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Abstract       24 

The genetic architecture of numerous smoking behaviors is highly polygenic, but these genetic 25 

effects are heterogeneous and depend on moderating factors. Here, we used common SNPs from 26 

the UK Biobank to investigate heterogeneous genetic effects for smoking heaviness using 27 

cigarettes per day (CPD) records, smoking initiation (SI), and smoking cessation (SC). We 28 

assessed heterogeneous effects across levels of sex, age of smoking initiation, major depressive 29 

disorder (MDD) DSM-V-like diagnosis, generalized anxiety disorder (GAD) DSM-V-like 30 

diagnosis, and whether an individual has seen a psychiatrist for nerves, anxiety, tension, or 31 

depression. We observed suggestive evidence of heterogeneous genetic effects for CPD and SC, 32 

moderated by MDD and GAD, respectively [CPD �̂�! = 0.69 (SE = 0.15) between MDD cases and 33 

controls, and SC �̂�! = 0.38 (SE = 0.28) between GAD cases and controls, p < 0.05]. We detected 34 

5 SNPs with genome-wide significant evidence of heterogeneous effects moderated by either 35 

MDD or GAD (p-value < 5x10-8) for CPD and SC. We also observed strong evidence for 36 

heterogeneous genetic effects for SI between sexes (between-sex �̂�! = 0.82, SE = 0.02). While we 37 

detected no individual SNPs that were moderated by sex at genome-wide significance (all p-38 

value > 5x10-8), we observed evidence of novel genome-wide significant SI-SNP associations 39 

using sex-stratified GWAS; six loci were discovered in either men or women separately that 40 

were not identified in a previous smoking meta-analysis that had a 6-fold larger, sex-combined 41 

sample. Furthermore, using several independent testing samples, there was suggestive evidence 42 

that the prediction ability of a polygenic risk score (PRS) for smoking initiation improved 43 

through the utilization of sex-specific SNP effects. This work suggests that a more nuanced 44 

approach to GWAS analyses is warranted, as potential heterogeneous effects can complicate 45 

variant discovery and polygenic risk score accuracy. 46 
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 47 

Author Summary 48 

 Smoking imposes a heavy health burden and is highly polygenic in architecture. 49 

Consistent with most complex traits, many causal loci have yet to be identified, even when using 50 

the largest available samples. One possible reason for the difficulty in inferring genetic variants 51 

associated with such complex traits is that common genetic variants possess context-dependent 52 

(or heterogeneous) effects. Utilizing the UK Biobank, we find evidence for heterogeneous SNP 53 

effects on smoking initiation, heaviness, and cessation among psychiatric disorder cases and 54 

controls and between sexes. Failure to model such heterogeneity (when accounting for sample 55 

size) resulted in lower independent sample predictive ability. This work encourages a more 56 

nuanced approach to GWAS and polygenic risk prediction. The assumption that all genetic 57 

effects are homogeneous limits our understanding of complex traits when heterogeneous effects 58 

are present.   59 

Introduction 60 

Tobacco smoking has contributed to more than 20 million preventable deaths since 61 

1964[1] and disproportionally affects certain groups within populations. Individuals with 62 

depression and anxiety are at an increased risk of becoming nicotine dependent[2–4] and early-63 

onset smokers are more likely to smoke heavily compared to late-onset smokers[5]. Furthermore, 64 

sex differences in smoking behaviors are well-documented, with a consensus showing men 65 

exhibit greater rates of smoking initiation, cessation, and tobacco usage than women[6–8]. While 66 

numerous environmental factors likely contribute to tobacco’s heterogeneous usage, smoking 67 

behaviors are known to be heritable[9,10] with a highly polygenic architecture comprised of 68 
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many loci with very small effects[11–15]. Family studies have suggested that the genetic 69 

component to smoking is itself heterogeneous[16–19], i.e. dependent on certain factors that 70 

moderate one’s genetic risk to smoke, smoke heavily, or persist in smoking. 71 

Heterogeneous genetic effects could complicate efforts to identify genetic loci that 72 

influence smoking behaviors. While many genome-wide significant (GWS; p-value < 5x10-8) 73 

SNPs have been identified, their individual effects are small and collectively explain only about 74 

one-third of the SNP-heritability[20]. If many of the genetic effects for smoking are 75 

heterogeneous, this could partially explain i) differing tobacco usage across groups and ii) the 76 

exceedingly small size of average SNP effects when modeled as having a single effect across all 77 

groups or conditions. This second point may be especially true when the effect of an allele takes 78 

place only in a rare group (e.g., psychiatric disorder cases), where the average effect of an allele 79 

substitution (i.e., averaged across a random sample of psychiatric disorder cases and controls) 80 

would be weighted toward zero. Prior evidence from a Japanese population suggests sex-81 

dependent SNP effects for smoking behaviors[13], but few studies have utilized genome-wide 82 

SNP data to infer heterogeneous genetic effects for smoking behaviors across potential 83 

moderating factors. Other candidate gene studies have implicated individual loci with 84 

heterogeneous smoking effects[21], but these findings have not replicated in biobank-scale 85 

data[22].  86 

In this study, we estimated heterogeneous genetic effects for smoking heaviness [i.e., 87 

cigarettes per day (CPD)], smoking cessation (SC), and smoking initiation (SI) using the UK 88 

Biobank[23]. Heterogeneity of effects was assessed across levels of sex, age of smoking 89 

initiation (ASI), major depressive disorder (MDD) DSM-V-like diagnosis, generalized anxiety 90 

disorder (GAD) DSM-V-like diagnosis, and whether an individual had seen a psychiatrist for 91 
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nerves, anxiety, tension, or depression (PSYCH). We evaluated evidence for heterogeneous 92 

genetic effects at multiple scales: genome-wide, within functional annotations, and at single 93 

SNPs. Specifically, for each smoking trait we i) estimated the genetic correlation between groups 94 

(e.g., between MDD cases and controls) and the proportion of phenotypic variance explained by 95 

heterogeneous SNP effects genome-wide, ii) estimated differences in heritability enrichment 96 

among cell-type-specific annotations, and iii) conducted a GWAS to test for heterogeneous 97 

effects at individual SNPs. Given clear genome-wide evidence for differential genetic 98 

architectures for SI between sexes (as evident from a between-sex �̂�! = 0.82 SE = 0.02), we then 99 

evaluated polygenic risk score (PRS) accuracy for SI when allowing for SNP effects to be 100 

heterogeneous, as opposed to homogenous, between sexes.  101 

 102 

Results 103 

Clear genome-wide evidence of heterogenous SNP effects for SI between sexes 104 

Using common (MAF > 0.01) genome-wide SNPs, we modeled each smoking trait (CPD, 105 

SI, and SC) across levels of potential moderators (e.g., across males and females or MDD-like 106 

cases and controls) using a bivariate GREML model (see Methods). CPD is often transformed to 107 

different scales prior to analysis[16,21]; because SNP effect heterogeneity may depend on the 108 

chosen scale, we considered four different transformations of CPD for all analyses: the raw scale, 109 

binned, log transformed, and dichotomized (see Methods for more details). For all trait-by-110 

moderator combinations, we restricted our analyses to unrelated individuals (estimated 111 

relatedness <0.05, sample sizes in Table 1).   112 

From the bivariate model we estimated the genetic correlation (𝑟!) between strata to infer 113 

the presence of heterogeneous genetic effects that show disproportionality between strata (Table 114 
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1). Using a likelihood ratio test under the null hypothesis of 𝑟! = 1, we found limited evidence of 115 

different genetic effects across most moderators. However, we found strong evidence that 116 

genetic effects for SI differed between sexes (�̂�! = 0.82, SE = 0.02; p-value = 4.22 × 10-9), and 117 

nominally significant evidence that genetic effects for log-transformed CPD differed between 118 

MDD-like cases and controls (�̂�! = 0.69, SE = 0.15; p-value = 0.047). We also found suggestive 119 

evidence that genetic effects for SC differed between GAD-like cases and controls, but due to the 120 

relatively small number of GAD cases, the standard error was quite large (�̂�! = 0.38, SE = 0.28; 121 

p-value = 0.078). Estimates of genetic correlations using an alternative method, cross-trait 122 

LDSC[24], were consistent with GREML-based estimates (Supplementary Table S1). 123 

We next decomposed the total variance across strata to estimate the proportion of 124 

phenotypic variance explained by heterogeneous effects [denoted PVE(𝜎"#$% )] using a GREML 125 

interaction model[25] (Table 1). For SI, we estimated sex-dependent effects to account for 3.7% 126 

of the liability scale phenotypic variance (SE = 0.4%; p-value = 3.44x10-13). Likewise, for 127 

binned CPD, we estimated MDD-dependent genetic effects to account for 5.2% of the total 128 

variance but with larger uncertainty (SE = 2.3%; p-value = 0.007). 129 

 130 

 131 

 132 

 133 
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 138 

 139 

Table 1 Genome-wide estimates of heterogeneous genetic effects 140 

a CPD: cigarettes per day (transformation); SC: smoking cessation; SI: smoking initiation 141 
b ASI: age of smoking initiation; GAD: generalized anxiety disorder; MDD: major depressive disorder; PSYCH: 142 
whether an individual has seen a psychiatrist for nerves, anxiety, tension, or depression; SEX: males vs females. 143 
c Sample sizes, consisting of unrelated individuals. For MDD and GAD, N1 is the number of cases; for SEX, N1 is 144 
the number of males; for ASI, N1 is the number of late (> 17 y.o.) onset smokers; for PSYCH, N1 is the number of 145 
individuals who have seen a psychiatrist for nerves, anxiety, tension, or depression. 146 
d 𝑟!= the between-strata genetic correlation, as estimated from a bivariate GREML model. 147 
e PVE%𝜎"#$% ' = the proportion of variance explained by heterogeneous effects, as estimated from a separate interaction 148 
GREML model (see Methods). For binary traits (SI, SC, and dichotomized CPD), the estimate is on the liability 149 
scale using sample trait prevalences.  150 
f P-values obtained from a likelihood ratio test (LRT). 151 
 152 
 153 

To determine if genetic variances themselves differed between strata, we estimated fold 154 

differences in variance components as estimated from the bivariate model (Fig. 1). For CPD 155 

Traita Moderatorb N1
c N2 

𝑟!d   PVE%𝜎"#$% 'e   LRT p-valuef 

Estimate SE   Estimate SE   𝐻&: 𝑟! = 1 𝐻&: 𝜎"#$% = 0 
CPD (binned) ASI 58,767 57,893 1 0.06   0.0024 0.005   0.5 0.282 
CPD (binned) GAD 3,760 32,390 0.98 0.34  1x10-6 0.026  0.477 0.5 
CPD (binned) MDD 9,679 23,400 0.69 0.16  0.0518 0.023  0.05 0.007 
CPD (binned) PSYCH 17,219 101,007 0.85 0.08  0.0106 0.008  0.056 0.088 
CPD (binned) SEX 62,062 56,585 1 0.05   1x10-6 0.006   0.5 0.5   
CPD (dichotomized) ASI 28,237 26,794 1 0.07  0.0213 0.017  0.5 0.06 
CPD (dichotomized) GAD 1,800 15,414 1 2.9  0.146 0.089  0.5 0.038 
CPD (dichotomized) MDD 4,525 11,127 0.85 0.28  0.107 0.077  0.315 0.073 
CPD (dichotomized) PSYCH 8,402 47,666 0.97 0.11  0.0005 0.023  0.386 0.492 
CPD (dichotomized) SEX   29,744 26,536 0.99 0.07   0.0178 0.019   0.425 0.178 
CPD (log) ASI 58,767 57,893 1 0.05  0.006 0.005  0.5 0.082 
CPD (log) GAD 3,760 32,390 1 0.42  1x10-6 0.026  0.5 0.5 
CPD (log) MDD 9,679 23,400 0.69 0.15  0.0402 0.023  0.047 0.032 
CPD (log) PSYCH 17,219 101,007 0.94 0.09  0.0024 0.008  0.255 0.376 
CPD (log) SEX 62,062 56,585 0.98 0.05   1x10-6 0.006   0.376 0.5 
CPD (raw) ASI 58,767 57,893 1 0.06  0.0055 0.005  0.5 0.102 
CPD (raw) GAD 3,760 32,390 1 0.4  1x10-6 0.026  0.5 0.5 
CPD (raw) MDD 9,679 23,400 0.75 0.15  0.0337 0.022  0.069 0.057 
CPD (raw) PSYCH 17,219 101,007 0.87 0.08  0.0119 0.008  0.082 0.059 
CPD (raw) SEX 62,062 56,585 1 0.05   0.0037 0.006   0.5 0.279 
SC ASI 58,552 57,606 1 0.11  0.0061 0.01  0.5 0.254 
SC GAD 5,080 46,659 0.38 0.28  0.0403 0.051  0.078 0.208 
SC MDD 13,385 34,204 0.64 0.35  0.0462 0.047  0.215 0.176 
SC PSYCH 21,798 137,902 1 0.15  2.3x10-6 0.011  0.5 0.5 
SC SEX 82,356 77,866 0.96 0.09   0.004 0.009   0.304 0.339 
SI GAD 10,694 109,741 0.91 0.12  1.6x10-6 0.015  0.245 0.5 
SI MDD 29,395 83,501 1 0.08  0.0022 0.01  0.5 0.409 
SI PSYCH 36,843 284,352 0.93 0.05  0.0024 0.005  0.287 0.44 
SI SEX 146,663 175,448 0.82 0.02   0.0372 0.004   4.22x10-9 3.44x10-13 
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(binned, dichotomized, and raw scales), we observed nominal evidence of differing genetic 156 

variances between males and females, and between late-onset smokers and early-onset smokers 157 

(95% confidence interval of 𝜎,!!
% 𝜎,!"

%-  did not include 1). No other smoking phenotype showed 158 

evidence of differing genetic variances between moderator groups. Given that allele frequencies 159 

between strata are highly correlated (the genome-wide correlations of allele frequencies between 160 

strata were all >0.999), we hypothesized that differing genetic variances may reflect SNP effects 161 

that depend on the trait variance itself, for instance, the greater total variance of CPD in males 162 

than females (Fig 1). We repeated the bivariate analysis after standardizing the trait within strata 163 

(centering to zero mean and scaling to unit variance) and observed no clear differences in genetic 164 

or residual variances between strata. This indicates that while SNP effects for CPD may differ 165 

between sexes or between late-onset and early-onset smokers, such differences in SNP effects for 166 

CPD can be accounted for by differences in trait variance rather than differing genetic 167 

mechanisms. 168 

 169 
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 170 

Fig 1. Fold differences in variance components between strata. Shown are point estimates and 171 
95% confidence intervals. The dashed horizontal line at 1 indicates equal variance components. 172 
Each horizontal facet indicates a different moderator. For ASI, larger values than 1 indicate 173 
larger variances in late onset (Age 17-35) smokers than early onset smokers (Age 10-16). For 174 
both GAD and MDD, larger values than 1 indicate larger variances in cases than controls. For 175 
PSYCH, larger values than 1 indicate larger variances in those who have seen a psychiatrist for 176 
nerves than those who have not. For SEX, larger values than 1 indicate larger variances among 177 
males than females. For “Raw scale” the bivariate model is fit without standardizing the trait. For 178 
“Within-strata standardized”, the bivariate model is fit after centering and scaling the trait within 179 
strata. 180 
 181 
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No evidence of differing partitioned heritabilities within cell-type-specific annotations.      182 

Given evidence for disproportional genome-wide genetic effects, particularly for SI 183 

between sexes, we next asked whether evidence for differing SNP effects can be localized to 184 

functional genomic annotations. We performed stratified (e.g., by sex) GWAS using BOLT-185 

LMM[26], then used LD score regression (LDSC)[27,28] to partition the SNP-based heritability 186 

(h2SNP) within each strata, estimating strata-specific LDSC regression coefficients and h2SNP 187 

enrichment scores. When dichotomizing CPD, we were unable to use BOLT-LMM with GAD 188 

cases due to a limited sample size (N = 1854; full BOLT-LMM sample sizes shown in 189 

Supplementary Table S2) and therefore were unable to compare partitioned heritabilities for 190 

dichotomized CPD between GAD cases and controls. We tested a total of 221 annotations 191 

derived from four gene expression datasets[28], with each annotation corresponding to a set of 192 

SNPs within 100-kb of genes uniquely expressed in a particular tissue. We used a z-score to test 193 

for differences in LDSC coefficients and h2SNP enrichment scores between strata (see Methods). 194 

Across all 6188 tests (221 annotations by 28 trait-by-moderator combinations), we found no 195 

significant differences in LDSC regression coefficients or h2SNP enrichment scores after 196 

controlling for the false-discovery rate (Supplementary Figures S1-S2), indicating no evidence 197 

that groups differ in the heritable contribution of cell-type specific or other functional 198 

annotations. 199 

 200 

 201 

Individual SNPs show evidence of heterogeneous effects 202 

We next tested for differences in marginal SNP effect estimates between strata using a z-203 

score of the difference in effect sizes and a two-sided p-value (p-diff; see methods; 204 
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Supplementary Figures S3-S58). Across all trait-by-moderator combinations tested, we observed 205 

5 loci with genome-wide significant (GWS) evidence of heterogenous effects (p-diff < 5x10-8; 206 

Table 2). Notably, all 5 loci showed differing directions of effects of lead SNPs between strata, 207 

and none of these loci reached genome-wide significance within strata. Miami-plots that 208 

compare within-strata GWAS results can be found in Supplementary Figures S59-S86. 209 

 210 

 211 

 212 

 213 
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 226 

 227 
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For CPD, SNPs with significant differences in effects between strata were largely 284 

dependent on the CPD transformation; both binned CPD and log transformed CPD showed GWS 285 

evidence of differing SNP effects at rs13144992 (p-diff = 3.23x10-8 and 3.43x10-8, respectively) 286 

between MDD cases and controls, however this signal decayed with raw CPD (p-diff = 1.4x10-7) 287 

and dichotomized CPD (p-diff = 1.89x10-4). Likewise, when dichotomizing CPD, the only 288 

heterogenous signal reaching GWS was between late-onset and early-onset smokers, located at 289 

rs78459872, a SNP that exhibited no GWS evidence of ASI-dependent effects under different 290 

CPD transformations (p-diff > 4.3x10-5). We further observed two loci with differing effects for 291 

SC between GAD cases and controls, and one locus with differing SC effects between PSYCH 292 

cases and controls. Given evidence that several traits possess differences in variance between 293 

strata (Fig. 1), we re-tested these five SNPs after standardizing the corresponding trait within 294 

strata to see if SNP effect differences may reflect differences in trait scale (Supplementary Table 295 

S3). After normalizing and re-testing, we found very little differences in p-diff values, however 296 

both the ASI-dependent SNP associated with dichotomized CPD (rs78459872) and the PSYCH-297 

dependent SNP associated with SC (rs139501724) were no longer GWS (both p-diff = 5.3x10-8 298 

after re-testing). Additional loci reached GWS in one stratum but not the other, however most of 299 

these instances (e.g. a GWS signal in MDD-controls but not in MDD-cases) are likely explained 300 

by differences in power (see Supplementary Figures S59-S86). 301 

 302 

Novel SI-associated loci detected using sex-stratified GWAS 303 

 We found strong genome-wide evidence of heterogeneous genetic effects for smoking 304 

initiation between sexes, consistent with evidence from an independent Japanese sample [13]. 305 

However, we observed no sex differences in individual SNP effects for SI at GWS (see 306 
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Supplementary Figures S57-S58). Due to this surprising lack of genome-wide significant effect 307 

differences at individual SNPs, we performed additional analyses to characterize the genetic 308 

architecture of SI between sexes. Genome-wide, we observed an inverse relationship between 309 

MAF and estimated sex-differences in SNP effects, and simulations indicated a lack of power to 310 

detect GWS SNP effect differences across the MAF spectrum (Supplementary Figure S87).  311 

Despite the lack of power to detect significant differences in effect estimates, our sample 312 

was well-powered to detect effects in either sex alone. In the sex-stratified GWAS for SI, we 313 

observed 51 GWS risk loci, consisting of 24 male risk loci not overlapping with a female risk 314 

locus, 23 female risk loci not overlapping with a male risk locus, and 4 risk loci that overlapped 315 

between males and females (Fig 2; Supplementary Tables S4 and S5). To determine whether 316 

novel SI-associated loci may be identified through sex-stratified GWAS, in which genetic effects 317 

are allowed to be heterogeneous between sexes, we compared our sex-stratified GWAS results to 318 

sex-combined GWAS results, in which a single effect is assumed to be shared by sexes (N = 319 

418,329). We observed 14 independent (r2 < 0.1) lead SNPs using sex-stratified GWAS that 320 

were not within a risk locus identified from the sex-combined GWAS, despite the roughly 2-fold 321 

larger sample size of the sex-combined analysis. Furthermore, six of these 14 loci were also not 322 

detected in a prior European ancestry meta-analysis of SI (the trait definition was identical to this 323 

study, see Methods for more details) involving roughly 6-fold more individuals than either sex-324 

stratified analysis (N ~ 1.2 million[11], Fig 2 and Table 3). To quantify the degree that sex-325 

stratified GWAS can lead to increased statistical power in detecting loci bearing heterogenous 326 

effects, we performed power analyses, varying sample size, MAF, and degree of SNP effect 327 

heterogeneity (Supplementary Figure S88). Sex-stratified GWAS consistently showed equal or 328 

greater power to detect any effect (whether it affects males, females, or both) at a sex-329 
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heterogeneous effect locus than sex-combined GWAS. For example, we observed 3-fold increase 330 

in power at somewhat rare SNPs (MAF = 0.05) where the fold-difference in sex-specific odds 331 

ratios was 1.04; when observing real data, we found such differences in effects at MAF = 0.05 to 332 

be within a plausible range, indicating that our present sample sizes are simply underpowered to 333 

detect true heterogeneous effects between sexes (see Supplementary Figure S87). 334 

 335 

 336 

 337 
 338 
Fig 2. Miami-plot showing sex-specific GWAS signals for smoking initiation. The male 339 
manhattan plot for SI is shown above 0 on the x-axis, while the female manhattan plot for SI is 340 
shown below 0 on the x-axis. SNPs are highlighted red if they were within a male-specific 341 
genomic risk locus (a locus that did not overlap with any female-specific GWS risk locus), and 342 
vice versa for blue SNPs. In teal are SNPs within risk loci that overlapped between males and 343 
females. Diamonds indicate independent (r2 < 0.1), sex-specific lead SNPs. Yellow circles mark 344 
the position of novel signals (Table 3)—lead SNPs that reached GWS in either males or females 345 
but were not within a detectable risk locus when performing a sex-combined GWAS in the UK 346 
Biobank nor within a risk locus in a prior meta-analysis of SI (N ~ 1.2M)[11]. 347 
 348 
 349 
 350 
 351 
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For males and females separately, we then estimated the genetic correlation between SI 374 

and 757 sex-combined traits on LDhub [29]. Despite observing very different GWS signals 375 

between males and females for SI, we observed that for all 757 traits, the male-specific SI 376 

genetic correlation estimate (95% CI) overlapped with the female-specific SI genetic correlation 377 

estimate (95% CI) (Supplementary Tables S6-S7).  378 

 379 

Suggestive evidence of enhancing SI PRS accuracy using sex-specific SNP effects   380 

 Using independent target data from the National Longitudinal Study of Adolescent to 381 

Adult Health (Add Health) [30] and from the Center on Antisocial Drug Dependence (CADD) 382 

[31], we tested whether allowing for sex-specific SNP effects can enhance polygenic risk score 383 

(PRS) accuracy for SI, when compared to assuming SNP effects are shared between sexes. We 384 

computed male-specific	and female-specific PRSs from the corresponding sex-stratified GWAS 385 

summary stats (derived from the UK Biobank) using SBLUP in GCTA [25]. For comparison, we 386 

computed PRS from the sex-combined GWAS summary statistics and a sex-combined GWAS in 387 

which sample size was halved to resemble the sex-stratified sample sizes. Additionally, we 388 

computed another PRS derived from weighted sex-specific GWAS statistics, as implemented in 389 

SMTpred[32]. We computed prediction accuracy of PRS when compared to a covariate-only 390 

model using logistic regression and Nagelkerke’s R2 (see Methods).  391 

Prediction accuracy was similar between the two independent target datasets across all 392 

training methods. Prediction accuracy was highest using the full, sex-combined training sample 393 

(Fig. 3; Supplementary Table S8). Sex-stratification of the GWAS slightly improved prediction 394 

compared to the sex-combined analysis when the training sample sizes were approximately 395 

equal, but the prediction standard errors were large and the improvement was not statistically 396 
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significant. Using a weighted index to borrow information across sex-specific SNP effects 397 

improved prediction accuracy to a level comparable to that obtained with the full, sex-combined 398 

training sample. 399 

  400 
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 401 

Fig 3. Accuracy of polygenic risk scores for smoking initiation using two testing datasets. Shown 402 
is the Nagelkerke R2 and intervals show one standard error obtained from 1000 bootstrap 403 
samples. Meta-analysis across datasets was done using inverse-variance weighting. Sex-404 
combined (reduced N) used a reduced training sample size to roughly match the sample size 405 
obtained through sex-stratification. Sex-combined training N = 418,329; sex-combined (reduced 406 
N) training N = 209,157; sex-weighted and sex-stratified training Ns = 189693 males and 407 
228636 females. 408 

 409 
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Discussion 410 

We observed modest evidence of genome-wide genetic moderation of smoking behaviors 411 

due to psychiatric disorders and age of smoking initiation, and several individual loci with 412 

differing strata-specific SNP effects. However, we observed strong genome-wide evidence that 413 

sex moderates the genetic contribution to smoking initiation, and identified numerous novel loci 414 

associated with SI when we stratified the GWAS by sex. These novel loci were not detected in a 415 

prior sex-combined GWAS of the same phenotype [11], despite utilizing a 6-fold increase in 416 

sample size than the sex-stratified GWAS presented in this study. This suggests that more 417 

nuanced analyses can aid in uncovering the genetic factors that contribute to the initiation of 418 

regular smoking and possibly in complex traits more generally. 419 

 420 

Psychiatric disorder moderation 421 

Twin-based studies have found depression moderates the genetic variance of smoking 422 

heaviness[16]. We observed suggestive evidence that the genetic correlations of CPD between 423 

MDD cases and controls and SC between GAD cases and controls are less than one. A lack of 424 

stronger evidence is likely due to the low power to detect genetic variance differences between 425 

cases and controls (e.g., the number of unrelated GAD cases with an SC record was ~5K, Table 426 

1).  427 

Consistent with these findings, we observed relatively few genome-wide significant SNP 428 

effects that differed among groups, with at least one depending on the trait scale. Within 100kb 429 

of these SNP-by-moderator associations are loci previously associated with COPD and lung 430 

cancer[33], forced vital capacity[34], waist circumference [35], forced vital capacity in COPD 431 

patients[36], sleep quality[37], and dinner intake in a Hispanic population[38]. Collectively, 432 
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these results are consistent with a modest genetic effect moderation on smoking by depression 433 

and generalized anxiety, which is consistent with reports using twin samples, though of smaller 434 

magnitude[16–19]. Larger, independent samples with well-phenotyped psychiatric data—which 435 

are currently limited—will be necessary to identify heterogeneous effect loci, but we expect the 436 

difference in magnitude of individual effects will be small. 437 

 438 

Moderation by sex and age of smoking initiation 439 

As seen in Fig. 1, depending on how one measures smoking heaviness (through different 440 

transformations of CPD), we observed different variances but no evidence of differential SNP 441 

heritabilities of CPD between males and females, and between late and early onset smokers. 442 

Non-genetic factors may largely be the direct cause of differing variances in CPD, with genetic 443 

effects differing proportionally due to these differences in scale. We did observe a single SNP 444 

with differing CPD effects between late-onset and early-onset smokers, however again this effect 445 

depended on the chosen CPD scale and transformation.  446 

Alternatively, we observed clear evidence of disproportional genetic effects for SI 447 

between males and females, indicative of sex differences in genetic mechanisms that contribute 448 

to smoking initiation risk. This is consistent with a previous, independent study that estimated 449 

the between-sex genetic correlation to be < 1 for smoking initiation (measured as ever vs. never 450 

smokers) using common SNPs in a Japanese population[13]. Intriguingly, we identified no 451 

individual SNP effects at that differed between sexes at genome-wide significance (p-diff < 452 

5x10-8), indicating that such effects are exceedingly small. Furthermore, we observed no 453 

evidence of differing genetic correlations with SI between males and females when testing over 454 

700 traits on LD Hub. This could indicate that while males and females possess partially distinct 455 
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genetic loci for SI, the functional consequences of each may not differ dramatically, genome-456 

wide. 457 

 458 

Novel SI-associated loci identified through sex-stratified GWAS 459 

 While increasing sample size is one strategy to uncover novel risk loci for SI, the presence 460 

of heterogenous SNP effects could enable a more nuanced, sex-stratified analysis to uncover 461 

certain SI-associated loci more efficiently (see Fig 2; Supplementary Fig S88). We identified 6 462 

GWS loci using sex-stratified GWAS for SI that were not detected in a sex-combined GWAS of 463 

the UK Biobank, nor detected in the largest known GWAS meta-analysis of SI[11]. These loci 464 

highlight the fact that, in addition to the improved power gained from increasing sample size such 465 

as in Liu et al.[11], incorporating nuanced analyses to investigate possible heterogeneous effects 466 

among groups can identify novel associations and provide a better understanding of the underlying 467 

trait architecture. Please see the Supplementary Note for discussion about these six novel signals. 468 

A more nuanced association analysis may also improve genomic prediction. Leveraging 469 

sex-specific SNP effects for sex-stratified SI prediction appeared to increase accuracy when 470 

compared to sex-combined prediction using a comparable training sample size. When borrowing 471 

information between sex-specific SNP BLUPs using a weighted index as implemented in 472 

SMTpred[32], prediction accuracy increased to a similar level obtained when training with the 473 

full, sex-combined training sample. Future work may seek to develop additional means to borrow 474 

information between males and females to optimize prediction accuracy while allowing for 475 

heterogeneous genetic effects. Although the large standard errors complicate distinguishing the 476 

optimal approach among sex-combined, sex-weighted, and sex-stratified training methods, our 477 
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results are consistent with improved prediction when allowing for heterogeneous effects, when 478 

accounting for training sample size. 479 

 480 

Limitations 481 

Requiring individuals to possess both smoking and moderator phenotypes reduced our 482 

sample sizes, in some cases, severely (e.g., the aforementioned 5K individuals possessing both a 483 

SC and GAD record), which led to reduced power and greater uncertainty in effect estimates. For 484 

example, we detected GWS evidence of heterogeneous SNP effects associated with CPD and 485 

SC, however none of these SNPs reached GWS within strata. Furthermore, we cautiously note 486 

that sex-specific risk loci identified from two independent GWAS do not necessarily imply 487 

heterogeneous effects between sexes. In particular, if two non-overlapping risk loci are in close 488 

proximity, identification in one but not the other sex-specific GWAS may result from random 489 

sampling of genotypes rather than heterogeneous genetic effects, or from subtle differences in 490 

power (Nmales = 189,693 and Nfemales = 228,636). Differential calling of genotypes or genotype 491 

sampling could partially explain why some sex-specific SNP effects reaching GWS in this study 492 

did not reach GWS in a prior meta-analyzed sample of the same phenotype. For studying the 493 

effects of MDD or GAD moderation, we emphasize the pressing need for an independent, 494 

replication dataset, however, currently there are very few samples containing large numbers of 495 

genotyped individuals with both smoking records and MDD-DSMV-like/GAD-DSMV-like 496 

records. Further work will be crucial in investigating MDD- and GAD-dependent genetic effects 497 

that contribute to smoking behaviors. 498 

 499 

 500 
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Summary 501 

For highly complex traits such as smoking behaviors, incorporating more nuanced 502 

analyses, such as a careful consideration of possible context-dependent effects, may provide a 503 

more complete picture of their genetic architecture. Such heterogenous genetic effects may 504 

contribute to estimated allelic effects that are infinitesimally small (and difficult to detect) within 505 

the population as a whole, even in very large samples. Given smoking’s heavy burden on human 506 

health, there is a strong incentive to continue to pursue evidence of heterogeneous effects that 507 

can disproportionally burden certain groups. 508 

 509 

Materials and Methods 510 

Genotypes, phenotypes and moderators 511 

All genotypes, phenotypes, and moderators were obtained from the UK Biobank[23]. Phenotype 512 

definitions for smoking behaviors matched exactly GSCAN[11] definitions: Smoking initiation 513 

(SI) was a binary phenotype that compared individuals who had smoked at least 100 cigarettes to 514 

individuals who had never smoked. Smoking cessation (SC) was a binary phenotype that 515 

compared current smokers to former smokers (fields 1239 and 1249). Cigarettes per day (CPD) 516 

was based on “Number of cigarettes currently smoked daily (current cigarette smokers)”, 517 

“Number of cigarettes previously smoked daily”, or “Number of cigarettes previously smoked 518 

daily (current cigar/pipe smokers)” (UK Biobank data fields 2887, 3456, and 6183). Different 519 

transformations of CPD were considered, raw CPD, natural log transformed CPD, binned CPD 520 

(matching GSCAN defined CPD) included five bins [1 – individuals who smoke(d) 1 to 5; 2 – 521 

individuals who smoke(d) 6 to 15; 3 – individuals who smoke(d) 16 to 25; 4 – individuals who 522 

smoke(d) 26 to 35; 5 – individuals who smoke(d) 36 to 140], and dichotomized CPD (individuals 523 
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who smoke more than 20 cigarettes per day vs individuals who smoke 10 or less, excluding 524 

remaining individuals). Age of smoking initiation (ASI) was defined as the age at which an 525 

individual began smoking regularly (fields 3426 and 2867). Data from the UK Biobank mental 526 

health questionnaire was used to construct MDD DSMV-like, and GAD DSMV-like records. 527 

GAD DSMV-like cases required endorsement of either Field IDs 20425 or 20542, and 528 

endorsement of 20421 with 20420 reported as ≥56 months, and endorsement of 20540 or 529 

20543≥2, and endorsement of 20541 or 20537 or 20539, as well as three or more “Yes” 530 

responses to the following symptom Field IDs: 20426 or 20423, 20429, 20419, 20422, 20417, 531 

20427, and endorsement of ‘a little’ or more of field 20418 (impairment or impact). Individuals 532 

with complete data but who did not meet the above criteria were treated as controls. 533 

Supplementary Figure S89 visually describes the assignment of GAD DSMV-like cases and 534 

controls. Similarly, MDD DSMV-like cases required “Yes” responses to 5 or more of the 535 

following symptom Field IDs: 20446, 20441, 20533, 20534, 20535, 20449, 20536, 20450, 536 

20435, and 20437, as well as “somewhat” or more response to field 20440, a “almost every day” 537 

or more response to field 20439, and a “about half of the day” or more response to 20436. 538 

 539 

 540 
Estimating within-strata variance components and between-strata genetic correlations 541 

 Using GCTA’s[25] bivariate model implementation 542 

(https://cnsgenomics.com/software/gcta/#BivariateGREMLanalysis), we fit a bivariate model 543 

treating the same trait—measured in different strata—as two different phenotypes. For example, 544 

we modeled the genetic (co)variance of CPD measured in MDD-like cases and CPD measured in 545 

MDD-like controls. For a particular trait-by-moderator combination, we built a genetic 546 

relationship matrix (GRM) using filtered, genotyped SNPs. Filtering of SNPs was performed 547 
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using 436,065 European-ancestry individuals after removing individuals with mismatched self-548 

reported and genetic sex, |Fhet|³0.2, and/or no phenotypic information, where SNPs were 549 

removed if they had a genotyping rate or MAF less than 0.05 or had a p-value from a Hardy-550 

Weinberg test smaller than 1x10-8. GRM entries were then pruned using a relatedness cutoff of 551 

0.05. Fixed effect covariates consisted of sex, batch, assessment center, education level, 552 

Townsend deprivation index, age, age squared, and the first 10 genomic principle components, 553 

derived from both the European subset of the UK Biobank and the whole UK biobank. When 554 

analyzing CPD, current vs former smoker status was included as an additional covariate. Point 555 

estimates and standard errors of within-strata variance components and heritabilities were 556 

obtained from GCTA, as were between-strata genetic covariances and correlations. Standard 557 

errors of estimated variance component fold differences (e.g.  
&#!
"
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/
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variances/covariances of model parameters obtained from GCTA. Specifically, the variance of a 560 

ratio of genetic variance estimates was approximated by 0&
'#!
"

&'#"
" 1

%
2()*

+&'#!
" ,

+&'#!
" ,"

+ ()*+&'#"
" ,

+&'#"
" ,"

−561 

2 -.(
+&'#!

" ,&'#"
" ,

+&'#!
" ,+&'#"

" ,
6, with the ratio of residual variances between strata approximated similarly. The 562 

genetic correlation is defined as 𝑟! =
&#!#"

0&#!
" &#"

"
 and testing 𝐻1:	𝑟! = 1 was done using a likelihood 563 

ratio test, comparing the full model (above) to one in which 𝑟! is constrained to one. 564 

 565 
 566 
Modeling the proportion of variance explained by heterogeneous effects 567 

GCTA’s univariate model[25], using the –gxe argument 568 

(https://cnsgenomics.com/software/gcta/#GREMLanalysis) was used to decompose the total 569 
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variance across strata into a shared component (𝜎!%), a deviation from the shared component 570 

(𝜎"#$% ), and a residual component (𝜎2%) using the same GRM and fixed effects covariates as 571 

before. Using GCTAs model parameter estimates, we estimated the proportion of phenotypic 572 

variance explained by heterogeneous effects, 𝑃𝑉𝐸(𝜎"#$% ) = &$%&
"

+&#"3&$%&
" 3&'",

, with the standard error 573 

provided by GCTA, and tested 𝐻1: 𝜎"#$% = 0 using a likelihood ratio test, comparing the 574 

likelihood of the full model to one in which 𝜎"#$%  is constrained to 0. For binary traits 575 

(dichotomized CPD, SI, and SC), we transformed estimates of 𝑃𝑉𝐸(𝜎"#$% ) to the liability 576 

scale[40], using sample prevalences.  577 

 578 

GWAS, heterogeneous effect inference, and novel SI-loci detection  579 

Stratified GWAS was performed using BOLT-LMM[26]. For all GWAS we used all individuals 580 

of European descent, including related individuals. For each BOLT-LMM model fit, fixed effect 581 

covariates were identical to those used in GREML based models. GWAS was performed using 582 

imputed SNPs with a 0.9 INFO score and 0.01 MAF cutoff, resulting in 7,749,105 SNPs with 583 

which to obtain within-strata estimated SNP effects and their standard errors. A z-score was used 584 

to infer differences in SNP effects between strata 1 and 2: 𝑧456 =
78!978" 

0:;+78!,
"
3:;+78",

"
, with a two-585 

sided p-value: p-diff = 2Φ@−A𝑧456AB, where Φ is the normal cumulative distribution function. 586 

For all BOLT-LMM model fits, the random polygenic component was estimated from the 587 

infinitesimal model as opposed to BOLT’s mixture model. When performing sex-combined 588 

GWAS for SI, we combined males and females and ran BOLT similarly while including sex as a 589 

covariate. Genomic risk loci and lead SNP identification was performed using FUMA[41] with 590 

default parameters. To identify potentially novel SI-associations, we performed sex-combined 591 
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GWAS using the UK Biobank, then used FUMA to identify genomic risk loci and lead SNPs. 592 

We then determined whether a lead SNPs identified from sex-stratified GWAS (associating with 593 

males, females, or both) was within an identified sex-combined genomic risk locus. Similarly, 594 

we determined whether lead SNPs from the sex-stratified GWAS were within risk loci reported 595 

in Liu et al. 2019[11]. 596 

 597 

Partitioning stratified heritability estimates to functional categories 598 

Using stratified GWAS results obtained from BOLT-LMM (see above), we performed cell-type 599 

specific LDSC analysis[28] to partition strata-specific SNP heritability along functional 600 

annotations, i.e., SNPs within 100kb of genes uniquely expressed in a particular tissue. This was 601 

done using within-annotation LD scores, with annotations derived from the baseline model[27], 602 

the Cahoy et al. gene-expression dataset[42], GTEx (both multi-tissue assessment of cell-type 603 

specific genes and brain-specific assessment of cell-type specific genes)[43], and the Franke Lab 604 

gene expression dataset[44,45].  LD scores were downloaded and analysis was carried out 605 

according to the steps outlined at https://github.com/bulik/ldsc/wiki/Cell-type-specific-analyses. 606 

Only hapmap3 SNPs were used in all LDSC analyses. To infer differences in partitioned 607 

heritabilities between strata, firstly we fit the partitioned LDSC model separately for each strata, 608 

thus obtaining strata-specific partitioned LDSC estimated coefficients (representing the per-SNP 609 

contribution to heritability from a particular annotation) and estimated heritability enrichments 610 

(heritability of an annotation divided by the number of SNPs in the annotation). We then inferred 611 

differences in LDSC estimated coefficients and heritability enrichments between strata, using the 612 

same z-score and two-sided testing approach outlined in the previous section. 613 
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 614 

Simulations 615 

All simulations utilized a single causal variant model, whereby genotypes at the causal variant 𝑥 616 

were sampled from the binomial distribution: 𝑥 ∼ 𝐵(2, 𝑝), where p is the minor allele frequency. 617 

Simulating a sex-specific binary trait 𝑦 was done by sampling: 𝑦 ∼ 𝐵@1, 𝑒<7 @1 + 𝑒<7B- B, with 618 

𝛽 being the sex-specific log odds ratio of the causal variant. To transform linear coefficients 619 

𝑏	(like those obtained from BOLT-LMM) to log odds ratios, we used the approximation 𝛽 ≈620 

=
>(@9>)

, with 𝜇 being the sex-specific case fraction. For each simulation, sex-specific causal 621 

variant effects were fixed and genotypes at the causal variant were randomly sampled for 5000 622 

replicates.  623 

 624 

Polygenic risk scoring and prediction accuracy 625 

To compute SNP effects used in polygenic risk scoring, we used marginal SNP effects from 626 

BOLT-LMM model fits, then obtained best linear unbiased predictions (BLUPs) of SNP effects 627 

(for all 7,749,105 SNPs) that account for LD using SBLUP [25,46]. In both CADD and Add 628 

Health datasets, we used randomly sampled, unrelated individuals of European descent. In each 629 

dataset, PRS were computed from SNPs imputed from haplotype reference consortium data 630 

(MAF > 0.01, INFO R2 > 0.95). In CADD, we predicted the response to “Have you smoked at 631 

least 20 cigarettes in your lifetime?” and in Add Health we predicted the response to “Have you 632 

ever smoked cigarettes regularly, that is, at least 1 cigarette every day for 30 days?”. To assess 633 

prediction accuracy, we compared a full model including PRS and covariates to a reduced model 634 

including covariates only. For both datasets, covariates were age, age-squared, sex, educational 635 

attainment (coded categorically), and the first 10 genomic principal components. 636 
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