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Abstract 34 

Objective and Impact Statement: We apply a deep learning (DL) segmentation method and 35 

automate the extraction of imaging markers for neonatal lung structure using magnetic resonance 36 

imaging (MRI) in order to inform clinical care with robust and quantifiable information about the 37 

neonatal lung. 38 

Introduction: Quantification of lung structural information in a standardized fashion is crucial to 39 

inform diagnostic processes that enable personalized treatment and monitoring strategies. 40 

Increased efficiency and accuracy in image quantification is especially needed in prematurely born 41 

infants, for whom long-term survival is critically determined by acute and chronic pulmonary 42 

complications, currently diagnosed based on clinical criteria due to the lack of routinely applicable 43 

diagnostic tools. 44 

Methods: We prospectively enrolled 107 premature infants in two clinical centers with and without 45 

chronic lung disease, i.e., Bronchopulmonary Dysplasia (BPD) to perform quiet-breathing lung 46 

MRI. An ensemble of deep convolutional neural networks was developed to perform lung 47 

segmentation, with a subsequent reconstruction of the 3-dimensional lung and computation of MRI 48 

volumetric measurements and compared to the standard manual segmentation. 49 

Results: The DL model successfully annotates lung segments with a volumetric dice score of 0.908 50 

(Site 1) and 0.880 (Site 2), thereby reaching expert-level performance while demonstrating high 51 

transferability between study sites and robustness towards technical (low spatial resolution, 52 

movement artifacts) and disease conditions. Estimated lung volumes correlated with infant lung 53 

function testing measures and enabled the separation of neonates with and without BPD. 54 

Conclusion: Our work demonstrates the potential of AI-supported MRI measures to perform 55 

monitoring of neonatal lung development and characterization of respiratory diseases in this high-56 

risk patient cohort. 57 

 58 
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Bronchopulmonary Dysplasia, Chronic Lung Disease, Preterm Infant, Lung Segmentation, Lung 60 
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MAIN TEXT 64 

 65 

1. Introduction 66 

Clinical decision-making in lung disease is mostly based on clinical observations and lung function 67 

measurements, ideally complemented by structural information from imaging strategies. Although 68 

quantification of lung structural information in a standardized fashion can critically inform the 69 

diagnostic process and help to implement personalized treatment and monitoring strategies, the 70 

much needed increase in efficiency, accuracy and comparability in image quantification most often 71 

remains an unmastered challenge in critical areas of today’s clinical care.  72 

These unmet diagnostic clinical needs become especially apparent in the most vulnerable, yet 73 

diagnostically challenging patient cohort. Born extremely immature, the preterm infant postnatally 74 

faces the inevitable development of acute lung injury, subsequently evolving into a chronic 75 

condition in the majority of cases [1]. While the diagnostic process still solely relies on clinical 76 

indicators of late-stage pulmonary function [2,3], the standardized assessment of radiation-free, 77 

sensitive imaging strategies would allow for diagnosing and monitoring respiratory disease from 78 

neonatal life into adulthood. 79 

Given the low sensitivity and diagnostic value of conventional chest radiography to sensitively 80 

discriminate disease conditions and the limitations of Computed Tomography (CT) due to 81 

radiation exposure [4,5], alternative imaging techniques such as Magnetic Resonance Imaging 82 

(MRI) are being explored to provide quantitative information with prognostic relevance when 83 

assessing the diseased neonatal lung [6,7,8]. MRI in the neonatal lung is technically challenged by 84 

small subject sizes, lower spatial resolution, and sensitivity to infant motion, resulting in blurring, 85 

ghosting, and other image artifacts [9]. These conditions demand expert knowledge to obtain 86 

measurements from the acquired pulmonary images [7,10] and affect inter-rater concordances 87 

resulting in low standardization and limitiations in high-throughput of MRI-based monitoring in 88 

neonatal lung disease. 89 

We therefore developed a deep learning-based system to support robust and standardized MRI 90 

analysis in the lungs of preterm neonates. To this end, we prospectively enrolled 107 cases with 91 

and without chronic lung disease, also known as Bronchopulmonary Dysplasia (BPD), from two 92 

study sites undergoing quiet-breathing lung MRI near term age. BPD is a chronic lung injury 93 
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syndrome resulting from a structurally immature lung condition that comprises a range of 94 

functional abnormalities (e.g., alveolar septation, airway injuries, decreased microvascular 95 

development) leading to insufficient gas exchange, with severity of the disease determined by the 96 

need of supplemental oxygen [1]. We combined recent advances in computational methods, i.e., 97 

convolutional neural networks (CNN), which have been integrated in various biomedical imaging 98 

applications [11,12,13], to test the applicability and robustness of deep learning (DL) methods for 99 

performing MRI lung segmentation in preterm infants with and without BPD. Subsequently, the 100 

obtained lung segmentations were used to compute MRI-based 3-dimensional (3D) lung 101 

volumetric features, that enabled the accurate separation of healthy cases from premature infants 102 

with different BPD severity grades. 103 

2. Results  104 

The proposed automated pipeline was developed and validated in a cohort of 107 preterm infants 105 

near term during quiet sleep. Quiet-breathing T2-weighted single-shot fast-spin-echo 3T-MRI lung 106 

sequences and clinical information were acquired at two study sites (Fig. 1A, Table 1).  107 

We trained a set of U-Net CNN models to perform 2D lung segmentations on each slice of the 108 

collected neonatal MRI scans, with each model based on manual annotations of three different 109 

physicians (Fig. 1B-C) and combined them through pixel-wise majority voting (MV) to an 110 

ensemble model (Fig. 1D). A 3D representation of the lung and a clustering method to separate 111 

left and right lobes were used to calculate volumetric features (Fig. 1E). 112 
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 113 

Figure 1. MRI-based Neonatal Lung Volume Analysis Pipeline. (A) MRI neonatal image acquisition and data collection. (B) 114 
Manual image annotation performed by three trained physicians. (C-D) CNN model training and model prediction with majority 115 
voting. (E) Lung 3D reconstruction and volume-based feature extraction. (F) Lung segmentation example. (G) Paired Volumetric 116 
Dice Coefficient (VDC) differences between the reference CNN model and the corresponding manual annotation. (H) Manual 117 
annotation and model performances by cohort. 118 

2.1 Deep Learning Enables Human-Level Neonatal Lung Segmentation in MRI 119 

To investigate whether human-level performance could be achieved, the segmentations generated 120 

by one of the DL models (e.g., MP1), which was trained with the manual annotations from one 121 

physician (e.g., P1), were compared with each ground-truth of the remaining manual 122 

segmentations (i.e., P2 and P3), we report the average model performance across these 123 

comparisons. As evaluation metric, we used the volumetric dice coefficient (VDC) integrating the 124 

segmentation performance of all pixels and slices from one MRI sequence. The average inter-rater 125 

VDC concordance between physicians (e.g., P1 vs each of the manual annotations P2 and P3) was 126 

also calculated as a reference for the model performance. 127 

Neonatal Lung Segmentation Sample

C. U-Net Models for Lung 
Segmentation

B. Image Annotation by 
Physicians

A.   Neonatal Image Acquisition

2 Health Centers

Neonatal 
MRI sequences 

D. Neural Network Model Ensemble 
with Majority Voting (MV)

86 neonates

1745 images 

E. Lung 3D Reconstruction
and Feature Extraction

Prediction with MV

Site 1 Site 2

Collection of 
Clinical Variables

21 neonates

420 images 

P1

P2

P3

MP1

MP2

MP3

LOPO Train-Test Split Validation Cohort

F.                                                                              G.                                           H.                                                                                  Paired Model-Physician VDC Differences Segmentation Performance by Cohort
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For study Site 1, models were trained in a leave-one-patient-out (LOPO) cross-validation scheme 128 

to generate unbiased performance estimates, while samples from study Site 2 were solely used for 129 

validation, performance for both cohorts was analyzed. 130 

The proposed DL models achieved high segmentation performances comparable to the reference 131 

manual performance, while demonstrating low average VDC differences between the model and 132 

the reference manual segmentation when comparing identical MRI sequences (-0.017±0.035, 133 

0.003±0.036, 0.006±0.037, for MP1, MP2, MP3; Fig. 1G). One case even exceeded average 134 

performance (one-sided Wilcoxon signed-rank test, p-value=0.0565 for MP3). Small differences 135 

between the paired performance of the model and the manual segmentation indicates an adequate 136 

representational power of the proposed models to abstract the segmentation knowledge from the 137 

provided training dataset. 138 

The average VDC of the manual annotations were 0.875±0.032, 0.881±0.034, and 0.879±0.035 139 

(P1, P2, P3), whereas the DL models had VDCs of 0.89±0.041, 0.878±0.042, and 0.872±0.043 140 

(MP1, MP2, MP3), demonstrating differences of less than 0.016 points in the overall performance 141 

thus indicating high comparability between models and manual annotations. 142 

The MV ensemble model prediction was evaluated by comparing its performance against a ground 143 

truth generated with all manual annotations (P1, P2, P3) also aggregated through pixel-wise 144 

majority voting. The MV ensemble model showed the highest segmentation performance (Fig. 145 

1H), with an average VDC of 0.902 ±0.039 improving by 2.1% over the highest manual 146 

segmentation’s VDC average, indicating human-level accuracy of the AI based segmentation 147 

method for quiet-breathing neonatal lung MRI. 148 

 149 

2.2 Robust Automatic Segmentations Across Clinical Sites and Diseased Lungs 150 

Performance across different study sites was assessed to confirm the models generalizability (Fig. 151 

1H). The average VDC of the MV ensemble model was 0.908±0.039 for study Site 1 and 152 

0.880±0.036 for study Site 2. Differences in the average VDC between cohorts were below 0.0286 153 

points for all trained models, indicating transferability of the models between cohorts while facing 154 

minor changes in the segmentation performance. Minor differences in performance across sites 155 

were also observed in the manual segmentations, potentially originating from imbalances in image 156 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 8, 2021. ; https://doi.org/10.1101/2021.08.06.21261648doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.06.21261648
http://creativecommons.org/licenses/by-nd/4.0/


Page 7 of 24 
 

quality demonstrated by the average image quality scores of 1.7 (study Site 1) and 2.3 (study Site 157 

2), respectively (1= best, 3=worst quality score). 158 

We then investigated image quality as a confounding factor for segmentation performance (Fig. 159 

2A) showing a significant effect for both manual segmentations (Kruskal-Wallis P1, P2, P3, p-160 

values=[1.24×10-6, 1.14×10-5, 4.21×10-8] , n=107) and the models accordingly (Kruskal-Wallis 161 

MP1, MP2, MP3, MV, p-values=[1.53×10-7, 7.14×10-7, 4.67×10-8, 2.53×10-7], n=107), indicating 162 

lower MRI quality to result in lower segmentation performance. 163 

Model robustness was furthermore tested for lung structural differences, i.e., presence of BPD-164 

characteristic changes (Fig 2B), showing no significant differences for segmentation performance 165 

between disease severity grades (Kruskal-Wallis MP1, MP2, MP3, MV, p-values=[0.30, 0.20, 166 

0.55, 0.48], n=107). 167 

 168 

 169 

Figure 2. Lung Segmentation and Lung Volume Analysis. (A) Image quality vs segmentation performance for manual 170 
annotations and models (n=107). (B) Manual annotations and model segmentation performance by BPD Severity (mild, moderate, 171 

A.                                                                                                                           B.                                                                                                                       

C.                                                                                   D.                                      E.                                                                                   
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and severe) (n=107). (C) Estimated lung volume from the CNN lung segmentations vs estimated lung volume from manual 172 
segmentations (n=107). (D) Correlation of functional residual capacity per weight vs predicted lung volume per weight (n=27). E) 173 
Correlation of tidal volume per weight vs lung volume per weight (n=32). 174 

 175 

2.3 MRI-based Lung Volume Estimates Correlate Well with Lung Function 176 

In order to approximate lung volume, a 3D reconstruction of the lungs was performed using the 177 

fully segmented lung sequences (Methods - MRI-Lung Volumetric Features). We classified the 178 

lung volume further by addressing each lung lobe separately using an automatic clustering 179 

technique allowing for the differentiation of the lung lobe volume ratio. 180 

Predicted lung volumes showed a significant correlation (Pearson, r=0.964, p-value=6.72×10-62, 181 

n=107) when compared to the lung volumes generated by manual segmentations (Fig. 2C), 182 

indicating that the high segmentation accuracy of the DL ensemble model enabled a robust 183 

downstream estimation of the lung volumes, including sequences with low image quality (Pearson, 184 

r=0.963, p-value=3.69×10-11, n=19).  185 

A significant correlation was also observed between the estimated lung volume normalized to 186 

bodyweight and parameters derived from infant lung function testing (ILFT by 187 

bodyplethysmography), such as functional residual capacity normalized to bodyweight (Fig. 2D, 188 

r=0.703, p-value=4.31×10-5, n=27), and tidal volume normalized to bodyweight (Fig. 2E, r=0.606, 189 

p-value=2.38×10-4, n=32), thereby validating the accuracy of the automated volume prediction by 190 

an MRI-independent measure. 191 

 192 

2.4 MRI-based Lung Features Demonstrate Predictive Performance for BPD Severity 193 

Classification 194 

To investigate the clinical value of the MRI-based lung volume in the preterm neonate, we tested 195 

the performance of ML models for BPD severity prediction.  196 

First, an exploratory analysis of the relation between the predicted lung volumes and indicators of 197 

BPD severity was performed. We demonstrated significant differences between the lung volume 198 

per bodyweight distributions for different BPD severity grades (Kruskal-Wallis, k=43.86, p-199 

value=1.61×10-9, n=103), with higher lung volumes corresponding to increased BPD severity 200 

levels (Wilcoxon–Mann–Whitney U test with Bonferroni correction, no-BPD vs mild, no-BPD vs 201 
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moderate, no-BPD vs severe, mild vs moderate and mild vs severe, k=[226, 25, 57, 98, 210], p-202 

values=[1.22×10-5, 1.18×10-4, 2.86×10-6, 3.30×10-2, 2.03×10-2], n=103; Fig. 3A). Moreover, 203 

significant positive correlations were observed between the predicted lung volume normalized to 204 

bodyweight and the duration of mechanical ventilation (invasive and non-invasive) (r=0.738, p-205 

value=5.54×10-19, n=103; Fig. 3B), as well as, the duration of oxygen supplementation (r=0.622, 206 

p-value=2.39×10-12, n=103; Fig. 3C). These findings thereby confirm the positive correlation 207 

demonstrated for formerly preterm infants at school age showing an increase in functional residual 208 

capacity in higher BPD severity grades and a prolonged history of respiratory support [14], in line 209 

with previous observations reporting elevated lung volumes in severe BPD cases [7,10]. 210 

 211 

 212 
Figure 3. Lung Volume vs BPD Severity Indicators. (A) Distribution of the predicted lung volume normalized by bodyweight 213 
against BPD severity grades. (n=103, *p-values for Wilcoxon–Mann–Whitney U-test with Bonferroni correction). (B) Correlation 214 
of lung volume normalized by bodyweight vs duration of mechanical ventilation (n=103). (C) Correlation of lung volume 215 
normalized by bodyweight vs duration of oxygen supplementation (n=103). 216 
 217 

Next, MRI-based lung volumes normalized to bodyweight as well as lung-lobe ratios were used 218 

as explanatory features to predict BPD severity and days of mechanical ventilation using Logistic 219 

Regression (LR), Random Forest (RF), and Poisson regression. Additional clinical variables were 220 

sequentially added as features to investigate the overall predictive performance of the model. Ten 221 

repeated nested cross-validations were performed with five outer and five inner-folds for 222 

performance estimation and hyperparameter tuning. The dataset used for the predictions consisted 223 

of 103 patients with a complete set of explanatory variables. Three prediction scenarios were 224 

explored with our models: i) a binary classification model comparing infants with BPD and 225 

without BPD diagnosis including all severity levels, ii) a scenario with multinomial classification 226 

A.                                                                                     B.                                    C.                                                                           
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comparing the three different BPD severity levels to infants without BPD, and iii) a regression 227 

scenario predicting the number of days with mechanical ventilation as a continuous measure 228 

indicating BPD severity. 229 

For the binary classification, a high classification performance was found with lung-volumetric 230 

features (V) (Table 1) indicating an average AUC performance of 84.31%±8.66% for the LR 231 

Model and 82.66%±10.64% for the RF Model. The inclusion of patient information (P) increased 232 

the AUC classification performance to 89.40%±7.95% for the LR model and 89.17%±7.70% for 233 

the RF model (Fig. 4A-B). Further inclusion of clinical variables (C) showed similar AUC 234 

performances of 89.51%±8.20% for the LR model and 88.89%±7.95% for the RF model (Fig. 4A-235 

B). F1 scores were higher for the RF models with 85.10% ±6.11% for the highest F1 score using 236 

all feature groups (Table 1). The ROC curves for the binary classification LR model with all feature 237 

sets (V,P,C) also showed an overall stable model for the different train-test splits (Fig. 4C). The 238 

high performance of the classification models that exclusively used volumetric features indicates 239 

their potential as descriptors of BPD severity, which can be improved to an overall high 240 

performance when adding known clinical risk factors, such as gestational age (GA) and growth 241 

[15,16]. 242 

 243 

A.                                                                                           B.                              C.                                                                  

D.                                                                                           E.                              F.                                                                  
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Figure 4. BPD Prediction Performance. V= Volumetric features (lung volume per bodyweight, lung lobe volume ratio), P= 244 
Patient information (gender, gestational age, birth weight, body Size), C= Clinical Parameters (APGAR 5 min score, early onset 245 
infection, steroids treatment). (A) AUC performance of logistic regression models for BPD prediction (BPD vs. no BPD) by feature 246 
groups. (B) AUC performance of random forest models for BPD prediction (BPD vs. no BPD) by feature groups. (C) ROC for 247 
BPD binomial classification with logistic regression and all feature groups (V+P+C). (D) AUC performance of logistic regression 248 
models for multinomial BPD prediction by feature groups. (E) AUC performance of random forest models for multinomial BPD 249 
prediction by feature groups. (F) ROC for BPD multinomial classification with logistic regression using all feature groups 250 
(V+P+C).  251 

 252 

The multiclass prediction of BPD that only used volumetric features as explanatory variables 253 

resulted in an pairwise average AUC of 74.33%±9.30% with the LR model, and a pairwise average 254 

AUC of 72.65%±8.49% for the RF model (Fig. 4 D-E, Fig. S1). The best performing model for 255 

multinomial classification was the LR model using features from volumetric measurements and 256 

patient-information with a pairwise average AUC of 78.06%±6.51% (Table 2). The ROC of the 257 

multinomial LR classification using all features showed that the best one class vs all AUC 258 

performances can be reached for no-BPD and severe BPD classes (Fig. 4F). 259 

 260 

Table 2 - Binary and Multinomial BPD Severity Classification Performance 261 

  Logistic Regression Model Random Forest Model 

 
     Feature Group → 
↓ Score V V + P V+P+C V V + P V+P+C 

Binary: No BPD vs 

BPD (all severity levels) 

AUC [%] 84.31 
±8.66 

89.40 
±7.95 

89.51 
±8.20 

82.66 
±10.64 

89.17 
±7.70 

88.89 
±7.95 

Weighted F1 Score [%] 81.54 
±8.29 

83.71 
±7.35 

83.32 
±8.20 

80.22 
±8.25 

84.71 
±5.78 

85.10 
±6.11 

Multinomial: No BPD, 

BPD Mild, Moderate 

and Severe. 

AUC [%] 74.33 
±9.30 

78.06 
±6.51 

76.44 
±7.35 

72.65 
±8.49 

76.84 
±7.69 

77.22 
±6.92 

Weighted F1 Score [%] 
46.75 
±8.60 

50.71 
±7.22 

52.31 
±8.13 

48.97 
±10.37 

52.94 
±9.49 

53.87 
±8.67 

V= Volumetric features (lung volume per bodyweight, lung lobe volume ratio), P= Patient information (gender, gestational age, 262 
birth weight, body Size), C= Clinical Parameters (APGAR 5 min score, early onset infection, steroids treatment). 263 

 264 

The prediction of days of mechanical respiratory support was evaluated with RF regression, and 265 

Poisson regression, next to an analysis by feature groups (Table 3). The RF regression model 266 

achieved the lowest mean average prediction error (MAE) with 14.15 ±2.13 days using only 267 
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volumetric features, 10.87 ±1.61 days with the (V+P) feature groups, and 10.78 ±1.76 days for the 268 

(V+P+C) feature groups. 269 

 270 

Table 3 - Mean Average Prediction Error of Days with Mechanical Respiratory Support  271 

 Mean Average Error (MAE) in days by Feature Group 

 V V + P V+P+C 

Random Forest Regression 
14.15 
±2.13 

10.87 
±1.61 

10.78 
±1.76 

Poisson Regression 
17.40 
±2.93 

13.11 
±2.75 

12.67 
±1.99 

V= Volumetric features (lung volume per bodyweight, lung lobe volume ratio), P= Patient information (gender, gestational age, 272 
birth weight, body Size), C= Clinical Parameters (APGAR 5 min score, early onset infection, steroids treatment). 273 

 274 

3. Discussion  275 

In order to improve standardized image assessment and thus diagnostic accuracy for lung disease 276 

in high-risk patient cohorts, we successfully applied DL models to demonstrate the viability for 277 

accurate segmentation of neonatal lung in MRI sequences thereby addressing the most challenging 278 

conditions. The high comparability and low variability of the CNN models in comparison to the 279 

manual annotations, implies the significant potential of the models to overcome the technical 280 

challenges of newborn quiet-breathing MRI, including small volumes, motion artifacts, blurring, 281 

and low image resolutions. Previous studies that performed MRI lung segmentation in neonates 282 

faced limitations in scalability and sensitivity due to smaller cohorts and the use of shape-based 283 

image-segmentation methods. For instance, Heimann et al. [17] used lung shape-appearance 284 

models to perform free-breathing MRI lung segmentation in a cohort of 32 children reporting an 285 

average volumetric overlap of 85% with the annotated ground truth. In adult subjects, MRI 286 

acquisition protocols are improved to meet the need of such automated approaches by the use of 287 

breath holding maneuvers, impossible in the spontaneously breathing infant. By the use of this 288 

technique, Kohlmann et al. achieved a ground truth segmentation overlap of 94% using 289 

thresholding and 3D lung region-growing-based methods with 14 patients [18], whereas other 290 

adult MRI lung segmentation methods reported VDCs in the range of (82%-86%) [19, 20]. In 291 

comparison, our ensemble DL model applied in the most challenging of conditions achieved a 292 

significant performance with an average VDC of 90.2%, while using a multi-center approach. 293 
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Furthermore, the equivalent segmentation performance in healthy and diseased lungs indicates 294 

persistent accuracy in different lung structure-related image conditions for the proposed 2D 295 

segmentation method even when structural differences apply. 296 

As a result of the high segmentation performance of the proposed ensemble model, our automated 297 

pipeline also enabled an accurate downstream estimation of the neonatal lung volumes, 298 

significantly correlated to the corresponding volumes abstracted from manual annotations 299 

(r=0.964). Despite the significant technical challenges faced in neonatal lung MRI, our results 300 

thereby reach comparable performance levels reported for adult cohorts, where MRI lung 301 

volumetric estimations were reported with Pearson correlations above 0.98 when comparing 302 

manual vs automatic volume predictions [18]. Furthermore, our MRI-based automatic volume 303 

estimations demonstrate high consistency when compared with lung function measurements, 304 

providing a valuable validation independent from image-based annotations.  305 

Next, we show that the predicted lung volume and lung-lobe volume ratio hold potential to reflect 306 

lung health and disease, i.e., BPD. Here, the significant performance of the BPD classification and 307 

regression models that include volumetric features indicates their significant value for disease 308 

prediction (AUC 0.895±0.082), thereby exceeding previous imaging-based BPD prediction 309 

models that reported AUC binary prediction performances of 0.834-0.858 using ultrasound, and 310 

an AUC of 0.8 when using MRI time-relaxation periods [21]. Hence, our results motivate further 311 

research in the application of automated segmentation and extraction of lung-volumetric features 312 

for monitoring infant lung diseases, potentially while integrating additional lung structural 313 

information [21]. 314 

Further improvements could be achieved by future studies through the collection of larger and 315 

more diverse datasets of manual annotations to strengthen the generalizability and performance of 316 

the ensemble model, next to the inclusion of different lung pathological conditions. Investigation 317 

of additional volumetric and spatial features that relate to the characterization of the pulmonary 318 

condition of the lung, together with the analysis of MRI-lung volumetric features in longitudinal 319 

approaches could become crucial to inform medical decision making through early prediction of 320 

outcome.  321 
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Our work herewith contributes to the generation of AI-driven scientific evidence required to 322 

integrate MRI volume-based features as a biomarker to monitor neonatal lung development in 323 

health and disease in daily clinical practice while avoiding radiation exposure. The proposed DL 324 

segmentation method and automated extraction of structural measurements from neonatal lung 325 

MRI, enables the translation of medical expertise to larger scale applications, including its 326 

transferability to health centers that face different expertise levels as well as longitudinal 327 

measurements over prolonged periods of time. Therefore significantly contributing to the 328 

standardization and comparability of critical features in respiratory disease monitoring in 329 

newborns and infants. 330 

 331 

4. Materials and Methods 332 

4.1 Cohort Characteristics 333 

A total of 107 preterm infants, gestational age (GA) 27 ±2.13 weeks, with and without BPD, were 334 

prospectively included in the study from two medical centers after informed parental consent: the 335 

Perinatal Centre LMU Munich (Site 1, n=86; EC #195–07) and the Perinatal Centre UKGM 336 

Giessen (Site 2, n=21; EC #135–12). In total, 73 of the participants were diagnosed with BPD and 337 

classified into three severity levels: mild (n=42), moderate (n=11) and severe (n=20), according to 338 

the definition by Jobe et. al. [1], 34 participants did not develop BPD. Clinical information on 339 

neonatal health conditions and treatments was also collected from both cohorts, all the clinical 340 

variables were available for 103 patients of the complete cohort (Table 1). Pulmonary function 341 

tests including tidal breathing analysis and bodyplethsymographic functional residual capacity, 342 

were performed for a subgroup of neonates (n=32) at 36 weeks GA, according to the guidelines of 343 

the American Thoracic and European Respiratory Society. 344 

 345 

Table 1 - Clinical Information of the Preterm Neonatal Cohort (N=103) 346 

Clinical Variable 
All  

(N=103)  
Average ±SD 

No-BPD 
(N=33)  

Average ±SD 

BPD-Mild 
(N=39)  

Average ±SD 

BPD-Moderate 
(N=11)  

Average ±SD 

BPD-Severe 
(N=20)  

Average ±SD 
 

Gestational Age (weeks) 26.96 
±2.12 

29.09 
±1.43 

26.20 
±1.48 

25.69 
±2.06 

25.62 
±1.43 
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Birth Weight (g) 908.25 
± 304.58 

1206.21 
±292.39 

829.74 
± 182.77 

641.82 
± 177.85 

716.25 
± 154.31 

*Body Size (cm) 34.38 
± 4.02 

38.38 
±3.23 

33.26 
± 2.92 

31.06 
±2.43 

31.76 
±2.25 

APGAR Score - 5 min 7.71 
± 1.40 

8.06 
±1.00 

7.87 
±1.10 

7.36 
±2.38 

7.00 
±1.59 

†Early Onset Infection No (N=80), 
Yes (N=23) 

No (N=29), 
Yes (N=4) 

No (N=30), 
Yes (N=9) 

No (N=7), 
Yes (N=4) 

No (N=14), 
Yes (N=6) 

Administration of post-natal 

corticosteroids 
No (N=61), 
Yes (N=42) 

No (N=28), 
Yes (N=5) 

No (N=22), 
Yes (N=17) 

No (N=6), 
Yes (N=5) 

No (N=15), 
Yes (N=5) 

Oxygen Supplementation 

(days) 
47.30 

± 43.18 
5.18 

±7.72 
45.56 

±21.23 
81.55 

±30.96 
101.35 
±40.78 

Mechanical Ventilation 

(days; invasive and non-

invasive) 

48.22 
±26.93 

19.91 
±15.62 

52.51 
±13.74 

66.55 
±19.20 

76.50 
±21.08 

*Linear BMI imputation performed for missing body sizes. †Early Onset Infection as defined by [22]. 347 
 348 

4.2 Imaging and Segmentation Protocols 349 

Preterm infants underwent MRI near term age, i.e., at approximately 36 weeks GA. T2-weighted 350 

lung MRI sequences were acquired in unsedated spontaneous sleep for the Perinatal Centre LMU 351 

Munich cohort, and under light sedation with chloral hydrate (30-40 mg/kg administered orally) 352 

for Perinatal Centre UKGM Giessen.  353 

Axial images were acquired with a T2-weighted half-Fourier-acquired single-shot turbo spin echo 354 

(HASTE) protocol for lung structural assessment. An ECG-triggered 2D multi-slice single-shot 355 

fast spin-echo sequence with an echo time (TE) of 57 ms was used; the repetition time was set to 356 

2 RR intervals. The spatial resolution was 1.3×1.9 mm² in plane with a slice thickness of 4 mm 357 

and 0.4 mm slice gap. Parallel imaging with an acceleration factor of 2 was applied and 2 averages 358 

were acquired for each slice.  359 

In sum, a total of 107 MRI sequences with 2,165 axial images, with a resolution of 256×192 pixels, 360 

were acquired using 3T MRI scanners (Siemens Skyra for the Perinatal Centre LMU Munich and 361 

Siemens Verio for Perinatal Centre UKGM Giessen). Pseudonymization of image and clinical 362 

information was performed to guarantee a blinded analysis. 363 

Manual lung segmentation of the MRI sequences was performed independently by three 364 

physicians, with different training levels (one radiologist and two late-stage image analysis trained 365 
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medical students). The software ITK-SNAP [23] was used to collect the manual segmentations. 366 

Image quality of the sequences was rated by a fourth independent radiologist. To remove 367 

unnecessary background, we first identify the centroid of all pixels that are above the 5% intensity 368 

quantile threshold across all slices and then crop all slices to a square of 128×128 pixels centered 369 

at the centroid. 370 

 371 

4.3 Deep-Learning MRI Lung Segmentation Model 372 

The proposed 2D lung segmentation DL models are based on the U-Net neural network (NN) 373 

architecture [24]. U-Net models produce a latent representation of the image by processing it 374 

through a set of convolutional layers in a contracting path and then processing the features through 375 

an expansion path of up-convolutional layers, with skipped connections at each level, returning a 376 

high-resolution binary pixel-wise segmentation map of the image. Our U-Net architecture has 4 377 

down and 4 up convolutional blocks and a fifth intermediate convolutional block, batch 378 

normalization was included after every building block of the U-Net and a Dropout Layer (dropout 379 

rate=0.1) after each econding block was added. Detailed architecture parameters are available in 380 

Table S3 and in the code-repository (Section 4.6). The Instant-DL framework, which is designed 381 

to efficiently train U-Net segmentation models for medical imaging applications, was adapted for 382 

our study [25]. Hyperparameters were optimized using grid search (Table S2) for three randomly 383 

selected leave-one-patient-out models in a 4-fold cross-validation scheme, the best performances 384 

were achieved with 300 training epochs, 0.001 learning rate, using a binary cross-entropy loss for 385 

the NN optimization, and applying image augmentations with 0.1 random zoom, 0.1 translations 386 

and up to 22.5° random rotations. 387 

The dice-coefficient, defined as 𝐷𝐶 = !"#$%
"!$#!$%

, with 𝑝 being the predicted positive-class pixels 388 

and g being the ground truth pixels [26], was used as the metric for evaluation of the model 389 

performance. Ground truths were generated with the annotations from a single physician, for the 390 

physician-based models, and with majority voting from all the physicians, for the integrated model. 391 

Optimization was performed with Adam [27]. 392 

Using a leave-one-patient-out cross-validation scheme, a set of k models were trained exclusively 393 

with the sequences from Site 1, that is, for each kth model, the data of the kth participant is used 394 
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only for validation. In addition, MRI sequences from study Site 2 were used exclusively for 395 

validation of a MV model trained with all the sequences from study Site 1. Lung segmentation 396 

accuracy was measured using the volumetric dice coefficient (VDC), where pixels from all the 397 

slices in the MRI sequence are aggregated and evaluated for segmentation validity. Resulting VDC 398 

scores of the models and manual annotations for each sequence can be found on Table S1. 399 

 400 

4.4 MRI-Lung Volumetric Features 401 

A 3D volumetric representation of the lung was created using the segmented lung regions and the 402 

DICOM pixel-spacing and patient orientation metadata from the MRI 2D sequences. The volume 403 

was generated with voxels that considered both the distance to the neighboring pixels in the 2D 404 

slice (dx, dy), as well as the slice thickness and the space between the slices (dz). The total lung 405 

volume was calculated by adding the individual voxel volumes of all the segmented pixels in the 406 

MRI sequence. 407 

In addition, the lung was divided between the left and right lobes using a two-step algorithm 408 

involving a K-means (K=2) clustering with further refinement of the class labels using a soft-409 

margin SVM classifier (penalty=0.001). For the K-means algorithm, we initialized the centroids 410 

using the k-means++ initialization [28] and used a weighted Euclidean distance favoring the x and 411 

y dimensions for improved left-right lung lobe clustering with weights of (1, 1, 0.1) for x, y, and 412 

z coordinates. Using k-means annotations as labels, the SVM algorithm was applied iteratively 413 

updating the voxel labels until convergence of the resulting silhouette score; methods are available 414 

in the code-repository (Section 4.6). Once the voxels were classified in the left or right lung lobes, 415 

the lung lobe volume ratio was calculated by finding the volume of each lobe and then by dividing 416 

the larger over the smaller lobe volume as an asymmetry indicator. The resulting MRI-based lung 417 

volume features are available in Supplementary Table S1. 418 

 419 

4.5 BPD Severity Prediction Models 420 

A regression analysis to predict the severity of BPD was performed for which explanatory 421 

variables were grouped in three categories, MRI-based lung volume features (V) (lung volume per 422 

birth weight and the lung lobe volume ratio), patient-related (P) features (gestational age, birth 423 
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weight, body size, gender) and also clinical parameters (C) (APGAR score - 5 min, early onset 424 

infection, steroid treatment).  425 

Random Forest (RF) [29] and Logistic regression models [30] were trained to perform binomial 426 

(BPD vs. No BPD) and multinomial (no BPD, mild, moderate, and severe BPD) classification. A 427 

nested cross-validation scheme was implemented to find the best hyperparameters using grid-428 

search (Table S2), the average performance of the model was estimated with multiple repetitions 429 

of the nested cross-validation scheme (10 times with different random seeds). A stratified 5-fold 430 

train-test split was used for both the inner and outer loops of each nested cross-validation. For the 431 

Logistic regression model, features were standardized removing the mean and scaling to unit 432 

variance of the training set. Additional regression models, Poisson and RF, to predict the number 433 

of days with required respiratory support (adding invasive and non-invasive days) were trained 434 

using the same nested cross-validation scheme. 435 

 436 

4.6 Data and Source Code Availability  437 

Source code of models for lung segmentation, 3D volume-feature estimations, and regression 438 

models can be found at https://github.com/SchubertLab/NeoLUNet. 439 

Resulting weights of the U-Net models used for BPD prediction will be made available at 440 

(https://zenodo.org). 441 

 442 
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Supplementary Material 529 

Figure S1: Receiver operator characteristics for Random Forest models. 530 

 531 

Figure S1. ROC for Binary and Multinomial RF Classification Models. (A) ROC for BPD binomial classification with random 532 
forest models and all feature groups (V+P+C).  (B) ROC for BPD multinomial classification with random forest models using all 533 
feature groups (V+P+C).  534 

 535 

Table S1: De-identified resulting physician and model VDC segmentation performances, 536 

volumetric predictions and lung-lobe volume ratio. 537 

Table S2: Grid Search Parameters. 538 

 Hyperparameters Evaluated with Grid Search 

U-Net for Lung 

Segmentation 

Epochs = [100, 200, 300, 400] 

Loss Functions = Mean squared error, Binary cross-

entropy, Dice-loss. 

Learning Rate = [0.001, 0.0001] 

Augmentation = with augmentations (0.1 random zoom, 

0.1 translations and up to 22.5° random rotations) or 

without augmentations. 

A.                                                                                       B.                                                                                          
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Logistic Regression Penalty= L1, L2 

C = log space sampled array (n=10 points).  

np.logspace(-4, 1, 10, endpoint=True) 

Grid search scoring = F1 

Random Forest Max. Depth = [3,4,5,6,7,8,9,10] 

Grid search scoring = F1 

 539 

Table S3: U-Net Architecture Parameters 540 

 Block Description 

Convolutional Block 1 

(CNN-1) 

CNN Filters = 64, Kernel = 3×3 
Activation function = LeakyReLU (alpha=0.2) 
Batch Normalization 
 
CNN Filters = 64, Kernel = 3×3 
Activation function = LeakyReLU (alpha=0.2) 
Batch Normalization 
 

Dropout and Max Pooling  
 

Dropout fraction = 0.1 
Max. Pooling Kernel Size = 2×2 

Convolutional Block 2 
(CNN-2) 

CNN Filters = 128, Kernel = 3×3 
Activation function = LeakyReLU (alpha=0.2) 
Batch Normalization 
 
CNN Filters = 128, Kernel = 3×3 
Activation function = LeakyReLU (alpha=0.2) 
Batch Normalization 
 

Dropout and Max Pooling  
 

Dropout fraction = 0.1 
Max. Pooling Kernel Size = 2×2 

Convolutional Block 3 
(CNN-3) 

CNN Filters = 256, Kernel = 3×3 
Activation function = LeakyReLU (alpha=0.2) 
Batch Normalization 
 
CNN Filters = 256, Kernel = 3×3 
Activation function = LeakyReLU (alpha=0.2) 
Batch Normalization 
 

Dropout and Max Pooling  
 

Dropout fraction = 0.1 
Max. Pooling Kernel Size = 2×2 

Convolutional Block 4 
(CNN-4) 

CNN Filters = 512, Kernel = 3×3 
Activation function = LeakyReLU (alpha=0.2) 
Batch Normalization 
 
CNN Filters = 512, Kernel = 3×3 
Activation function = LeakyReLU (alpha=0.2) 
Batch Normalization 
 

Dropout and Max Pooling  
 

Dropout fraction = 0.1 
Max. Pooling Kernel Size = 2×2 
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Convolutional Block 5 
(CNN-5) 

CNN Filters = 1024, Kernel = 3×3 
Activation function = LeakyReLU (alpha=0.2) 
Batch Normalization 
 
CNN Filters = 1024, Kernel = 3×3 
Activation function = LeakyReLU (alpha=0.2) 
Batch Normalization 
 

Dropout and Max Pooling  
 

Dropout fraction = 0.1 
Max. Pooling Kernel Size = 2×2 

Convolutional Block 6 
(CNN-6) 

Up-6 Features: feature size= 512, up-sampling-kernel = 2×2 
Concatenation: CNN-4 Features + Up-6 Features 
 
CNN Filters = 512, Kernel = 3×3 
Activation function = LeakyReLU (alpha=0.1) 
Batch Normalization 
 
CNN Filters = 512, Kernel = 3×3 
Activation function = LeakyReLU (alpha=0.1) 
Batch Normalization 
 

Convolutional Block 7 
(CNN-7) 

Up-7 Features: feature size= 256, up-sampling-kernel = 2×2 
Concatenation: CNN-3 Features + Up-7 Features 
 
CNN Filters = 256, Kernel = 3×3 
Activation function = LeakyReLU (alpha=0.1) 
Batch Normalization 
 
CNN Filters = 256, Kernel = 3×3 
Activation function = LeakyReLU (alpha=0.1) 
Batch Normalization 
 

Convolutional Block 8 
(CNN-8) 

Up-8 Features: feature size= 128, up-sampling-kernel = 2×2 
Concatenation: CNN-2 Features + Up-8 Features 
 
CNN Filters = 128, Kernel = 3×3 
Activation function = LeakyReLU (alpha=0.1) 
Batch Normalization 
 
CNN Filters = 128, Kernel = 3×3 
Activation function = LeakyReLU (alpha=0.1) 
Batch Normalization 
 

Convolutional Block 9 
(CNN-9) 

Up-9 Features: feature size= 64, up-sampling-kernel = 2×2 
Concatenation: CNN-1 Features + Up-9 Features 
 
CNN Filters = 64, Kernel = 3×3 
Activation function = LeakyReLU (alpha=0.1) 
Batch Normalization 
 
CNN Filters = 64, Kernel = 3×3 
Activation function = LeakyReLU (alpha=0.1) 
Batch Normalization 
 

Output Layer Activation function = Sigmoid  
 541 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 8, 2021. ; https://doi.org/10.1101/2021.08.06.21261648doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.06.21261648
http://creativecommons.org/licenses/by-nd/4.0/


Neonatal Lung Segmentation Sample

C. U-Net Models for Lung 
Segmentation

B. Image Annotation by 
Physicians

A.   Neonatal Image Acquisition

2 Health Centers

Neonatal 
MRI sequences 

D. Neural Network Model Ensemble 
with Majority Voting (MV)

86 neonates

1745 images 

E. Lung 3D Reconstruction
and Feature Extraction

Prediction with MV

Site 1 Site 2

Collection of 
Clinical Variables

21 neonates

420 images 

P1

P2

P3

MP1

MP2

MP3

LOPO Train-Test Split Validation Cohort

F.                                                                              G.                                           H.                                                                                  Paired Model-Physician VDC Differences Segmentation Performance by Cohort
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