments and rescale them to reflect the 2015 population183

estimates. In the following, we will refer to the census network as wCij . Note that although this184

dataset is not recent and comprises only the commuting patterns, we will use it as a reference185

when comparing the various mobility networks.186

2.2.3 Synthetic mobility networks187

We create synthetic mobility networks using two mathematical mobility models, namely the188

gravity model [32] and the radiation model [33].189

The gravity model assumes that the flows wij of individuals travelling from location i with190

population Ni to location j with population Nj placed at distance dij take the following form191

[32]:192

wGij = C
Nα
i N

γ
j

f(dij)
(1)

where C is a proportionality constant, α and γ tune the dependence with respect to each193

location size, and f(dij) is a distance-dependent function. By applying a multivariate linear194

5
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Fig. 2. Epidemic modelling framework. (A) The disease dynamics occurs according
to a compartmental classification for ZIKV infection. Humans follows a susceptible-exposed-
infectious-removed (SEIR)H classification, whereas mosquitoes follow a susceptible-exposed-
infectious (SEI)V . The transmission dynamics of ZIKV occurs through the interaction between
susceptible humans SH and infected mosquitoes IV , and between infected humans IH and
susceptible mosquitoes SV . (B) Summary of epidemiological parameters: Tdep. denotes param-
eters that are temperature-dependent. T,Gdep. denotes parameters that are temperature- and
geolocation-dependent. Specific values for the parameters can be found in Refs. [35, 41, 42, 43]

regression analysis in the logarithmic scale, we estimate the free parameters in Eq. (1) that195

best fit the census data (see Table S2 in the Supplementary Material).196

In the radiation model, instead, the flows wij take the following form [33]:197

wRij = Ti
NiNj

(Ni + sij)(Ni +Nj + sij)
(2)

where Ni is the population living at origin i, Nj is the population living at destination j, sij198

is the total population living in a circle of radius dij centred at i, excluding the populations199

of origin and destination locations, and Ti is the total outflow from i (i.e.
∑

j 6=iwij). The200

radiation model is parameter-free (i.e. it does not require regression analysis or fit on existing201

data), it only requires the estimate of the total number of travellers Ti from the census data.202

Given these quantities, we apply the gravity law of Eq. (1) and the radiation law of Eq. (2)203

on a fully connected synthetic network, whose nodes correspond to the Colombian departments,204

thus yielding the flows wGij and wRij, respectively.205

2.3 Modelling the epidemic spread of ZIKV in Colombia206

We employ a stochastic metapopulation epidemic model to simulate the spatial spread of ZIKV207

at sub-national level in Colombia as governed by the transmission dynamics through human-208

mosquito interactions and population movements across the country. In this work we largely209

follow the state-of-the-art modelling approach of the Global Epidemic and Mobility Model210

(GLEAM) [34] in the analysis of the 2015-2016 ZIKV epidemic in the Americas developed211

by Zhang et al. [35]. In this section, we present the conceptual framework while a detailed212

description is provided in Section 4 of the Supplementary Material.213

Figure 2A describes the epidemic modelling framework. In the metapopulation structure,214

the 33 departments of Colombia represent the subpopulations which are coupled by weighted215
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links based on each mobility network considered in this study. The migration process among216

subpopulations is modelled with a Markovian dynamics, representing individuals who are in-217

distinguishable regarding their travel pattern, so that at each time step the same travelling218

probability applies to all individuals without having memory of their origin [44]. No other type219

of movement is considered. The infection dynamics occurs in homogeneous mixing approxima-220

tion within each subpopulation according to a compartmental classification of the individuals221

based on the various stages of the disease. Specifically, humans are classified according to222

a susceptible-exposed-infectious-removed (SEIR)H compartmental model, whereas mosquitoes223

follow a susceptible-exposed-infectious (SEI)V compartmental model.224

The model is fully stochastic and transitions among compartments are simulated through225

chain binomial processes. The transmission dynamics of the virus occurs through the interaction226

between i) susceptible humans SH and infected mosquitoes IV under the vector-to-human force227

of infection λV H , and ii) infected humans IH and susceptible mosquitoes SV under the human-228

to-vector force of infection λHV . We neglect the secondary routes of transmission, e.g. perinatal229

or blood transmission. The force of infection follows the usual mass-action law, given by the230

expressions λV H = βτV H
IV
NH

and λHV = βτHV
IH
NH

, where β accounts for the daily mosquito231

biting rate and the specific transmissibility of ZIKV, and τV H and τHV correspond to the232

probability of transmission mosquito-to-human and human-to-mosquito, respectively.233

The remaining transitions between compartments occur spontaneously. Exposed individuals234

EH become infectious at a rate εH and infectious individuals IH recover from the disease at a rate235

µH , inversely proportional to the mean infectious period, µ−1H . Similarly, exposed mosquitoes236

EV become infectious at a rate εV and die at a rate µV , inversely proportional to the mosquito237

lifespan µ−1V . Mosquitoes are re-introduced in the susceptible compartment at the same rate238

to allow the replenishment of mosquitoes after death. Figure 2B reports a summary of the239

epidemiological parameters that intervene in the model, accounting for the key drivers of ZIKV240

transmission, such as temperature and mosquito abundance. These are also used to identify241

those areas where ZIKV outbreaks are not possible due to environmental factors. Moreover,242

data on the GDP per capita is used to model the socio-economic heterogeneity and its impact243

on the population’s risk of exposure to mosquitoes. Population is therefore assigned a rescaling244

factor rse modulating its exposure to the vector based on local socio-economic conditions. Figure245

1C shows the fraction of the population exposed to ZIKV due to environmental and socio-246

economic conditions. More details are reported in Section 4 of the Supplementary Material.247

In the absence of accurate data on the introduction of Zika virus in Colombia and following248

the evidence that many ZIKV infections were likely imported into Colombia throughout the249

epidemic [36], we use the simulation output of the computational model (GLEAM) developed250

by Zhang et al. [35] as initialization of our epidemic model. Following the approach by Sun et251

al. [45], we extract the travel-associated ZIKV infections entering Colombia as stochastically252

simulated by GLEAM. This results in a total of 1,189 simulated ZIKV epidemics for which253

we know the time of arrival, the stage of ZIKV infection (exposed or infectious), and the254

airport of origin and arrival. Figure S7 in the Supplementary Material shows the time-series255

boxplot of Zika virus imported cases, along with the main countries of origin and departments256

of destination in Colombia. The daily number of ZIKV introductions has a median value of 10257

cases (IQR: 3-21) for a total of 8,671 cases (IQR: 8,315-9,064) imported into Colombia during258

the entire epidemic period. Note that the same rescaling factor due to environmental and259

socio-economic conditions applies to the imported ZIKV infections such that the likelihood of260

seeding an epidemic locally varies depending on whether the subpopulation of destination is at261

risk or not of ZIKV transmission. This is evident in Figure S8 of the Supplementary Material262

that shows the average daily ZIKV introductions and its proportion rescaled by the overall263
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Fig. 3. Mobility networks. Origin-destination matrices of the flows wij among Colombian
departments in the CDR-informed network (A), the census network (B), the gravity network
(C), and the radiation network (D). The colour code represents the weights wij on links ij
(grey indicates no movement). Departments are sorted according to population size.

exposure to the vector.264

We generate 100,000 stochastic realizations using discrete time steps of one full day starting265

on January 1, 2015. At each iteration, we randomly sample one simulated time-series of ZIKV266

imported cases among the 1,189 simulations and use it as seeding of our epidemic model. The267

process is repeated for each mobility network under study, so that, given the same modelling268

settings (i.e. initial conditions and epidemiological parameters), we can assess their performance269

in predicting the Zika virus outbreak in Colombia.270

Data analysis was performed with Python (version 3.7). The code of the epidemic model271

was written in object-oriented C++ for computational efficiency and the simulations were272

performed in parallel on a high-performance computing cluster of 11 cores (146 nodes).273

3 Results274

3.1 Comparing sources of human mobility in Colombia275

Figure 3 shows the mobility networks in form of origin-destination matrices as obtained from the276

CDR-informed network (A), the census network (B), the gravity network (C), and the radiation277

network (D). All networks share the same number of nodes (i.e. Colombian departments), but278

with significant variations in the number of weighted links and total volume of travellers (Table279

1). The gravity network has the largest number of links and fully connected nodes, whereas the280

CDR-informed network has the largest number of travellers. The heatmaps show also that the281

flows wij decrease with population size. This is particularly evident in the radiation network282

(Figure 3D) as the model assumes that mobility depends on population density, thus penalizing283

those departments that are less populated. On the other hand, the gravity network (Figure 3C)284

is highly connected with smaller flows even with more distant and less populated departments.285

Flows generally decrease with distance (see Figure S6 in the Supplementary Material). In all286

networks, the highest flow occurs between the Capital District Bogotá and the near department287

of Cundinamarca, which is approximately 57 km distant, and concerns most of the commuting288
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Table 1. Basic properties of the mobility networks. The table reports the total number
of nodes and links, the number of links shared with the census network, and the total volume
of travellers of each mobility network under study. Self-loops are excluded.

Network No. nodes No. links No. shared links (%) Volume
wCij 33 760 - 494,234

wCDRij 33 972 742 (97.63) 2,005,992

wGij 33 1,006 754 (99.21) 71,871

wRij 33 736 642 (84.47) 457,737

Table 2. Statistical comparison of the mobility networks against the census net-
work. The table reports the values of Kendall’s τ and Spearman’s ρ correlation coefficients
(computed both on flows wij and outflows

∑
iwij), the Jaccard index, the cosine similarity, and

the common part of commuters (CPC). All p-values are statistically significant (p < 0.01).

Network Kendall τ Spearman’s ρ Jaccard Cosine CPC
wij

∑
iwij wij

∑
iwij Index Similarity

wCDRij 0.70 0.77 0.88 0.92 0.75 0.97 0.39

wGij 0.60 0.73 0.78 0.89 0.75 0.92 0.22

wRij 0.58 0.81 0.77 0.95 0.75 0.99 0.69

pattern. In general, higher rates of mobility mainly concern the northern and western part289

of the country, where most of the urban centres are located, whereas lower rates of mobility290

concern instead the southern and eastern parts, which are mostly sparsely inhabited (see maps291

in Figure S5 in the Supplementary Material).292

Restricting the analysis to the topological intersection of the mobility networks and the293

census network, we analyse the structural and flows properties of the networks. Table 2 reports294

the similarity metrics of the mobility networks compared to the census network (definitions are295

reported in Section 5 of the Supplementary Material). Considering the topology of the networks296

in terms of shared links compared to the total number of links, the Jaccard index is 0.75 for all297

mobility networks. However, when considering the weights wij, the common part of commuters298

(CPC) varies significantly across networks, ranging from 0.22 for the gravity network to 0.69299

for the radiation network. Finally, the cosine similarity is a measure of similarity that takes300

into account both links and weights shared by two networks, and this ranges from 0.92 for the301

gravity network to 0.99 for the radiation network.302

Figure 4 shows the flows wij as compared to the flows wCij of the census network. Flows in the303

CDR-informed network are generally larger than in the census network. Correlation between304

flows wij is highest for the CDR-informed network, with Kendall’s τ=0.70 and Spearman’s305

ρ=0.88, while we found weaker correlations for the radiation network (τ=0.58, ρ=0.77). When306

considering the outflows
∑

iwij, the radiation network shows instead the highest correlations307

(τ=0.81, ρ=0.95) as the total volume of travellers match the volume in the census network.308

3.2 Comparing the mobility networks in the epidemic outcome309

Stochastic realisations obtained from our epidemic model (run separately for each mobility net-310

work) define the model output used to provide the spatio-temporal patterns of ZIKV spread in311

Colombia and assess the potential benefits of using CDR-derived mobility. From this stochastic312
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Fig. 4. Comparison of mobility flows against the census network. Relationship
between census flows wCij (x-axis) and mobility flows in the CDR-informed network (A), gravity
network (B), and radiation network (C). Spearman’s ρ correlation coefficient is reported.

ensemble, we compute the weekly number of new ZIKV infections (median number and 95%313

CI) of the model estimates. Before the simulations’ selection based on the observed epidemic314

peak in Colombia, we first assess the performance of each mobility network in reproducing the315

outbreak at the national level. In Figure 5, we show the estimated weekly incidence of ZIKV316

infections (per 100,000 population) in comparison with the official surveillance data reported317

by Colombia’s National Institute of Health (INS). For ease of comparison, the latter is scaled318

on the peak of the model estimates of the CDR-informed network. This is because the model319

projects a much larger number of infections than that captured by surveillance, as expected320

for a typically asymptomatic or mild disease. In particular, based on the official surveillance321

data, the epidemic peak occurred in week 2016-05 with an incidence of approximately 10 cases322

per 100,000 population, thus meaning two orders of magnitude of difference at the peak. To323

quantify the simulation’s performance in capturing the temporal trend, we compute the Pear-324

son’s r correlation between the estimated and observed ZIKV incidence at the country level325

between week 2015-40 to week 2016-40. This ranges between 0.88 for the radiation network326

to 0.92 for the CDR-informed network (all p < 0.01). This is an indicator of the goodness327

of the performance of our model and epidemiological parameters in capturing the outbreak328

without applying any fit on the observed data. As for the epidemic peak, the model predictions329

are in good agreement and predict the peak within the confidence intervals. In particular,330

the model estimates of the radiation network predict the epidemic peak accurately at week331

2016-05, with 95%CI ranging from week 2015-51 to week 2016-14. The model estimates of the332

census and gravity networks predicts the epidemic peak with 1 week lag (2016-06), whereas the333

CDR-informed network with 4 weeks lags (2016-09).334

In order to provide a more detailed analysis of the goodness of fit, among each stochastic335

ensemble output generated for each mobility network, we select only those stochastic realisations336

reproducing the observed epidemic peak in Colombia (±1 week). This additional calibration337

allows us to generate output ensembles with a narrow confidence in the epidemic timing and338

enables the analysis of results at the department level conditional to the occurred national peak339

timing. Findings are consistent when selecting stochastic realisations with a tolerance of ±2340

weeks around the observed epidemic peak.341

We excluded from this analysis those departments with less than 100 total ZIKV cases re-342

ported by the official surveillance data, which correspond to the departments of Nario, Vichada,343

Choco, Vaupes, and Guainia (cumulative cases are reported in Table S1 of the Supplementary344

Material). As for the Capital District Bogotá, ZIKV cases were not reported by the INS since345
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Fig. 5. Comparison between the estimated and observed ZIKV incidence. Weekly
number of new ZIKV infections (per 100,000 population) as estimated from the stochastic
ensemble output in the setting using the CDR-informed network (blue), the census network
(black), the gravity network (orange), and the radiation network (purple). The bold line and
shaded area refer to the median number of infections and 95% CI of the model estimates. Black
dots correspond to the official ZIKV incidence (per 100,000 population) reported by Colombia’s
National Institute of Health (right y-axis). For ease of comparison, surveillance data is scaled
on the peak of the model estimates of the CDR-informed network. The inset graph shows the
peak week as calculated from the model estimates. The observed epidemic peak was at week
2016-05 (green line).

the cases mostly originated in other reporting areas, and our model estimates capture this evi-346

dence as no new ZIKV infections are generated in this area due to the adverse environmental347

and socio-economic conditions. This further strengthens our epidemic modelling choices in in-348

tegrating those factors relevant to reproduce the spread of ZIKV in Colombia. Model estimates349

are of course affected by the data layers we integrated in our epidemic modelling approach.350

As expected, model estimates are correlated with the rescaling factor rexp regulating the pop-351

ulation exposure to ZIKV due to environmental and socio-economic conditions (Spearman’s ρ352

ranging between 0.69 to 0.73). The model-based projections increase with higher values of rexp353

as the size of the population participating in the infection dynamics increases (Figure S9 of the354

Supplementary Material). In particular, we estimate through a linear regression fit a reporting355

and detection rate ranging between 0.51% ± 0.23% for the gravity network to 0.72% ± 0.32%356

for the CDR-informed network (all p < 0.05).357

To quantify the simulation’s performance in capturing the epidemic timing observed in each358

Colombian department, we calculate the Pearson’s r correlation between the model estimates359

generated by each mobility network and the observed surveillance time series, as shown in Figure360

6A. Namely we investigate the correlation between the model estimated weekly incidence and361

the corresponding observed surveillance incidence in the time span ranging from week 2015-362

40 to week 2016-40. The CDR-informed network predicts well the local outbreak in 20 out363

of 27 departments (i.e. significant correlations), which are all situated in the northern and364

central part of the country, where most of the population lives. In the remaining departments365

where the CDR-informed network fails in reproducing the local outbreak, the other mobility366

networks do so as well. This is more evident in the bottom row of Figure 6 where we compare367

the correlation of the CDR-informed network with the correlation of the census network (B),368
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Fig. 6. Correlation between model estimates and official surveillance data. (A)
The heatmap shows the Pearson’s r correlation obtained by comparing the model estimates
generated by each mobility network (on the y-axis) and the official surveillance times series by
department (on the x-axis, sorted by population size). The bottom row shows the comparison
between the Pearson’s r correlation obtained for the CDR-informed network (y-axis) with the
Pearson’s r correlation obtained for the census network (B), the gravity network (C), and the
radiation network (D). Point size corresponds to population size.

the gravity network (C), and the radiation network (D), by population size. Compared to369

the CDR-informed network, the performance of the other mobility networks is comparatively370

similar or substantially lower, with no added value in predicting the ZIKV outbreak at the level371

of departments.372

We investigate this further by looking at the main characteristics of the mobility networks,373

i.e. node degree, total volume (traffic), and population size, as shown in Figure 7. Here374

we observe that in the CDR-informed network (Figure 7A) correlations are lower in those375

departments with smaller node degree, lower traffic and smaller population size, which is the376

case of the departments of Putumayo, Amazonas, and San Andres. On the contrary, the377

performance of the other mobility networks is very heterogeneous: departments with small378

values of node degree, traffic and population, reach good results, and vice versa departments379

with high values perform worse.380

4 Discussion381

We assessed the potential benefits of integrating aggregated CDR-derived mobility into a spa-382

tially structured epidemic model to predict the Zika virus outbreak in Colombia in 2015-2016.383
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Fig. 7. Correlation by main properties of mobility networks. The plots show the
Pearson’s r correlation (y-axis) by the total outflows

∑
iwij of the CDR-informed network (A),

census network (B), gravity network (C), and radiation network (D). Point size corresponds to
population size. Colour code corresponds to node degree. Note that the scale of the colorbar
changes across subplots in order to highlight the variability across networks.

Human mobility is in fact a key driver of ZIKV spread and integrating this variable into spa-384

tial models can provide valuable insights for epidemic preparedness and response [11]. Timely,385

accurate, and comparative data on human mobility is therefore of paramount importance. For386

this, we compared different sources of human mobility and explored whether the discrepancies387

between networks affect the epidemic outcomes. To simulate the spread of ZIKV at sub-national388

level in Colombia, we employed a stochastic metapopulation epidemic model for vector-borne389

disease. Following the state-of-the-art computational modelling approach developed by Zhang390

et al. [35], our model integrates detailed data on the population, the spatial heterogeneity of391

the mosquito abundance, and the exposure of the population to the virus due to environmental392

and socio-economic factors. Moreover, we employed the simulation outputs of the epidemic393

model by Zhang et al. [35] as initialization of our epidemic model to overcome the lack of offi-394

cial surveillance data in the initial phase of the ZIKV outbreak. This allows us to inform our395

epidemic model with the travel-associated ZIKV infections entering Colombia and potentially396

triggering ZIKV transmission depending on the local conditions. Given the same modelling set-397

tings (i.e. initial conditions and epidemiological parameters), we performed in-silico simulations398

for each mobility network and assessed their performance in reproducing the local outbreak as399

reported by the official surveillance data from the Colombia’s National Institute of Health.400

First, we showed the performance of our epidemic modelling approach in predicting the401

ZIKV outbreak at the national level without fitting the model projections on the observed402

data. Remarkably, we found the model estimates to be strongly correlated with the official403

surveillance data: the highest correlation is obtained for the CDR-informed network (Pearson’s404

r=0.92), but comparatively similar for the other mobility networks. Moreover, our model405

estimates do not report ZIKV infections in the Capital District Bogotá, in agreement with the406

official surveillance data, as the environmental and socio-economic conditions are adverse to407

local ZIKV spread. This allows us to prove the strength of our epidemic modelling choices in408

integrating those factors relevant to predicting the ZIKV outbreak in Colombia and to therefore409

focus on the impact of the human mobility patterns to capture the spatial ZIKV spread, after410

the simulations’ selection.411

Second, the CDR-informed network predicts well the local outbreak in 20 out of 27 de-412

partments. When the model estimates of the CDR-informed network fail, this is consistent for413

all mobility networks, as in the case of the departments of Huila and Caqueta. In particular,414

compared to the CDR-informed network, the performance of the other mobility networks is415
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either comparatively similar or substantially lower, with no added value in predicting the local416

epidemic. Specifically, we found that correlations are smaller for the CDR-informed network417

in those departments with smaller node degree, lower traffic, and smaller population size. This418

is the case of the departments of Putumayo, Amazonas, and San Andres. This latter is an419

archipelago approximately 750 km north of the Colombian mainland, thus having fewer con-420

nections and smaller movements with the other departments. On the contrary, the performance421

of the other mobility networks is very heterogeneous: departments with small values of node422

degree, traffic and population, show good correlation, and vice versa departments with high423

values perform worse.424

This work comes with several limitations. First, official surveillance data on the ZIKV epi-425

demic suffer from several limitations. Traditional monitoring and reporting of ZIKV infections426

was not sufficient to capture the introduction of the virus in Colombia. According to genetic427

findings ZIKV circulated in the Americas since late 2013 [37], but official surveillance began428

much later in Colombia, in August 2015, months after the epidemic was confirmed in Brazil in429

May 2015. Moreover, the weekly epidemiological reports from the Colombian National Institute430

of Health are often inconsistent or inadequate with numbers of cases varying significantly over431

time and comparatively low detection of laboratory-confirmed cases. Underreporting due to432

the clinical similarities of mild symptoms associated with ZIKV, limited diagnostic capabilities,433

medically unattended cases, and asymptomatic infections, may have contributed significantly434

to underestimating the actual extent of the epidemic. This represents an additional challenge in435

our study as we use this dataset as a reference to assess the model performance in reproducing436

the ZIKV outbreak.437

Second, the census data employed here refers to the 2005 Colombian census, that is ten438

years before the Zika virus outbreak in 2015-2016. More recent data may be able to better439

capture the mobility features of the population and therefore the spatial ZIKV spread. On the440

other hand, the census data consists of commuting patterns of workers and students who daily441

commute to their workplace or school. Although this is the official source for trip-level data, this442

type of mobility is limited to commuting only, typically centered on major urban centers, and443

may not be representative of the mobility in rural or distant areas. As an example, in our study444

the census network performs best in the department of Cundinamarca, which is the nearest445

department to the Capital District Bogotá. Here the commuting may represent the largest part446

of the mobility patterns and thus be captured well by census data. In this context, the CDR-447

informed network may be instead more representative in capturing different types of mobility448

and not only daily commuting patterns, although inevitably biased by population sampling and449

coverage. A recent study on the 2015-2016 Zika virus epidemic in Colombia showed that an450

ensemble modelling approach integrating multiple data sources for human mobility, including451

CDR-derived mobility, is prominent to forecast an emerging infectious disease like Zika [46].452

Our modelling approach also contains assumptions and approximations as discussed in453

Zhang et al. [35]. The transmission model has been calibrated by using data from the French454

Polynesia outbreak in 2013-2014 and the expressions for temperature dependence of transmis-455

sibility are modelled on dengue virus data. Secondary modes of transmission, e.g. perinatal456

or blood transmission, are not incorporated into the model. Mosquito abundance relies on the457

mosquito presence/absence maps that come with further limitations [10, 47, 48]. Finally, we do458

not model public health interventions to control the vector population or behavioural changes459

due to increased awareness, which we know might be a key aspect in shaping the course of460

epidemics.461

Though the Zika virus outbreak modelled in this work is over in Colombia, in 2021 there462

are still many countries with autochthonous mosquito-borne transmission – a threat that is463
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increasing due to climate change. The response to many vector-borne diseases could benefit464

from the proposed modelling approach which should be part of epidemic response toolkits of465

public health authorities. Furthermore, in the ongoing COVID-19 pandemic, we believe this466

work is relevant not only because of the proposed methodologies, but also as it contributes to467

the ongoing discussion on the value of aggregated mobility estimates from CDRs data that, with468

proper data protection and data privacy mechanisms, can be used for social impact applications469

and humanitarian action [28].470

References

[1] Zika virus, Key Facts. Available at: https://www.who.int/news-room/fact-sheets/

detail/zika-virus;.

[2] World Health Organization. WHO Director-General summarizes the outcome of the Emer-
gency Committee regarding clusters of microcephaly and Guillain-Barré syndrome. Saudi
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