
 

Page 1 of 19 

 

Automated MRI Lung Segmentation and 3D Morphological 

Features for Quantification of Neonatal Lung Disease  

Benedikt Mairhörmann1,§, Alejandra Castelblanco1,§, Friederike Häfner2,4,§, Vanessa Pfahler5, 

Lena Haist2, Dominik Waibel1,8, Andreas Flemmer4, Harald Ehrhardt7, Sophia Stoecklein5, Olaf 

Dietrich5, Kai Foerster4, Anne Hilgendorff2,3,†, Benjamin Schubert1,6, †,* 

 

1Institute of Computational Health, Helmholtz Zentrum München, 85764 Neuherberg, Germany, Member of the 

German Center for Lung Research (DZL) 

2Institute for Lung Health and Immunity and Comprehensive Pneumology Center, Helmholtz Zentrum München, 

Germany, Member of the German Center for Lung Research (DZL) 

3Center for Comprehensive Developmental Care (CDeCLMU) at the interdisciplinary Social Pediatric Center, Dr. von 

Hauner Children's Hospital, Hospital of the Ludwig-Maximilian University, Munich, Germany 

4Department of Neonatology, Perinatal Center, Hospital of the Ludwig-Maximilian University, Munich, Germany 

5Department of Radiology, Hospital of the Ludwig-Maximilian University, Munich, Germany 

6Department of Mathematics, Technical University of Munich, 85748 Garching bei München, Germany 

7Department of General Pediatrics & Neonatology, Justus-Liebig-University, Giessen, Germany, Member of the 

German Center for Lung Research (DZL) 

8Institute of AI for Health, Helmholtz Zentrum München, 85764 Neuherberg, Germany 

§The authors wish it to be known that, in their opinion, the first three authors should be regarded as Joint First 

Authors.  

† The authors wish it to be known that, in their opinion, the last two authors should be regarded as Joint Last 

Authors.  

*Corresponding author: benjamin.schubert@helmholtz-muenchen.de 

 

 

Keywords: Bronchopulmonary Dysplasia, Chronic Lung Disease, Preterm Infant, Lung Segmentation, Lung 

Magnetic Resonance Imaging, BPD Severity Prediction, Deep Learning, Lung Imaging Biomarkers, Lung Topology. 

 

 

 

 

 

 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 15, 2022. ; https://doi.org/10.1101/2021.08.06.21261648doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.08.06.21261648
http://creativecommons.org/licenses/by-nd/4.0/


Page 2 of 19 

 

 

ABSTRACT 

The diagnosis of neonatal respiratory diseases is currently based on clinical criteria. However, lung 

structural information is generally lacking due to the unavailability of routinely applicable, 

radiation-free imaging tools as well as the time-consuming, often non-standardized manual 

analysis of imaging data. Increased efficiency, comparability and accuracy in image quantification 

is needed in this patient cohort as pulmonary complications determine immediate and long-term 

survival.  

We therefore developed an ensemble of deep convolutional neural networks to perform lung 

segmentation in magnetic resonance imaging (MRI) sequences obtained in premature infants near 

term (n=107), with subsequent reconstruction of the 3-dimensional neonatal lung and estimation 

of MRI lung descriptors for volume, shape, surface, and signal intensity distribution.  

Annotation of lung segments in quiet-breathing MRI for infants with and without 

Bronchopulmonary Dysplasia (BPD) was achieved by development of a deep learning model 

reaching a volumetric dice score (VDC) of 0.908 and validated in an independent cohort (VDC 

0.880), thereby matching expert-level performance while demonstrating transferability, robustness 

towards technical (low spatial resolution, movement artifacts) and lung disease grades. MRI lung 

descriptors presented relevant correlations with lung lesion scores and enabled the separation of 

neonates with and without BPD (AUC 0.92±0.016), mild vs severe BPD (AUC 0.84±0.027), and 

single level prediction of BPD severity (AUC 0.75±0.013). 

Our work demonstrates the potential of AI-supported MRI markers as a diagnostic tool, 

characterizing changes in lung structure in neonatal respiratory disease while avoiding radiation 

exposure. 
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INTRODUCTION 

The preterm and term neonate postnatally faces the development of acute lung injury with the 

significant potential to evolve into a chronic disease. With the diagnostic process still solely relying 

on clinical observation, occasional chest radiography, and late-stage pulmonary function, the 

application of radiation-free, sensitive imaging strategies and their standardized assessment would 

critically inform the diagnostic process by adding structural information while allowing for 

comparability and reproducibility with the goal to implement personalized treatment and 

monitoring strategies [1–3]. 

The realization of this currently unmet clinical need is especially challenging in the most 

vulnerable cohort of preterm infants [1,4,5], burdened with a high incidence of chronic lung 

disease, i.e., bronchopulmonary dysplasia (BPD). Here, the low sensitivity and diagnostic value of 

conventional chest radiography and the limitations of Computed Tomography (CT) due to 

radiation exposure [6,7] resulted in the exploration of alternative imaging techniques such as 

Magnetic Resonance Imaging (MRI). Supported by the advantage of the combined assessment of 

the central nervous system and lung abnormalities, quantitative information and prognostic value 

of lung MRI for the diseased neonatal lung are currently being explored in infants [8–10], with 

few studies addressing the MRI assessment of structural changes in the BPD lung [11,12]. 

In the neonatal lung, MRI is technically challenged by small subject sizes, lower spatial resolution, 

and sensitivity to infant motion, resulting in blurring, ghosting, and other image artifacts [13]. 

These conditions demand expert knowledge to obtain qualitative and quantitative measurements 

from the acquired pulmonary images [9,11] while affecting inter-rater concordances. The 

subsequently reduced standardization limits high-throughput MRI-based monitoring in neonatal 

lung disease. 

We, therefore, developed a deep learning (DL) based model to enable robust and standardized 

analysis of lung MRIs in preterm neonates with and without chronic lung disease (BPD) acquired 

during quiet-breathing near-term age. We combined recent advances in computational methods 

[4,14,15], i.e., convolutional neural networks (CNN), to improve the applicability and robustness 

of deep learning (DL) methods for performing MRI lung segmentation in preterm infants. The 

obtained lung segmentations were used to compute MRI-based 3-dimensional (3D) lung 

descriptors including descriptors for shape, surface, and volume. We combined the lung volumetric 

and structural descriptors to improve disease classification and adequate characterization of BPD, 
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where pre- and postnatal insults provoke a range of structural abnormalities in the immature lung 

resulting in insufficient gas exchange [1].  

METHODS 

Study Cohort  

We prospectively enrolled 107 preterm infants with gestational age (GA) 27±2.1 weeks at birth, 

from the clinical study Attention to Infants @ Respiratory Risks, with and without later 

development of BPD at two study sites to perform 3 Tesla Lung MRI near term (GA 37±5.8) 

during quiet-breathing after informed parental consent (Perinatal Center LMU Munich n=86; EC 

LMU #195–07; Perinatal Center UKGM Giessen (n=21; ECUKGM #135–12) (Fig. 1A).  

MRI sequences were acquired in unsedated infants (LMU study cohort) and under light sedation 

with chloral hydrate (30-40 mg/kg (orally), UKGM validation cohort) during quiet sleep in room 

air. In total, 73 participants were diagnosed with BPD and classified into three severity grades: 

mild (n=42; requirement of supplemental oxygen for 28 days, no need for oxygen supplementation 

at 36 weeks PMA), moderate (n=11; requirement of supplemental oxygen for 28 days and oxygen 

supplementation <FiO2 0.30 at 36 weeks PMA), and severe (n=20; requirement of supplemental 

oxygen for 28 days and oxygen supplementation >FiO2 0.30 at 36 weeks PMA and/or positive 

pressure ventilation/continuous positive pressure), based on the NIH consensus definition 

summarized by Jobe et. al. [1], whereas n=34 infants did not develop BPD. Clinical data 

acquisition was performed for patients from both cohorts, however, four subjects had to be 

excluded from the regression analysis due to missing clinical variables (n=103, Table 1). Infant 

lung function testing (ILFT) was performed including tidal breathing analysis and 

bodyplethsymographic functional residual capacity at 36 weeks GA in n=32 preterm infants [16]. 

 

Table 1 - Patient and Clinical Information of the Preterm Neonatal Cohort (n=103) 

Clinical Variable 

(Average ±SD) 

All 

(n=103) 

No BPD 

(n=33) 

BPD Mild 

(n=39) 

BPD 

Moderate 

(n=11) 

BPD 

Severe 

(n=20) 

Gestational Age (weeks) 
26.96 

±2.12 

29.09 

±1.43 

26.20 

±1.48 

25.69 

±2.06 

25.62 

±1.43 

Birth Weight (g) 
908.25 

± 304.58 

1206.21 

±292.39 

829.74 

± 182.77 

641.82 

± 177.85 

716.25 

± 154.31 
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*Body Size (cm) 
34.38 
± 4.02 

38.38 
±3.23 

33.26 
± 2.92 

31.06 
±2.43 

31.76 
±2.25 

APGAR Score - 5 min 7.71 
± 1.40 

8.06 
±1.00 

7.87 
±1.10 

7.36 
±2.38 

7.00 
±1.59 

†Early Onset Infection No (N=80), 

Yes (N=23) 

No (N=29), 

Yes (N=4) 

No (N=30), 

Yes (N=9) 

No (N=7), 

Yes (N=4) 

No (N=14), 

Yes (N=6) 

Administration of postnatal 

corticosteroids 

No (N=61), 

Yes (N=42) 

No (N=28), 

Yes (N=5) 

No (N=22), 

Yes (N=17) 

No (N=6), 

Yes (N=5) 

No (N=15), 

Yes (N=5) 

Oxygen Supplementation (days) 47.30 

± 43.18 

5.18 

±7.72 

45.56 

±21.23 

81.55 

±30.96 

101.35 

±40.78 

Mechanical Ventilation (days; 

invasive and non-invasive) 

48.22 

±26.93 

19.91 

±15.62 

52.51 

±13.74 

66.55 

±19.20 

76.50 

±21.08 

  *Linear BMI imputation performed for 18 body sizes. †Early Onset Infection as defined by Sherman et al. [17]. 

 

MRI Protocols and Annotations 

MRI axial images were obtained (GA 37±5.8) using a T2-weighted half-Fourier-acquired single-

shot fast spin-echo (HASTE) sequence with an echo time (TE) of 57 ms, providing sufficient T2-

weighted signal and contrast for neonatal lung structural assessment [18]. Spatial resolution was 

1.3×1.9 mm² in plane with a slice thickness of 4 mm and 0.4 mm slice gap (SI 2). 

Manual lung annotation in all MRI sequences was performed independently by three experienced 

physicians (one senior radiologist, and two late-stage medical students trained in image analysis). 

The software ITK-SNAP [19] was used to collect the manual segmentations. Pseudonymization 

of images and clinical information was performed to guarantee blinded analysis. MRI sequences 

were automatically cropped to 128×128 pixels for model training. 

 

Morphological MRI Physician Scores 

Standardized image analysis was performed by two independent radiologists through scoring of 

lung morphology addressing characteristic structural changes of BPD [37]. Scoring variables were 

defined as follows, ‘interstitial enhancement score’ indicative of the typical lung tissue fibrosis, 

reflects a distinctive representation of interstitial structures, with thickening of broncho-vascular 

bundles. The caudo-cranial (CC) and anterior-to-posterior (AP) ‘AP or CC gradient scores’ 

illustrate differences in signal intensities over all lung quadrants showing ventilation 

inhomogeneity. The ‘emphysema score’ quantified the presence of emphysema, with reduced 

signal intensity, rarefied lung vasculature, hyperexpansion, mosaic pattern of lung attenuation, 
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presence of bullae or blebs. The ‘atelectasis score’ indicates partial collapse of a region of the 

lung, showing consolidation with increased signal intensity. The ‘airway accentuation score’ was 

evaluated based on increased signal intensity in the respiratory ducts and airway wall thickness in 

relation to airway diameter. 

For every score, a semi-quantitative five-point Likert scale was used: a score of ‘1’ represented 

normal findings, i.e., the absence of any abnormality, while a score of ‘5’ represented maximum 

pathology. To achieve a high level of standardization, we virtually segmented the lung into four 

quadrants. Scoring was performed separately for each variable for the right and left lung and in 

coronal and axial as well as in sagittal images to allow for the detection of regional differences. 

Deep-Learning MRI Lung Segmentation Model 

We trained a set of U-Net CNN models [20] to perform 2D lung segmentation on the collected 

neonatal MRI scans, with each model based on the manual annotations of a different physician 

(Fig. 1B-C) and combined them through pixel-wise majority voting (MV) to an ensemble model 

(Fig. 1D). A 3D representation of the left and right lung was used to calculate volumetric features 

that describe the shape, surface, and MRI-intensity distributions (Fig. 1E). 

U-Net models produce a latent representation of the image by processing it through convolutional 

layers in a contracting path and through a path of up-convolutional layers, with skipped 

connections at each level, returning a high-resolution binary pixel-wise segmentation map of the 

image. Our U-Net architecture has four down and four up-convolutional blocks and a fifth 

intermediate convolutional block. Batch normalization was included after every building block of 

the U-Net and a Dropout Layer. Detailed architecture and hyperparameters are available in SI 3, 

Table S1 and Table S2, code available in https://github.com/SchubertLab/NeoLUNet. The 

Instant-DL framework, which is designed to efficiently train U-Net segmentation models for 

medical imaging applications, was adapted for our study [21]. Optimization was performed with 

Adam [22]. 

To generate unbiased training and performance estimates for the study cohort, a set of k models 

were trained in a leave-one-patient-out (LOPO) cross-validation scheme, that is, for each kth 

model, the data of the kth participant is used only for validation. Additionally, MRI sequences from 

the UKGM cohort were used for validation of the model trained with all the sequences from the 

LMU study cohort. Lung segmentation performance was measured by aggregating pixels from all 
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the slices in the MRI sequence and calculating the volumetric dice coefficient (VDC), defined as 

𝑉𝐷𝐶 =
2𝑝𝑔+1

𝑝2+𝑔2+1
, with 𝑝 being the predicted positive-class pixels and g being the ground truth 

pixels [23].  

For each MRI sequence, the segmentation generated by one of the DL models (e.g., MP1), 

previously trained with the manual annotations obtained from one physician (e.g., P1) was 

compared with each ground-truth of the remaining manual segmentations (i.e., P2 and P3). We 

report the average model performance across these comparisons. The average inter-rater VDC 

concordance between physicians (e.g., P1 vs each manual annotation P2 and P3) was calculated 

as a reference for the model performance. The MV ensemble model prediction was evaluated by 

comparing its performance against a ground truth generated with all manual annotations (P1, P2, 

P3) aggregated through pixel-wise majority voting. 

MRI-Lung Volumetric and Morphologic Descriptors 

After using the deep convolutional neural networks to perform lung segmentation in MRI 

sequences, we subsequently reconstructed the 3-dimensional neonatal lung, and estimated MRI 

lung descriptors for volume, shape, surface, and signal intensity distribution.  

The 3D representation of the lung was created by thresholding the predicted lung masks and 

generating voxels with the DICOM pixel-spacing metadata from the MRI sequences. Voxels that 

were connected in the 3D space were used to form the final volumetric representations of each 

lung. Lungs were oriented to a common reference frame for all patients. Left and right lungs were 

then determined by the x-coordinates of the components’ centroids, enabling the extraction of side-

specific lung features for each patient (SI 4).  

A set of 78 MRI-based lung features were obtained as quantitative descriptors for the morphology 

of the left and right lung. The 3D descriptors are based on the work described in the work by 

Waibel et al. [24]. Additionally, we propose MRI-intensity-spacial-distribution features to further 

reflect lung injury, which were calculated using Scikit-Image 0.19.2 [25]. The descriptors proposed 

can be grouped within the following representative categories: Volume and shape features (n=38), 

describing lung volumes and volume ratios, major and minor axis lengths, centroids, inertias and 

moments of inertia for each 3D axis. Surface descriptors (n=10), quantifying surface area, surface 

roughness and surface convexity. Intensity distribution features (n=30), that include intensity 

weighted centroids, distances of the MRI intensity-weighted centroids to the non-weighted 
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centroids and descriptive statistics of the central tendency and dispersion of pixel intensities in the 

lung (S5 and Table S3, SI). 

BPD Severity Prediction Models 

Beyond the explanatory analysis, machine learning (ML) regression models were used to predict 

the severity of BPD, as well as the primary BPD indicators (days of respiratory support and days 

of oxygen supplementation), using combinations of three groups of explanatory variables: 78 lung 

volumetric and morphologic features (V), four patient (P) features (i.e., GA, birth weight, body 

size, gender), and three clinical parameters (C) (i.e., 5 min APGAR score, early-onset infection, 

steroid treatment).  

Random Forest (RF) [26] and Logistic regression models (LR) with Elastic Net [27] regularization 

were trained to perform binomial classification of two scenarios (no BPD vs BPD; no/mild vs 

moderate/severe BPD) and multinomial classification (no BPD, mild, moderate, and severe BPD), 

using scikit-learn v.1.1.1 [28]. 

A nested cross-validation scheme was implemented to find the best model hyperparameters with 

a randomized-search (SI 6, Table S4). The average performance of the models was estimated with 

10 random repetitions of the nested cross-validation scheme. A stratified 5-fold train-test split was 

used for the inner and outer cross-validation loops. 

Our training pipeline also allowed the inclusion of univariate feature selection and dimensionality 

reduction methods. Principal Component Analysis (PCA), when applied, involved the lung 

descriptors only, thus keeping the interpretability of the remaining features. Ultimately, a set of 

LR and RF models were trained both with and without the feature selection methods, with the aim 

of finding the best performing combination of model, hyperparameters, and features (see SI 6). 

For prediction of the continuous BPD indicator, regression models (i.e., Poisson and RF), were 

trained to predict the days of required respiratory support and days of oxygen supplementation, 

using the same nested cross-validation and feature selection schemes. 
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RESULTS 

Deep Learning Enables Robust MRI Neonatal Lung Segmentation and Lung Volume 

Calculation Across Study Sites and Disease Grades  

The key of establishing MRI-based diagnostics in clinical practice is a robust and standardized 

analysis protocol. To this end, we developed a deep convolutional neural network for MRI-Lung 

segmentation and reconstruction in very premature infants near term. 

The DL lung segmentation models achieved high VDC performance (MP1=0.890±0.041, 

MP2=0.878±0.042, MP3=0.872±0.043) equivalent to the inter-rater segmentation concordances 

(P1=0.875±0.032, P2=0.881±0.034, and P3=0.879±0.035) (Fig. 2B), with average VDC 

differences of less than 0.016 points, demonstrating the capacity of the model for abstracting the 

MRI lung representation from the training set. Moreover, differences in the average VDC 

performance between sites were below 0.0286 points for all models, indicating transferability 

across independent cohorts and model generalizability.  

The MV ensemble model showed the highest VDC when compared to the rater's consensus (Fig. 

2B), with an average VDC of 0.902±0.039 (study cohort=0.908±0.039 and validation 

cohort=0.880±0.036), confirming human-level accuracy of the AI-based segmentation method for 

quiet-breathing neonatal lung MRI. VDC scores per MRI sequence are available (Table S5, SI). 

Image quality was analyzed as a confounding factor for segmentation performance (Fig. S1A, SI), 

independent scores per sequence (1=high quality, 2=medium quality, 3=low quality) were on 

average 1.7 for the study cohort and 2.3 for the validation cohort. A significant effect was found 

for both manual segmentations (Kruskal-Wallis P1, P2, P3, p-values=[1.24×10-6, 1.14×10-5, 

4.21×10-8], n=107) and the models accordingly (Kruskal-Wallis MP1, MP2, MP3, MV, p-

values=[1.53×10-7, 7.14×10-7, 4.67×10-8, 2.53×10-7], n=107), lower MRI quality resulted in lower 

segmentation performances. 

Model segmentation robustness was tested for different disease conditions, i.e., the presence of 

BPD-characteristic structural changes, and showed no significant differences for segmentation 

performance between BPD severity grades (Fig. S1B, SI) (Kruskal-Wallis MP1, MP2, MP3, MV, 

p-values=[0.30, 0.20, 0.55, 0.48], n=107). Similarly, model segmentation performance was not 

significantly affected by different types of lung injury, including: interstitial enhancement, 

emphysema, atelectasis, ventilation inhomogeneities, and airway accentuation (Fig. S2A-F, SI), 

showing comparable performances to the manual annotations in the same pathologic conditions. 
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The correlation of the resulting MRI lung volumes per patient, computed using DL-based vs 

manual lung segmentations, was evaluated as another indicator of segmentation accuracy (Fig. 

2C). A significantly high correlation (Pearson, r=0.949, p-value=1.51×10-52, n=107) was found, 

indicating that the precision of the DL ensemble model enabled a robust downstream estimation 

of the lung volumes, even for sequences with low image quality (Pearson, r=0.950, p-

value=1.65×10-09, n=18). 

The DL-based lung volumes per patient were also validated against MRI-independent volume 

estimators from ILFT, a significant positive correlation was observed between the DL lung 

volumes normalized by birthweight vs the functional residual capacity normalized by birth weight 

(Fig. 2D, r=0.703, p-value=4.26×10-5, n=27), as well as the tidal volume normalized by birth 

weight (Fig. 2E, r=0.675, p-value=2.27×10-5, n=32). 

 

MRI Lung Features Correlate with BPD Severity Indicators and Morphological Lesion 

Scores 

Our explanatory analysis demonstrated relevant correlations of the MRI lung features against 

indicators of BPD severity and lung morphological injury scores (Fig. 3; Table S6, SI). 

In concordance with the pathophysiology of the disease, clinical features related to GA presented 

good correlations with BPD severity levels (Pearson; gestational-age: r=-0.518, p-value=1.63×10-

6, birth-weight: r=-0.571, p-value=6.97×10-8; body-size: r=-0.588, p-value=2.37×10-8). We found 

that MRI lung features such as the MRI-based lung volume normalized by birth weight, also 

showed a good correlation with BPD (Pearson; r=0.562, p-value=6.52×10-10), and allowed an 

accurate discrimination between BPD severity grades (Kruskal-Wallis, k=42.17, p-

value=3.68×10-9, n=103), with significant differences between four comparisons of BPD severity 

levels (Wilcoxon–Mann–Whitney U test with Bonferroni correction: no BPD vs mild BPD, no 

BPD vs moderate BPD, no BPD vs severe BPD, and mild BPD vs severe BPD, k=[236, 25, 60, 

217], p-values=[2.54×10-5, 1.41×10-4, 4.56×10-6, 3.44×10-2], n=103; Fig. 4A). Moreover, high 

correlations were observed between MRI lung volume normalized by birth weight with days of 

mechanical ventilation (r=0.738, p-value=5.54×10-19, n=103; Fig. 4B), and days of oxygen 

supplementation (r=0.622, p-value=2.39×10-12, n=103; Fig. 4C). These findings are in line with 

previous observations reporting elevated lung volumes in severe BPD cases [9,11].  
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Lung elongation (i.e., major over minor lung axis length) also demonstrated relevance for 

describing BPD severity levels (Pearson, left-lung: r=-0.46, p-value=1.02×10-6 ; right-lung, r=-

0.35., p-value=2.80×10-4; n=103) (Fig. 4D) and days of mechanical ventilation (Pearson, left-and-

right-lungs: r=0.465, p-value=1.98×10-12, n=103), details in (Table S7, SI 7). 

Next, we explored the correlation of lung 3D morphologic features with physician-based 

morphological lung injury scores. In particular, the lung surface roughness, which measures lung 

surface irregularities by subtracting the raw 3D lung shape from its gaussian-smoothed version, 

showed a significant positive correlation with the interstitial lung injury score that indicates 

interstitial remodeling (Pearson; left-lung: r=0.362, p-value=5.20×10-3, n=58) (Fig. 4F). Also, the 

MRI AP-centroid shift, which describes the distance in [cm] between the intensity-weighted 

centroid and the centroid with uniform pixel intensity distributions, showed a positive correlation 

with the AP intensity-gradient score (Pearson; left-lung: r=0.521, p-value=2.75×10-5; right-lung: 

r=0.337, p-value=9.67×10-3; n=58) (Fig. 4E), corroborating the potential to be used as a 

quantitative descriptor for ventilation inhomogeneities.  

MRI Lung Features Demonstrate Predictive Performance for BPD Severity Classification 

To evaluate the clinical potential of the MRI-based lung volumetric analysis in the preterm 

neonate, we tested the performance of ML models for BPD severity prediction with GA, and 

Patient (P), Clinical (C), and MRI-lung (L) features. 

For the binary BPD classification, a high accuracy for separating BPD and no BPD cases was 

found when using only GA (AUC 92.06%), PC features (AUC 92.14%), or PCL features (AUC 

91.67%) (Table 2), which reflects the driving force of immaturity for the development of lung 

injury and BPD. In the binary separation of no and mild from moderate and severe BPD cases, we 

found that the inclusion of MRI-lung features as explanatory variables (PCL) improved the average 

AUC predictive performance by 8.36 % points when compared to only GA and 2.29 % points 

when compared with the predictions with PC variables (Fig. 5A). 

The multiclass prediction of BPD severity showed comparable performance for the PCL and PC 

models, with macro-weighted AUCs of 75.21% and 75.71% respectively, (Table 2, Fig. 5B). The 

individual intra-class performance of the PCL model showed a high score for classification of no 

BPD vs all BPD levels (AUC=91.9%), followed by severe BPD detection (AUC=72.6%) (Fig. 

5C).  
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Furthermore, we investigated the models’ performance in a subgroup of patients (n=50) with a GA 

between 25.4 to 28.6 weeks established by including the most immature patient without BPD and 

the most mature patient classified with severe BPD. Within this group of extremely immature 

infants, GA alone does not sufficiently discriminate disease severity (AUC=54.65%). In contrast, 

the inclusion of lung morphological features largely improved the separation of BPD grades for 

the PCL model with an overall performance improvement of 4.98% points above the best PC 

model, and 12.95% points above the GA model (Table 2, Fig. 5E). The average intra-class AUC 

scores of the PCL model for this particular GA window were [75.97%, 54.65%, 74.90%, 64.91%] 

for no, mild, moderate, and severe BPD, respectively (Fig. 5F). 

Table 2 - BPD Severity Prediction by Feature Groups 

 AUC [%] PCL PC GA L 

Binary: No BPD vs BPD  

(all severity levels) 

Average 

± SD  

91.67 

±1.57 

92.14 

±1.14 

92.06 

±0.92  

74.71 

±1.23  

Best model LR (UFS) LR LR  LR (PCA-l) 

Binary: No/Mild BPD vs 

Moderate/Severe BPD 

Average 

± SD  

84.11 

±2.66 

81.82 

±2.21 

75.75 

±1.34 

75.20 

±2.94 

Best model LR (PCA-l, 

UFS) 

RF LR LR 

Multinomial: No BPD, 

BPD Mild, Moderate and 

Severe.  

Average 

± SD  

75.21 

±1.34 

75.71 

±1.23 

74.84 

±2.04 

60.75 

±2.27 

Best model LR (UFS) RF LR LR 

Multinomial: No BPD, 

BPD Mild, Moderate and 

Severe.  

GA Bin [25.4-28.6] 

Average 

± SD  

67.60 

±2.60 

62.62 

±3.72 

54.65 

±3.79 

60.23 

±5.17 

Best model LR (UFS) RF LR RF(PCA-l) 

PCL=Patient, clinical and lung descriptors, PC=Patient and clinical descriptors, GA=Gestational age, L=78 MRI 

lung volumetric and morphological descriptors, LR=Logistic Regression, RF=Random Forest, PCA-l=Principal 

component analysis for lung features. UFS=Univariate feature selection. P=Patient descriptors (gestational age, birth 

weight, body size, gender), C=Clinical Parameters (APGAR 5 min score, early-onset infection, postnatal steroids 

treatment). Average AUC scores and standard deviations (SD) across 10 repetitions of the nested cross validation. 

To understand the contribution of the lung MRI-based features for prediction of BPD severity 

outcome, we performed a permutation importance analysis on a LR multinomial classification 

model (LR + UFS) trained with all the features (PCL) and data-points (Fig. S4A, SI), we found 

that together with GA and birth weight, 16 MRI-based lung features had importances with 

interquartile ranges above random chance. Also, we investigated the feature importances of the RF 

models trained for BPD outcome prediction in every outer fold of the cross-validation (Fig. S4B, 

SI), we observed that after GA, birth weight, and body size, 17 additional MRI-based lung features 
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were part of the top 20 features used for BPD prediction. In both analyses the MRI-based lung 

volumes, lung elongation, intensity-centroids, inertias and moments, showed relevant contribution 

for BPD classification. 

For the continuous indicators of BPD, by the use of RF regression, and Poisson regression, the 

prediction of days of mechanical respiratory support and oxygen supplementation was evaluated 

(Table 3). For the prediction of days with respiratory support, the regression model that included 

patient, clinical and MRI-lung features (PCL), achieved the lowest mean absolute error (MAE) 

with 11.85 days, compared to 12.44 days with the PC features, and 13.12 days with GA-only (Fig. 

5E). In the case of prediction of days with oxygen supplementation, the PCL model had similar 

performance to the PC and GA models, with a MAE of 23.94 days. 

Table 3 - Prediction of Primary BPD indicators by Feature Groups 

 MAE [days] PCL PC GA L 

Regression: Days of 

Respiratory Support 

Average 

± SD  

11.85 

±0.44 

12.44 

±0.55 

13.12 

±0.20 

19.43 

±0.97 

Best model RF(PCA-l) RF Poisson Poisson 

(PCA-l) 

Regression: Days of 

Oxygen Supplementation 

Average 

± SD  

23.94 

±1.00 

23.42 

±1.18 

22.28 

±0.41 

33.23 

±4.03 

Best model RF(PCA-l) Poisson Poisson Poisson 

(PCA-l) 

MAE=Mean Absolute Error, PCL=Patient, clinical and lung descriptors, PC=Patient and clinical descriptors, 

GA=gestational age, L=78 MRI lung volumetric and morphological descriptors, RF=Random Forest, PCA-

l=Principal Component Analysis for Lung Features. P=Patient descriptors (gestational age, birth weight, body size, 

gender), C=Clinical Parameters (APGAR 5 min score, early-onset infection, postnatal steroids treatment). Average 

AUC scores and standard deviations (SD) across 10 repetitions of the nested cross validation. 

 

DISCUSSION 

We showcased the significant potential of DL models for accurate segmentation of neonatal lung 

MRI as well as the use of MRI-based lung injury descriptors for the standardized and reproducible 

assessment of the lung MR images in a high-risk patient cohort. 

With low variability and high comparability, the performance of the developed CNN models 

outweighed manual annotations, thereby demonstrating their significant potential to perform in 

smallest lung volumes, challenged by motion artifacts and blurring.  
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Previous studies faced limitations in scalability and sensitivity of MRI lung segmentation in 

smaller neonatal cohorts. In line with this, Heimann et al. used lung shape-appearance models to 

perform free-breathing MRI lung segmentation in a cohort of 32 children and reported an average 

overlap of volumetric ground truth of 85% [29]. Kohlmann et al. achieved a ground truth 

segmentation overlap of 94% using 3D lung region-growing-based methods in MRIs from 14 adult 

patients while applying breath-holding maneuvers [30], whereas other adult MRI lung 

segmentation methods reported VDCs in the range of 82%-86% [31,32]. In contrast, we 

demonstrated that our ensemble DL model achieved an average performance VDC of 90.2% in the 

most challenging condition, i.e., free-breathing neonatal lung MRI obtained in a multi-center 

setting, thereby comparable or superior to the performance of segmentation models designed for 

highly controlled acquisition protocols in adult patients. Furthermore, our ensemble model 

demonstrated robust performance in disease-associated structural changes, indicating the potential 

of the model to be applicable in various, clinically relevant conditions. 

As a result, our automated pipeline enabled the accurate downstream estimation of neonatal lung 

volumes that significantly correlated with the corresponding volumes abstracted from manual 

annotations (Pearson, r=0.949). The performance was comparable to previous MRI lung volume 

extractions in adults (Pearson, r=0.98) [30]. Moreover, our MRI volume estimates correlated with 

ILFT as a non-image-based validation of the findings obtained.  

To showcase the potential for diagnostic use, we demonstrated significant correlations of multiple 

MRI-lung descriptors with physician-based lung injury scores. For instance, the intensity-weighted 

centroid shift allowed us to link the deviation of the centroid to the degree of ventilation 

inhomogeneities. In addition, the correlation between lung surface ‘roughness’ and interstitial 

enhancement suggested that extensive matrix remodeling in BPD, with concurrent 

emphysematous and fibroproliferative changes, is reflected in larger 3D surface irregularities, in 

line with findings in adult lung fibrosis [33].  

Previous MRI lung injury features in neonatal cohorts focused on the quantification of lung water 

content via proton density measurements [34] or examined lung MRI relaxation times [18], thereby 

lacking information of the lung topology and MRI-intensity distributions. MRI 3D morphological 

descriptors have the potential to further contribute as interpretable, quantitative markers of lung 

structural injuries in neonates. 
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The application of our MRI-supported prediction models for disease stratification demonstrated 

significant predictive power for BPD classification (AUC 91.67±1.6% no BPD vs BPD), thus 

exceeding previous radiation-free imaging-supported BPD prediction models (AUC binary 

prediction performance: 83-86% (lung ultrasound) [8–10], 80% (lung MRI) [18]). The inclusion 

of MRI-lung features also improved the predictive performance for the separation of more severe 

BPD cases (AUC 84.11%), thereby stratifying high-risk infants. Moreover, the multinomial 

classification of BPD with PCL features showed improved performance (AUC 75.21%) when 

compared to 13 of the 14 clinical BPD outcome prediction models (AUC 54% - 73%), and 

resembled the model of Ryan et al. (AUC 76%) [35,36], based on the validation by Onland et al. 

[35]. Our analysis furthermore revealed that MRI morphologic lung features significantly 

improved BPD classification in more immature infants, in which GA does not sufficiently predict 

BPD severity.  

With the potential of quantifiable MRI lung structural information to improve the precision for 

identification of BPD cases, our results motivate further research in the extraction of MRI-lung 

volumetric and morphological descriptors to better guide medical care and interventions as well 

as long-term monitoring. 

For future work, the collection of larger annotated datasets will strengthen the generalizability and 

performance of the ensemble model while including different conditions of lung pathology. 

Moreover, the definition of additional lung descriptors and their analysis in longitudinal 

approaches will be crucial to inform medical decision-making through early prediction of long-

term outcome.  

Our work contributes to the generation of scientific evidence required to integrate AI-driven, 

volume-based MRI descriptors that can serve as markers for neonatal lung health in clinical routine 

taking advantage of a radiation-free imaging technique. The proposed segmentation method and 

automated extraction of structural measurements from neonatal lung MRI enables the translation 

of medical expertise to larger-scale applications, including the transferability to health centers that 

face different expertise levels. Therefore, this approach contributes to the standardized monitoring 

of critical features in pediatric respiratory disease and improves the comparability and 

reproducibility in image analysis for standardized follow-up care into adulthood. 
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Figure 1. MRI-based Neonatal Lung Volume Analysis Pipeline. (A) Clinical study including preterm infants with and without BPD, free-breathing neonatal MRI was taken at
Gestational Age (GA) 37 +-5.8 weeks. (B) Manual MRI annotation of the lung performed by three trained physicians (P1, P2, P3). MRI morphological injuries (e.g.
emphysema, fibrosis, ventilation inhomogeneity) were scored by two trained physicians. (C-D) U-Net deep learning models (MP1, MP2, MP3) were trained for lung
segmentation, a final lung-mask prediction is calculated with an ensemble of the models through majority voting (MV). (E) Lung volume 3D reconstruction and automated
calculation of 78 morphologic 3D feature extraction for each lung.
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A.                                                                                                                           B.                                                                                                     

C.                                                                                            D.                                                                                       E.                                                                                                                           

Figure 2. Lung Segmentation and Lung Volume Analysis. (A) MRI Lung segmentation sample with manual annotation and ML model generated lung masks. (B) Lung
segmentation performances for manual physician-based lung annotations (P1, P2, P3), U-Net models (MP1, MP2, MP3) and ensemble model with majority voting (MV),
results separated for the LMU study cohort and UKGM validation cohort. (C) Estimated MRI lung volume from the U-Net model segmentations vs estimated lung volume from
manual segmentations (n=107). (D) Functional residual capacity per birth weight vs MRI model-based lung volume per birth weight (n=27). (E) Tidal volume per birth weight
vs MRI model-based lung volume per birth weight (n=32).

Neonatal Lung MRI

Manual Mask

Model Mask
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Figure 3. Correlation Matrix of MRI-based Morphological Features vs Clinical Variables and Lung Injury Scores. Exploratory analysis of the MRI-based 3D
morphological features that presented highest pearson correlation with clinical variables or MRI physician-based lung injury scores. MRI 3D features are grouped by feature
type (Volumetric, Intensity and Surface). AP=Antero-Posterior, CC=Caudo-Cranial.
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D.                                                                                             E.                            F.                                                              

A.                                                                                             B.                            C.                                                              

Figure 4. MRI Lung Volumetric Features against BPD Severity and Lung Injury Scores. (A) Distribution of the predicted lung volume normalized by birth weight against
BPD severity grades. (n=103, *p-values for Wilcoxon–Mann–Whitney U-test with Bonferroni correction). (B) Lung volume normalized by birth weight vs days of mechanical
ventilation (n=103). (C) Lung volume normalized by birthweight vs days of oxygen supplementation (n=103). (D) Lung Volumetric Elongation (Major Axis / Minor Axis) by BPD
Severity (n=103). (E) MRI lung intensity Antero-Posterior (AP) centroid shift vs AP gradient Score indicating ventilation inhomogeneity (n=58). (F) MRI lung volumetric surface
roughness vs interstitial lung injury score indicating fibrosis (n=58).
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Figure 5. BPD Prediction - Best Performing Models by Feature Group. (A) BPD binomial classification performance (No/Mild vs. Moderate/Severe). (B) BPD multinomial
classification performance (No, Mild, Moderate, Severe). (C) BPD multinomial ROC for best model with PCL features. (D) Regression performance for days of respiratory
support. (E) BPD Multinomial classification performance for GA (25.4-28.6 weeks) (F) BPD multinomial ROC for best model with PCL features with GA (25.4-28.6 weeks).
Feature Groups (PCL=Patient, clinical and lung features, PC=Patient and clinical variables, GA=Gestational age, L=78 MRI automated lung volumetric and morphological
descriptors). Log. Reg.=Logistic Regression, RF=Random Forest, PCA=Principal component analysis only for lung features. UFS=Univariate feature selection.
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