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Abstract

Emergency admissions (EA), where a patient requires urgent in-hospital care, are
a major challenge for healthcare systems. The development of risk prediction models
can partly alleviate this problem by supporting primary care interventions and public
health planning. Here, we introduce SPARRAvV4, a predictive score for EA risk that
will be deployed nationwide in Scotland. SPARRAv4 was derived using supervised
and unsupervised machine-learning methods applied to routinely collected electronic
health records from approximately 4.8M Scottish residents (2013-18). We demonstrate
improvements in discrimination and calibration with respect previous scores deployed
in Scotland, as well as stability over a 3-year timeframe. Our analysis also provides
insights about the epidemiology of EA risk in Scotland, by studying predictive perfor-
mance across different population sub-groups and reasons for admission, as well as by
quantifying the effect of individual input features. Finally, we discuss broader chal-
lenges including reproducibility and how to safely update risk prediction models that
are already deployed at population level.
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Introduction

Emergency admissions (EA), where a patient requires urgent in-hospital care, represent
deteriorations in individual health and are a major challenge for healthcare systems. For
example, approximately 395,000 Scottish residents (=1 in 14) had at least one EA between 1
April 2021 and 31 March 2022 [Public Health Scotland, 2022]. In total, around 600,000 EAs
were recorded for these individuals, nearly 54% of all hospital admissions in that period,
and they resulted in longer hospital stays (6.8 days average) compared to planned elective
admissions (3.6 days average). Modern health and social care policies aim to implement
proactive strategies [Rural Access Action Teaml [2005], often by appropriate primary care
intervention [McDonagh et al., 2000, Sanderson and Dixon, [2000} |Coast et al., [1996]. Ma-
chine learning (ML) can support such interventions by identifying individuals at risk of EA
who may benefit from anticipatory care. If successful, such interventions can lead to better
patient outcomes and reduced pressures on secondary care (Figure )

A range of risk prediction models have been developed in this context |[Rahimian et al.
2018, [Lyon et all, 2007, [Wallace et all, [2014] [Bottle et all [2006, Billings et all, 2006
Hippisley-Cox and Coupland} 2013]. However, transferability across temporal and geo-
graphical settings is limited due to differing demographics and data availability
. Development of models in the setting in which they will be used is thus
preferable to reapplication of models trained in other settings. In Scotland, the Information
Services Division of the National Services Scotland (now incorporated into Public Health
Scotland; PHS) developed SPARRA (Scottish Patients At Risk of Re-admission and Ad-
mission) — an algorithm to predict the risk of EA in the next 12 months. SPARRA was
derived using national electronic health records (EHR) databases and has been in use since
2006. The current version of the algorithm (SPARRAv3) [Health and Social Care Infor-|
[mation Programmel |2011] was deployed in 2012/13 and is calculated monthly by PHS for
almost the entire Scottish population. Individual-level SPARRA scores can be accessed by
general practitioners (GPs), helping them to plan mitigation strategies for individuals with
complex care needs. Collectively, SPARRA scores may be used to estimate future demand,
supporting planning and resource allocation. SPARRA has also been used extensively in
public health research [Leckeivilize et al), 2021, [Highet et al., [2014] Bajaj et al.,|2016} |Canny|
let al., 2016} [Manoukian et al.| 2021], [Wallace et al., [2016].

In this paper we update the SPARRA algorithm to version 4 (SPARRAv4) using con-
temporary supervised and unsupervised ML methods. This represents a large scale ML risk
score, fitted and deployed at national level, and widely available in clinical settings. We
develop SPARRAvV4 using EHRs collected for around 4.8 million (after exclusions) Scottish
residents between 2013 and 2018. Among other variables, this includes data about past
hospital admissions, long term conditions (e.g. asthma) and prescriptions. We use cross-
validation to evaluate the validity of SPARRAv4 and its stability over time. This shows
an improvement of performance with respect to SPARRAvV3 in terms of discrimination and
calibration, including a stratified analysis across different subpopulations. We also perform
extensive analyses to determine what reasons for emergency admission are predictable, and
use Shapley values [Lundberg and Lee| [2017] to quantify the effect of individual input fac-
tors. Finally, we discuss some of the practical challenges that arise when developing and
deploying models of this kind, including issues associated to updating risk prediction scores
that are already deployed at population level.

Reproducibility is critical to ensure reliable application of ML in clinical settings
[Dermott et al., 2021]. To provide a transparent description of our pipeline, this manuscript
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conforms to the TRIPOD guidelines [Collins et al., 2015] (Supplementary Table S1f). More-
over, all code is publicly available at github.com/jamesliley/SPARRAv4. This includes
non-disclosive outputs used to generate all the figures and tables presented in this article.

Results

Data overview

The input data prior to any exclusions combines multiple national EHR databases held by
Public Health Scotland for 5.8 million Scottish residents between 1 May 2013 and 30 April
2018 (Figure ; [Supplementary Table S2; [Supplementary Figure S1|A), some of whom died
during the observation period. These comprised 468 million records, comprising interac-
tions with the Scottish healthcare system and deaths. The distribution of the number of
available records exhibits sex- and age-specific patterns, including a female-specific mode
around childbearing age. Overall, marginally more records are available for individuals in
the most deprived areas (as measured by deciles of the 2016 Scottish Index of Multiple De-
privation (SIMD); [Scottish Government), 2016]), particularly within accidents & emergency
and mental health hospital records. Two additional tables (Supplementary Table S2)) con-
taining historic data about long term conditions (LTC, back to 1981) and mortality records
were also used as input. Prediction features derived from all this raw input data are listed
in [Supplementary Table S3| and [Supplementary Table S4}

We selected three time cutoffs for model fitting (1 May and 1 December 2016, and 1
May 2017) leading to 17.4 million individual-time pairs, hereafter referred to as samples
(Figure ) After exclusions (see , the data comprise 12.8 million samples cor-
responding to 4.8 million individuals. Overall, the study cohort is slightly older, has more
females, and is moderately more deprived than the general population (Table . The pre-
diction target was defined as a recorded EA to a Scottish hospital or death in the year
following the time cutoff (Supplementary Note S1)). In total, 1,142,169 EA or death events
(9%) were observed across all samples. This includes 57,183 samples for which a death was
recorded (without a prior EA within that year) and 1,084,986 samples for which an EA
was recorded (amongst those, 107,827 deaths were observed after the EA). As expected,
the proportion of deaths amongst the observed events increases with age (Supplementary|
[Figure SIB). Moreover, patients with an EA or death event (in at least one time cutoff)
are, on average, older and more deprived than those without an event (Table .

Overall predictive performance

In held out test data, SPARRAv4 was effective at predicting EA, and outperformed SPAR-
RAv3 on the basis of AUROC and AUPRC (Figure 2A-B). SPARRAv4 was also better
calibrated, particularly for individuals with observed risk ~ 0.5, who are less likely to be a
priori known by GPs (Figure ) Whilst SPARRAv3 and SPARRAv4 scores were highly
correlated, large discrepancies were observed for some individuals (Supplementary Figure|
[S2). In individuals for whom v3 and v4 disagreed (defined as [v3 — v4| > 0.1), we found
that v4 was better-calibrated than v3 (Figure 2D).

While the increases in AUROC and AUPRC may be small, the improvement provided by
SPARRAv4 in terms of absolute benefit to population is substantial. Therefore its deploy-
ment at national scale is highly consequential. In particular, amongst the 50,000 individuals
judged to be at highest risk by SPARRAv3, around 4,000 fewer individuals were eventually
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Cohort
Scottish ~ Input After EA or No EA or

Variable population data  exclusions death death
Sex (%)

Male 48.5 48.2 45.4 46.2 45.3

Female 51.5 51.8 54.6 53.7 54.7
Age at time cutoff (%)

0-19 16.9 21.1 19.6 11.8 20.4

20-70 71.2 64.2 64.9 50.1 66.4

71+ 11.9 14.7 15.4 38.1 13.2
SIMD decile (%)

1-5 50.0 50.8 52.0 59.5 51.2

6-10 50.0 49.2 48.0 40.5 48.8
Any LTC (%) Unknown  29.4 32.1 58.8 29.5

Table 1: Demographic summary for the different cohorts: the whole Scottish pop-
ulation (approximately 5.8 million), those present in the input databases at least one time
point (17,488,596 samples comprising 5,829,532 unique individuals), our study cohort after
exclusions (12,866,084 samples comprising 4,835,428 unique individuals) and our study co-
hort after stratifying by event status (EA or death: 1,142,169 samples comprising 667,566
unique individuals; no EA or death: 11,723,915 samples comprising 4,670,756 unique in-
dividuals). Summary statistics were calculated using sample-level data. The EA or death
cohort includes individual-time pairs for which the individual at least one EA or died dur-
ing the year after the time. LTC denotes long-term conditions (e.g. epilepsy). Data for the
Scottish population is from the 2011 Census [Office for National Statistics et al.l |2011].
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admitted that were amongst the 50,000 individuals judged to be at highest risk by SPAR-
RAv4 (Figure ) For another perspective, if we simply assume that 20% of admissions
are avoidable [value taken from [Blunt, [2013], that avoidable admissions are as predictable
as non-avoidable admissions, and that we wish to pre-empt 3,000 avoidable admissions by
targeted intervention on the highest risk patients (the second assumption is conservative,
since avoidable admissions are often predictable due to other medical problems). Then, by
using SPARRAv4, we would need to intervene on approximately 1,500 fewer patients than
if we were to use SPARRAvV3 in the same way, in order to achieve the target of avoiding
3,000 admissions (Figure 2JF).

Since SPARRAv4 comprises an ensemble of models ([Machine Learning prediction meth-
ods]), we also explored a breakdown of performance across the constituent models (Supple-
mentary Table S5} [Supplementary Figure S3|). The ensemble had slightly better performance
than the best constituent models (XGB and RF). Note that some constituent models (ANN,
GLM, NB) had ensemble coefficients which were regularised to be vanishingly small, so in
practice predictions for those models need not be computed when calculating SPARRAvA4.

Stratified performance of SPARRAv3 and SPARRAv4

To examine differences in performance more closely, we explored the performance of SPAR-
RAv3 and SPARRAv4 across different patient subcohorts defined by age, SIMD deciles and
the four subcohorts defined as part of SPARRAv3 development. Generally, we observed
that SPARRAv4 had better predictive performance across all subcohorts (Figure )

Conditional performance of SPARRAvV4 by admission type and im-
minence

When exploring the distribution of SPARRAv4 scores according to the diagnosis that was as-
signed to the patient during admission (Supplementary Table S6)) — that is, after prediction
— we found that certain medical classes of admission were predicted disproportionately well
(Figure ), namely predicting mental/behavioural, respiratory and endocrine/metabolic
related admissions. Similarly, all cause mortality was also associated with high SPARRAv4
scores. As one would expect, we were less able to predict external causes of admissions (e.g.,
S21: open wound of thorax [World Health Organization, |2004]). Obstetric and puerperium-
related admissions were particularly challenging to predict by SPARRAv4. When further
analysing SPARRAvV4 scores, we also found that it tends to better predict imminent admis-
sions: individuals with high risk scores were more likely to have an EA near the start of the
1 year outcome period (Figure ) We did not use an absolute threshold to determine who
is at high risk. Instead, we ranked individuals according to their scores and looked at those
in the top part of the ranking (i.e. with the highest risk scores).

Deployment scenario stability and performance attenuation

We next addressed two crucial aspects pertaining to practical usage of SPARRAv4. Firstly,
we assess the durability of performance for a model trained once and employed to gen-
erate predictions at future times, confirming it does not deteriorate. This is the way in
which SPARRAv4 will be deployed by PHS, generating new predictions each month but
without repeated model updating, akin to SPARRAv3’s monthly use without update from
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2013-2023. Secondly, we demonstrate that it is none-the-less necessary to update predic-
tions despite the absence of model updates, since evolving patient covariates lead to the
performance attenuation of any point-in-time prediction.

We firstly used a static model My (Methods) to predict risk at future time-points (i.e. new
predictions are generated as the features are updated). M, performed essentially equally
well over time, with no statistically significant decrease in performance (adjusted p-values
> (.05, or improved performance with time for all comparisons of AUROCS;
-C). With stability under the deployment scenario confirmed, we also explored the
distribution of scores over time. In line with expectations, the quantiles of scores generated
by the static model increased as the cohort grew older (Supplementary Figure S4D). The
mean risk scores of individuals in the highest centiles of risk at ¢y decreased over time
(Supplementary Figure S4F), suggesting that very high risk scores tend to be transient.
The bivariate densities of time-specific scores (Figure ; [Supplementary Figure S4[G) also
show lower scores to be more stable than higher scores, and that subjects ‘jump’ to higher
scores (upper left in Figure [4]A) more than they drop to lower scores (bottom right).

Finally, we examined the behaviour of static scores (computed at ¢y using M) to predict
future event risk. We observed that the static scores performed reasonably well even 2-
3 years after tp, although discrimination and calibration was gradually lost (Figure —
D). More generally, we observe that scores fitted and calculated at a fixed timepoint had
successively lower AUROCs for predicting EA over future periods (Supplementary Figure|
). This affirms the need for updated predictions in deployment, despite the static model.

Feature importance

The features with the largest mean absolute Shapley value (excluding SPARRAv3 and the
features derived from the topic model) were age, the number of days since the last EA,
the number of previous A&E attendances, and the number of antibacterial prescriptions
(Table . Most features had non-linear effects (see e.g. [Supplementary Figure S5/A-B). For
example, the risk contribution from age was high in infancy, dropping rapidly from infancy
through childhood, then remaining stable until around age 65, and rising rapidly thereafter
(Figure [fJA). We also found a non-linear importance of SIMD (Figure [5B) and number of
previous emergency hospital admissions (Supplementary Figure S5[C).

We further investigated the contribution of SIMD by comparing Shapley values between
features. We computed the mean difference in contribution of SIMD to risk score between
individuals in the most deprived and least deprived SIMD decile areas, and the additional
years of age which would contribute an equivalent amount. This was generally around
10-40 additional years (Figure ) In terms of raw admission rates, disparity was further
apparent: individuals aged 20 in lowest SIMD decile areas had similar admission rates to
individuals aged 70 in the 3 highest SIMD decile areas (Figure [D).

When exploring the added value (in terms of AUROC) of including the features derived
using the topic model (Supplementary Table S4)), we observed slightly better performance
than the model without such features (p-value = 3 x 10~2%; [Supplementary Figure S5[E-F).
Analogously to Figure [2E, we also computed the additional number of samples correctly
identified as having an event amongst the top scores by the two models. Although the
absolute difference in AUROC was small, we found that the use of topic features increased
the number of EAs detected in the top 500,000 scores by around 200.
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Variable Importance
Age at time cutoff 1.530
Days since last emergency admission 0.752
Number of previous A&E attendances 0.509
Number of antibacterial prescriptions 0.376
Number of central nervous system related prescriptions 0.375
Male sex 0.373
Days since last A&E attendance 0.321
SIMD decile 0.310
Number of emergency bed days 0.299
Days since last acute admission of any type 0.285
Days since last outpatient attendance 0.257
Number of diuretic prescriptions 0.213
Number of lipid lowering drug prescriptions 0.194
Number of previous first outpatient appointments 0.190
Number of recorded long term conditions 0.173
Number of emergency admissions 0.161
Total number of filled prescriptions 0.160
Number of antianaemic prescriptions 0.159
Number of bronchodilator prescriptions 0.152
Number of BNF sections from which a prescription was filled 0.141

Table 2: Top 20 most important variables by mean absolute Shapley value (per-
centage scale). Importance can be interpreted as the average percent added or subtracted
to risk score due to this factor.
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Deployment

SPARRAvV4 was developed in a remote data safe haven (DSH) environment [Public Health
Scotland), [2020] without access to internet or modern collaboration tools (e.g. git version
control). Whilst our analysis code and a summary of model outputs (e.g. AUROC values)
could be securely extracted from the DSH, this was not possible for the actual trained
model due to potential leaks of sensitive patient information [Jefferson et al| 2022]. This
introduced reproducibility challenges, since the model had to be retrained in a different
secure environment before it is deployed by PHS. In particular, this re-development outside
the DSH had two distinct phases. Firstly, the raw data transformations (to convert the
original databases into a format that is suitable for ML algorithms) were reproduced from
scratch from the same source data. This allowed for a very detailed level of testing on the
(sometimes complex) transformations. Once the output of the transformations matched
perfectly between the DSH and the external environment for all features, the topic and
predictive models were re-trained. The training process could not be exactly matched due
to differing compute environments, package versions and training/validation split. However,
after training the external models were validated by comparing the performance (via AUC)
and the calibration with the results obtained within the DSH.

Another practical issue that arises when developing and deploying a new version of
SPARRA is due to potential performative prediction effects [Perdomo et al., [2020]. Since
SPARRAV3 is already visible to GPs (who may intervene to reduce the risk of high-risk pa-
tients), v3 can alter observed risk in training data used for v4, with v3 becoming a ‘victim
of its own success’ [Lenert et all 2019] [Sperrin et al.l [2019]. This is potentially hazardous:
if some risk factor R confers high v3 scores prompting GP intervention (e.g., enhanced
follow-up), then in the training data for v4, R may no longer apparently confer increased
risk. Should v4 replace v3, some individuals would therefore have their EA risk underesti-
mated, potentially diverting important anticipatory care away from them. This highlights
a critical problem in the theory of model updating [Liley et al., 2021](Supplementary Note]
[Supplementary Figure S6/A-D). As a practical solution, during deployment, GPs could
receive the maximum between v3 and v4 scores. This would avoid the potential hazard of
risk underestimation, at the cost of mild loss of score calibration [Supplementary Figure S6[E.

Discussion

We used routinely collected EHR from around 5.8 million Scottish residents to develop
and evaluate SPARRAv4, a risk prediction score that quantifies 1-year EA risk based on
age, deprivation (using SIMD as a geographic-based proxy) and a wide range of features
derived from a patient’s past medical history. SPARRAv4 constitutes a real-world use of
ML, derived from population-level data and embedded in clinical settings across Scotland.

We demonstrated meaningful gains in predictive performance over the previous version
of SPARRA. This arises from the use of more flexible ML methods (e.g. to capture non-
linear patterns between features and EA risk) and the incorporation of features derived
by a topic model which extracts more granular information (with respect to the manually
curated features used by SPARRAv3) from past diagnoses and prescriptions data. The
latter can be thought of as a proxy for multi-morbidity patterns. Our analysis also provides
insights into the epidemiology of EA risk, highlighting predictable patterns in terms of EA
type (as defined by the recorded primary diagnosis) and the imminence of EA. Moreover,
we studied the contribution of each feature, revealing a complex relationship between age,
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deprivation and EA risk. Note, however, that we cannot assign a causal interpretation for
any reported associations. In particular, the link between SIMD and EA risk is complex;
SIMD includes a ‘health’ constituent [Scottish Government,, 2016], and individuals in more-
deprived SIMD decile areas (1: most deprived; 10: least deprived) miss more primary care
appointments [Ellis et al. 2017].

One important strength of SPARRAv4 is its nationwide coverage, using existing health-
care databases without the need for additional bespoke data collection. This, however,
prevents the use of primary care data (beyond community prescribing) as it is not currently
centrally collected in Scotland. Due to privacy considerations, we were also unable to access
geographic location data, precluding the study of potential differences between e.g. rural and
urban areas and the use of a geographically separated test set [Wallace et al.,|2014]. Limited
data availability also limits a straightforward comparison of predictive performance (e.g. in
terms of AUROC) with respect to similar models developed in England [Billings et al.,
2006, [Rahimian et al.| [2018] (this is also complicated because of different model choices,
e.g. [Rahimian et al., 2018] modelled time-to-event data but we used a binary l-year EA
indicator). For example, we do not have information about marital and smoking status,
blood test results and family histories; all of which were found to be predictive of EA risk
by [Rahimian et al.l |2018§].

Beyond model development and evaluation, our work also highlights broader challenges
that arise in this type of translational project using EHR. In particular, as SPARRAv4
has the potential to influence patient care, we have placed high emphasis on transparency
and reproducibility while ensuring compliance with data governance constraints. Providing
our code in a publicly available repository will also allow us to transparently document
future changes to the model (e.g. if any unwanted behaviour is identified during the early
stages of deployment). SPARRAv4 also constitutes a real-world example in which potential
performative effects need to be taken into account when updating an already deployed risk
prediction model.

It is critical to emphasise that SPARRAv4 will not replace clinical judgement, nor does
it direct changes to patient management made solely based on the score. Indeed, any poten-
tial interventions must be decided jointly by medical professionals and patients, balancing
the underlying risks and benefits. Moreover, lowering EA risk does not necessarily entail
overall patient benefit as e.g. long-term oral corticosteroid use in mild asthmatics would
reduce EA risk, but the corticosteroids themselves cause an unacceptable cost of long-term
morbidity [NICE guidelines| 2017].

Optimal translation into clinical action is a vital research area and is essential for quan-
tifying the benefit of such scores in clinical practice. Indeed, any benefit is dependent on
widespread uptake and the existence of timely integrated health and social care interven-
tions, and identification of EA risk is only the first step in this pathway. Therefore, we will
continue to collaborate to achieve successful deployment of SPARRAv4 and will carefully
consider the feedback from GPs to improve the model and the communication of its results
further (e.g. via informative dashboards). As the COVID-19 pandemic resolves, it will also
be important to assess potential effects of dataset shift [Subbaswamy and Sarial 2020] due
to disproportionate mortality burden in older individuals and long-term consequences of
COVID-19 infections. In an era where healthcare systems are under high stress, we hope
that the availability of robust and reproducible risk prediction scores such as SPARRAv4
(and its future developments) will contribute to the design of proactive interventions that
reduce pressures on healthcare systems and improve healthy life expectancy.

10
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Methods

SPARRAvV3

SPARRAvV3 [Health and Social Care Information Programme, |2011], deployed in 2012, uses
separate logistic regressions on four subcohorts of individuals: frail elderly conditions (FEC;
individuals aged > 75); long-term conditions (LTC; individuals aged 16-75 with prior health-
care system contact), young emergency department (YED; individuals aged 16-55 who have
had at least one A&E attendance in the previous year) and under-16 (U16; individuals
aged < 16). If an individual belongs to more than one of these groups, the maximum of
the associated scores is reported. SPARRAv3 was fitted once (at its inception in 2012)
with regression coefficients remaining fixed thereafter. Most input features were manually
dichotomised into two or more ranges for fitting and prediction. The prediction target for
SPARRAv3 is EA within 12 months. People who died in the pre-prediction period, and
who therefore do not have an outcome for use in the analysis, are excluded. PHS calculated
SPARRAv3 scores and provided them as input for the analysis described herein. Any GP
in Scotland can access SPARRA scores after attaining information governance approval.

Exclusion criteria

The exclusion criteria were applied per sample (defined as individual-time pairs; Figure )
Samples were excluded if: (i) they were excluded from SPARRAvV3 [these largely correspond
to individuals with no healthcare interactions or that were not covered by the four SPAR-
RAv3 subcohorts; Health and Social Care Information Programme| 2011], (ii) when the
individual died prior to the prediction time cutoff, (iii) when the SIMD for the individual
was unknown, or (iv) those associated to individuals whose Community Health Index [CHI;
ISD Scotland Data Dictionaryl, [2023] changed during the study period. The CHI number is
a unique identifier which is used in Scotland for health care purposes.

Feature engineering

A typical entry in the source EHR tables (Supplementary Table S2)) recorded a single in-
teraction between a patient and NHS Scotland (e.g. hospitalisation), comprising a unique
individual identifier (an anonymised version of the CHI number), the date on which the
interaction began (admission), the date it ended (discharge), and further details (diagnoses
made, procedures performed). For each sample, entries from up to three years before the
time cutoff were considered when building input features, except long-term condition (LTC)
records, which considered all data since recording began in January 1981. A full feature
list is described in [Supplementary Table S3| This includes SPARRAv3 [Health and Social
Care Information Programmel [2011] features, e.g. age, sex, SIMD deciles and counts of pre-
vious admissions (e.g. A&E admissions, drug-and-alcohol-related admissions). Additional
features encoding time-since-last-event (e.g. days since last outpatient attendance) were in-
cluded following findings in [Rahimian et alJ 2018]. From community prescribing data, we
derived predictors encoding the number of prescriptions of various categories (e.g. respira-
tory), extending the set of predictors beyond a similar set used in SPARRAv3. Similarly
to SPARRAv3, we also derived the total number of different prescription categories, the
total number of filled prescription items, and the number of British National Formulary
(BNF) sections from which a prescription was filled [Prasad, [1994]. From LTC records, we
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extracted the number of years since diagnosis of each LTC (e.g. asthma), the total number
of LTCs recorded, and the number of LTCs resulting in hospital admissions.

We additionally used a Latent Dirichlet Allocation (LDA)-based topic model [Blei et al.
2003] to derive further information from prescriptions and LTC data. We jointly mod-
elled prescriptions and LTCs using 30 topics, considering samples as ‘documents’ and
LTCs/prescriptions as ‘words’. This enabled a substantial reduction in feature dimensional-
ity, given the number of LTCs/prescription factor levels. Using the map from documents to
topic probabilities, we used derived topic probabilities as additional features in SPARRAv4.

Machine Learning prediction methods

For SPARRAvV4, we had no prior belief that any ML model class would be best, so considered
a range of binary prediction approaches (hereafter referred to as constituent models). The
following models were fitted using the h2o |LeDell et al.l |2019] R package (version 3.24.0.2):
an artificial neural network (ANN), two random forests (RF) (depth 20 and 40), an elastic
net generalised linear model (GLM) and a naive Bayes (NB) classifier. The zgboost |Chen
et al), [2019] R package (version 1.6.0.1) was used to train three gradient-boosted trees
(XGB) models (maximum tree depth 3, 4, and 8). Hyper-parameter choices are described
in [Supplementary Note S3] SPARRAv3 was used as an extra constituent model.

Rather than selecting a single constituent model, we used an ensemble approach. Similar
to [Van der Laan et al.| [2007], we calculated an optimal linear combination (L;-penalised
regression, using the R package glmnet, version 4.1.4) of the predictions generated by each
constituent model. Ensemble weights were chosen to optimise the area under an ROC
curve (AUROC). Finally, we monotonically transformed the derived predictor to improve
calibration by inverting the empirical calibration function (Supplementary Note S4)).

Data imputation

As all non-primary care interactions with NHS Scotland are recorded in the input databases,
there was no missingness for most features. For ‘time-since-interaction’ type features, sam-
ples for which there was no recorded interaction were coded as twice the maximum lookback
time. There was minor non-random missingness in topic features (~0.8%) due to individuals
in the dataset with no diagnoses or filled prescriptions. We used mean-value imputation in
the ANN and GLM models (deriving mean values from training data only), used missingness
to inform tree splits (defaults in [LeDell et all [2019]) in RF, used sample-wise imputation
in XGB (as per [Chen et all [2019]) and dropped during fitting (default in [LeDell et al.l
2019)]) in NB (omitted missing values for prediction).

Particular care was required for features encoding total lengths of hospital stays. In
some cases, a discharge date was not recorded, which could lead to an erroneous assumption
of a very long hospital stay (from admission until the time cutoff). To address this, we
truncated apparently spuriously long stays at data-informed values (Supplementary Note|

S5).

Cross-validation

We fitted and evaluated SPARRAv4 using three-fold cross-validation (CV). This was de-
signed such that all elements of the model evaluated on a test set were agnostic to samples
in that test set. Individuals were randomly partitioned into three data folds (F1, F2 and
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F3). At each CV iteration, F1 and F2 were combined and used as a training dataset, F'3
was used as a test dataset. The training dataset (F1+F2) was used to fit the topic model
and to train all constituent models (except SPARRAv3, whose training anyhow pre-dates
the data used here). The ensemble weights and re-calibration transformation were learned
using F1 + F2, i.e. without using the test set from the test set (Supplementary Note S4)).

Predictive performance

Our primary endpoint for model performance was AUROC. We also considered area-under-
precision-recall curves (PRC) and calibration curves. We plotted calibration curves using a
kernelised calibration estimator (Supplementary Note S6)).

For simplicity, figures show ROC/PRC that were calculated by combining all samples
from the three test CV folds (that is, all predictions and observed outcomes were merged to
draw a single curve). Quoted AUROC/AUPRC values were calculated as an average across
the three test CV folds to avert problems from between-fold differences in models [Forman
and Scholz| [2010]. For ease of comparison, we also used mean-over-folds to compute quoted
AUROCs and AUPRCs for SPARRAvV3, although the latter was not fitted to our data.

Deployment scenario stability and performance attenuation

Using the same analysis pipeline as for the development of SPARRAv4, we trained a static
model My to an early time cutoff (tp=1 May 2014), and using one year of data prior to
to to derive predictors (the restricted lookback is the only deviation from the actual model
pipeline, due to limited temporal span of the training data).

We studied the performance of My as a static model to repeatedly predict risk at future
time points, which mirrors the way in which PHS will deploy the model. To do this, we
assembled test features from data 1 year prior to t;=1 May 2015, t;=1 Dec 2015, t3=1
May 2016, t4,=1 Dec 2016, and t5=1 May 2017, applying My to predict EA risk in the year
following each time-point. In this analysis, the comparison of the distribution of scores over
time only considered the cohort of patients who were alive and had valid scores at ¢q, ..., 5.

To ensure a fair comparison when evaluating the performance of static predictions (com-
puted at to using Mj) to predict future event risk (at ¢1,...,t5), we only considered a
subsample of 1 million individuals with full data across all time-points, selected such that
global admission rates matched those at t.

Feature importance

We examined the contribution of feature to risk scores at an individual level by estimating
Shapley values [Lundberg and Lee, [2017] for each feature. For simplicity, this calculation
was done using 20,000 randomly-chosen samples in the first cross-validation fold (F1). We
treated SPARRAvV3 scores as fixed predictors rather than as functions of other predictors.

We also assessed the added value of inclusion of topic-model derived features, which
summarise more granular information about the previous medical history of a patient with
respect to those included in SPARRAv3. For this purpose, we refitted the model to F2-+F3
with topic-derived features excluded from the predictor matrix. We compared the perfor-
mance of these models using F1 as test data. We compared the performance of predictive
models with and without the features derived from the topic model by comparing AUROC
values using DeLong’s test [DeLong et al., [1988].
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Figure 1: Data and model fitting overview. (A) Illustration of how SPARRA can
support primary care intervention with the goal of improving patient outcomes. (B) Distri-
bution of the number of input EHR entries (prior to exclusions) according to age, sex and
SIMD deciles (1: most deprived; 10: least deprived). (C) Flow chart summarising data and
model fitting pipelines.
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Figure 2: Comparison of overall predictive performance between SPARRAvV3
and SPARRAv4. (A) ROC. (B) PRC. Lower sub-panels show differences in sensitivity
and precision, respectively. Confidence intervals are negligible. (C) Calibration curves.
(D) Calibration curves for samples in which |v4 — v3] > 0.1. Lower sub-panels show the
difference between curves and the y = z line (perfect calibration). Confidence envelopes
are pointwise (that is, for each z-value, not the whole curve). Predicted/true value pairs
are combined across cross-validation folds in all panels for simplicity. (E) Difference in the
number of individuals who had an event amongst individuals designated highest-risk by v3
and v4. The repeating pattern is a rounding effect of v3. (F) Difference in the number of
highest-risk individuals to target to avoid a given number of admissions.
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Figure 3: Stratified performance of SPARRAv3 and SPARRAv4. (A) Performance
of SPARRAv3 and SPARRAv4 in subcohorts defined by age, SIMD and the original subco-
horts defined during SPARRAv3 development (Methods). Top: AUROC (red: SPARRAv3;
black: SPARRAv4). Vertical bars denote plus/minus 3 standard deviations. Middle: AU-
ROC increase for SPARRAv4 with respect to SPARRAv3. For context, bottom sub-panels
show the proportion of samples with an event within each group. (B) Distribution of SPAR-
RAv4 scores (in log-scale) for different group of samples. Black points indicate the associated
medians. Groups were defined according to whether an event was observed (red violin plots)
or, for those with an EA, based on the diagnosis recorded during the admission. (C) Distri-
bution of time-to-event after the first time cutoff amongst cohorts of individuals who had an
EA in the year following the time cutoff and had a SPARRAv4 score above a given cutoff.
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Figure 4: Performance of a static model and static predictions. (A) Density (low
to high: white-grey-red-yellow) of scores generated using the static model My to predict EA
risk at 1 (2 May 2015) and ¢ (1 Dec 2015). The density is normalised to uniform marginal
on the Y axis, then the X axis; true marginal distributions of risk scores are shown alongside
in grey. (B-D) Performance of static scores calculated at ¢y using My to predict risk for
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Figure 5: Analysis of Shapley values. Distribution of Shapley values by (A) age and
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Code and data sharing

Raw data for this project are patient-level EHR, and are confidential. Due to the confidential
nature of the data, all analysis took place on a remote “data safe haven”, without access
to internet, software updates or unpublished software. Information Governance training
was required for all researchers accessing the analysis environment. Moreover, to avoid
the risk of accidental disclosure of sensitive information, an independent team carried out
statistical disclosure control checks on all data exports, including the outputs presented in
this manuscript. All analysis code and co-ordinates required to reproduce our Figures are
available in github.com/jamesliley/SPARRAv4. This manuscript conforms to the TRIPOD
guidelines [Collins et al.l 2015] (Supplement [Supplementary Table S1J).
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ABSTRACT

Emergency admissions (EA), where a patient requires urgent in-hospital care, are a major challenge for healthcare systems. The
development of risk prediction models can partly alleviate this problem by supporting primary care interventions and public health planning.
Here, we introduce SPARRAV4, a predictive score for EA risk that will be deployed nationwide in Scotland. SPARRAv4 was derived using
supervised and unsupervised machine-learning methods applied to routinely collected electronic health records from approximately 4.8M
Scottish residents (2013-18). We demonstrate improvements in discrimination and calibration with respect previous scores deployed in
Scotland, as well as stability over a 3-year timeframe. Our analysis also provides insights about the epidemiology of EA risk in Scotland,
by studying predictive performance across different population sub-groups and reasons for admission, as well as by quantifying the effect
of individual input features. Finally, we discuss broader challenges including reproducibility and how to safely update risk prediction
models that are already deployed at population level.

Keywords: Emergency admission, Primary care, Machine learning
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6a Clearly define the outcome that is predicted by | M: Overview and lé_l|
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ing or validating the multivariable prediction | neering, table of ble@
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Sample size 8 Explain how the study size was arrived at. Introduction 4
Missing data 9 Describe how missing data were handled (e.g., | Supp:  Missing H
complete-case analysis, single imputation, mul- | values
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analyses. Learning predic-
tion methods
10b | Specify type of model, all model-building pro- | M: Machine | |12}|12
cedures (including any predictor selection), and | Learning predic-
method for internal validation. tion methods; M:
Cross-validation
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were calculated. validation
Statistical 10d | Specify all measures used to assess model per- | M: Predictive per- E]
analysis formance and, if relevant, to compare multiple | formance
methods models.
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tion) arising from the validation, if done. ing
Risk groups 11 Provide details on how risk groups were cre- | - -
ated, if done.
Development | 12 For validation, identify any differences from | D: Relation to |2]
vs. validation the development data in setting, eligibility cri- | other studies
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Results
13a Describe the flow of participants through the | M: Feature engi- m], fig-
study, including the number of participants with | neering, figure ure
and without the outcome and, if applicable, a
summary of the follow-up time. A diagram
may be helpful.
13b | Describe the characteristics of the participants | M: Overview and | Ml [11] fig-
(basic demographics, clinical features, avail- | cohort details; M: ure
able predictors), including the number of par- | Feature engineer-
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Participants outcome.
13c | For validation, show a comparison with the | Not applicable; | Not appli-
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specification 15b | Explain how to the use the prediction model. D: Implications |2]
for clinicians and
medical policy
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considering objectives, limitations, results from | other studies
similar studies, and other relevant evidence.
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Supplementary | 21 Provide information about the availability of | Supplementary |£|
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Words Label
Antihist, Hyposensit & Allergic Emergen Nasal allergies
Drugs Acting On The Nose

Corti’roids & Other Anti-Inflamm.Preps.
Nasal Products

Contraceptives

Miscellaneous Ophthalmic Preparations
Eye Products

Antiviral Drugs

Corti’roids & Other Anti-Inflamm.Preps.
Anti-Infective Eye Preparations
Antidepressant Drugs

Antibacterial Drugs

Wound Management & Other Dressings
Drugs Used In Neuromuscular Disorders
Antibacterial Drugs

Skin Fillers And Protectives

Night Drainage Bags

Catheters

Leg Bags

Stockinette

Arm Sling/Bandages

Surgical Adhesive Tape

Swabs

Irrigation Solutions

Urinary tract infection, site not specified
Essential (primary) hypertension
Hypnotics And Anxiolytics

Drugs Used In Substance Dependence
Acne and Rosacea

Sex Hormones & Antag In Malig Disease
Hypothalamic&Pituitary Hormones&Antioest
Antibacterial Drugs

Chemotherapy session for neoplasm
Malignant neoplasm, breast, unspecified
Antiplatelet Drugs

Lipid-Regulating Drugs

Oral Nutrition

Preparations For Warts And Calluses
Top Local Anaesthetics & Antipruritics
Vaccines And Antisera

Anti-Infective Skin Preparations

Other Appliances

Anthelmintics

Anti-Infective Eye Preparations

Cough Preparations

Drugs Acting On The Oropharynx
Antiperspirants

Base/Dil/Susp Agents/Stabilisers

Other chemotherapy

Viral infection, unspecified

Eye products

Wound management

Skin disease
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Thyroid And Antithyroid Drugs
CNS Stimulants and drugs used for ADHD
Antibacterial Drugs

Antibacterial Drugs

Anti-Infective Skin Preparations

Drugs Acting On The Oropharynx
Treatment Of Vaginal & Vulval Conditions
Antifungal Drugs

Drugs Acting On The Ear

Topical Corticosteroids

Cough Preparations

Anti-Infective Eye Preparations

Anaemias + Other Blood Disorders
Chronic Bowel Disorders
Antifibrinolytic Drugs & Haemostatics
Cytotoxic Drugs
Dyspep&Gastro-Oesophageal Reflux Disease | Stoma care

Drugs Used In Psychoses & Rel.Disorders
Drugs Used In Park’ism/Related Disorders
Acute Diarrhoea

Ileostomy Bags

Adhesive Removers (Sprays/Liquids/Wipes)
Colostomy Bags

Swabs

Skin Fillers And Protectives

Emollient & Barrier Preparations Skin and scalp disorders

Topical Corticosteroids

Emollients

Shampoo&Other Preps For Scalp&Hair Cond
Preparations For Eczema And Psoriasis
Anti-Infective Skin Preparations
Corticosteroids (Endocrine)

Drugs Affecting The Immune Response
Fluids And Electrolytes

Minerals

Sunscreens And Camouflagers
Antibacterial Drugs

Acute Diarrhoea

Antisecretory Drugs+Mucosal Protectants
Antibacterial Drugs

Drugs For Genito-Urinary Disorders
Sex Hormones
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Antibacterial Drugs

Anticoagulants And Protamine Arrhythmias
Treatment Of Glaucoma
Positive Inotropic Drugs
Anti-Arrhythmic Drugs
Atrial fibrillation and flutter

Soft-Tissue Disorders & Topical Pain Rel
Local Anaesthesia

Analgesics

Elastic Hosiery

Dry Mouth Products

Acute Diarrhoea

Table S4. Exploration of the inferred topics. Details of derived topics for topic model used for prediction in F1 (fitted to F2+F3). A
topic model assumes that each ‘document’ (individual) in a ‘corpus’ (population) is associated with various ‘topics’ (roughly, illness
categories) where each topic corresponds to a distribution over ‘words’ (ICD10 codes and medication types). We would expect that the 30
topics fitted to each fold roughly represent the major clusters of disease types which occur amongst those individuals. This tables shows
the ‘words’ with the highest probability of membership in each topic (> 1%, where probabilities over all words sum to 100%). In each
topic, words are ordered by decreasing probability of topic membership. ICD10 codes are italicised; medication types are not. Topics are
ordered by decreasing importance (mean absolute Shapley value). We manually assigned labels to some topics which appear to code for
particular disease types.
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ICD10 code begins with: | Admission type
A;B Infectious disease
C Neoplasm
D1;D2;D3;D4 Neoplasm
D5;D6;D7;D8;D9 Blood

E Endocrine/metabolic
F Mental/behavioural
G Nervous system
H1;H2;H3;H4;H5 Eye

H6;H7;H8;H9 Ear

I Circulatory

J Respiratory

K Digestive

L Skin

M Musculoskeletal

N Genitourinary

(0] Obstetric/puerperium
P Perinatal

Q Congenital

R Abnormality NEC
S;T;V: XY External

U,Z Other

Table S6. Definition of different admission types.

medRxiv preprint doi: https://doi.org/10.1101/2021.08.06.21261593; this version posted September 28, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

S16


https://doi.org/10.1101/2021.08.06.21261593

medRxiv preprint doi: https://doi.org/10.1101/2021.08.06.21261593; this version posted September 28, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

2 SUPPLEMENTARY FIGURES

A Accidents and emergency GP prescribing
Sex 0.20 Sex 0.20
F F
0.020 M 0.020 M
— 0.15 T 0.15
0.015 P 0.015 >
z g z g
2 3010 2 3010
8 0.010 3 8 0.010 ]
w w
0.005 0.05 0.005 0.05
0.000 0.00 0.000 0.00
o 25 50 75 123456 7 8 910 o 25 50 75 123456 7 8 910
Age SIMD decile Age SIMD decile
Outpatients Acute inpatients and day cases
Sex 0.20 Sex 0.20
F F
0.020 ] 0.020 M
T 0.15 T 0.15
> >
> 0.015 g > 0.015 g
2 “g’_ 0.10 2 “g’_ 0.10
Z o010 8 g o010 3
w w
0.005 0.05 0.005 0.05
0.000 0.00 0.000 0.00
0 25 50 75 12 83 4 5 6 7 8 9 10 0 25 50 75 12 83 4 5 6 7 8 9 10
Age SIMD decile Age SIMD decile
Other Mental health inpatient and day cases
Sex 0.20 Sex 0.20
F F
0.020 M 0.020 M
— 0.15 T 0.15
> >
> 0.015 3 > 0.015 3
2 S o010 2 S o010
@ 0.010 o @ 0.010 o
o 1 [a [
w w
0.005 0.05 0.005 0.05 I I I
0.000 0.00 0.000 0.00
0 25 50 75 12 3 4 5 6 7 8 9 10 0 25 50 75 12 3 45 6 7 8 9 10
Age SIMD decile Age SIMD decile

o 2
s EA
3 o = Death (without prior EA)
5 S| EA and subsequent death
S
- ©o__|
5 oS
Q
o
s 37
=
8 ~o—
=] S
S
3
o <
o I

20

Age

Figure S1. Extended data overview. Distribution of the number of input EHR entries (prior to exclusions) according to age, sex and
SIMD deciles (1: most deprived; 10: least deprived) stratified by the input database. All sub-panels are drawn to the same scale. “Other”
includes geriatric long stay (SMRO1E) and urgent care monitoring (System Watch). (B) Distribution of target events by age stratified by
event type.
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Figure S2. Density plot comparing SPARRAv3 and SPARRAvV4 scores. The test datasets used within each CV iteration were
combined in order to generate this plot (i.e. all samples are included once). Joint density (low to high: white-grey-red-yellow) of
individual SPARRAV3 and SPARRAvV4 scores. The density is normalised to uniform marginal on the Y axis, then the X axis; true
marginal distributions of risk scores are shown alongside in grey.
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Figure S4. Performance of a static model and static predictions used to predict risk at future time points. (A-C) A model M
fitted to an early time point (fp: 2 May 2014) was evaluated at later time points. (A) ROC curves. (B) PR curves. (C) Calibration curves.
(D) Centiles (light blue) and deciles (dark blue) of risk scores (calculated using My) over time, across all individuals with data available at
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Figure S6. Model updating in the presence of performative effects. (A-D) Causal structure for the training and deployment of
SPARRAv3 and SPARRAV4. X; represents covariates for a patient-time pair; v3(fir)/v4(fit) and v3(X;)/v3(X;) represent the fitting and
deployment of v3 and v4 respectively. (A) Training setting for SPARRAv3. (B) Training setting for SPARRAv4. (C) Deployment setting
if SPARRAv4 were to naively replace SPARRAv3. (D) Deployment setting in which SPARRAV4 is used as an adjuvant to SPARRAv3.
(E) Comparison of predictive performance between SPARRAv3, SPARRAv4 and the maximum between both scores.
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3 SUPPLEMENTARY NOTES

3.1 Choice of prediction target for SPARRAv4

The primary target for SPARRA is to predict whether an individual will experience an EA within 12 months from the prediction cutoff. A
problem arises due to the deaths during the follow-up year for which the target may be unknown (e.g. if someone died within 6 months,
without a prior EA). Broadly, there are four options for how to treat such individuals during model training and testing:

1. Exclude them from the dataset
2. Treat them according to whether they had an emergency admission before they died
3. Treat them as no admission, or

4. Treat them as an admission

It would also be possible to code death in follow-up differentially; for instance, coding in-hospital death as EA and in-community
death as exclusions or non-EA. Our choice not to code all deaths identically is in the interests of non-maleficence. If an individual is
at risk of imminent death in the community they will typically be admitted to hospital if it is possible to react in time, with a possible
exemption if this is not in their best interests.

Option [T would exclude the most critically ill individuals from the dataset and hence was discarded. Option [2] would effectively
mean such individuals have a follow-up time less than a year, and would classify individuals who died without a hospital admission as
having had a ‘desirable’ outcome. Option [3] would effectively classify death as a ‘desirable’ outcome, so we avoided it. The consequences
from coding community deaths as non-EA would be severe, as it could mean that healthier individuals at risk of sudden death are either
coded as non-EA or excluded from the dataset, potentially leading to inappropriately low scores being assigned to these individuals. This
could draw treatment away from individuals in high need. Instead, optiond]allows the general description of the target as ‘a catastrophic
breakdown in health’. In this case, our model would not be able to distinguish community deaths from emergency admissions: we may
assign high ’EA’ scores to the very old and terminally ill, when in fact these individuals may be treated in the community rather than
admitted. The potential harm from this option is small. It could mean that such individuals are excessively treated rather than palliated,
but since palliation over treatment is an active decision [Romo et al.| [2017]] and such individuals are generally known to be high-risk it
is unlikely that the SPARRA score will adversely affect any decisions in this case. As the philosophy of the SPARRA score is to avert
breakdowns in health, of which death can be considered an example, we decided to use a composite prediction target (EA or death within
12 months) which is consistent with option ]

3.2 Model updating in the presence of performative effects

We aim to produce the SPARRA score to accurately estimate EA risk over a year under normal medical care. In other words, the score
should represent the EA risk if GPs do not already have access to such a risk score. Because GPs see a SPARRA score (SPARRAv3) and
may act on it, the observed risk may be lower than predicted - the score may become a ‘victim of its own success’ [Lenert et al., 2019|
Sperrin et al.,|2019]] due to performative effects Perdomo et al.|[2020]. Unfortunately, since the SPARRAV3 score is widely available
to Scottish GPs, and may be freely acted on, we cannot assess the behaviour of the medical system in its absence. This is potentially
hazardous [Liley et al.,[2021]].

Formally, at a given fixed time, for each individual, the value of ‘EA in the next 12 months’ is a Bernoulli random variable. The
probability of the event for individual i is conditional on a set of covariates X; derived from their EHR. We denote v3(X;), v4(X;) the
derived SPARRAvV3 and SPARRAV4 scores as functions of covariates, and assume a causal structure shown in Supplementary Figure [S6|
(for simplicity, we assume there are no unobserved confounders but the same argument applies in their presence). With no SPARRA-like
predictive score in place, there is only one causal pathway X; — EA. It is to this system (coloured red) that v3 was fitted. Here, v3(X;)
estimates the ‘native’ risk Pr(EA|X;) (ignoring previous versions of the SPARRA score, which covered < 30% of the population).
Although v3(X;) is determined entirely by X;, the act of distributing values of v3(X;) to GPs opens a second causal pathway from X; to
EA (Supplementary Figure driven by GP interventions made in response to v3(X;) scores. It is to this system (coloured red) that
SPARRAVA4 is fitted. Hence, v4(X;) is an estimator of Pr(EA|X;,v3(X;)), a ‘conditional’ risk after interventions driven by v3(X;) have
been implemented.

If SPARRAV4 naively replaced SPARRAvV3 (Supplementary Figure , we would be using v4(X;) to predict behaviour of a system
different to that on which it was trained (Supplementary Figure [S6). To amend this problem, we propose to use SPARRAv4 in
conjunction with SPARRAvV3 rather than to completely replace it (Supplementary Figure . Ideally, GPs would be given v3(X;) and
v4(X;) simultaneously and asked to firstly observe and act on v3(X;), then observe and act on v4(X;), thereby only using v4(X;) as per
Supplementary Figure This is impractical, so instead, we propose to distribute a single value (given by the maximum between v3(X;)
and v4(X;)), avoiding the potential hazard of risk underestimation, at the cost of mild loss of score calibration (Supplementary Figure [S6).

3.3 Hyperparameter choice for ML prediction methods

We used a range of constituent models. The h2o [LeDell et al., [2019] R package (version 3.24.0.2) was used to train ANN, RF, GLM and
NB models. The xgboost [Chen et al.,|2019]] R package (version 1.6.0.1) was used to train the XGB models. Unless otherwise specified,
hyperparameters were set as the software defaults. When tuned, hyperparameter values were chosen to optimise the default objective
functions implemented for each method: log-loss or the ANN, RFs and GLM, likelihood for the NB model; and a logistic objective for the
XGB trees. In all cases, hyperparameters were determined by randomly splitting the relevant dataset into a training and test set of 80%
and 20% of the data respectively. Details for each method are provided below.
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3.3.1 SPARRAv3
SPARRAV3 scores were calculated by PHS using their existing algorithm |Health and Social Care Information Programme| [2011]].

3.3.2 Artificial neural network (ANN)
We used a training dropout rate of 20% to reduce generalisation error. We optimised over the number of layers (1 or 2) and the number of
nodes in each layer (128 or 256).

3.3.3 Random forest (RF)
We fitted two RF: one had maximum depth 20 and 500 trees, and the other had maximum depth 40 and 50 trees (both taking a similar time
to fit).

3.3.4 Gradient-boosted trees (XGB)
We fitted three boosted tree models with three maximum depths: 3, 4, and 8. For the deeper-tree model, we set a low step size shrinkage

n = 0.075 and a positive minimum loss reduction Y = 5 in order to avoid overfitting. In the other two models, we used default values of
n=03,y=0.

3.3.5 Naive Bayes (NB)
The only hyperparameter we tuned was a Laplace smoothing parameter, varying between 0 and 4.

3.3.6 Penalised Generalised linear model (GLM)
We optimised L; and L, penalties (an elastic net), considering total penalty (L; + L) in 10~ 112345} and a ratio L, /L in {0,0.5,1}.

3.4 Model re-calibration
We applied a monotonic transformation to optimise the calibration of the predictions generated by the ensemble. Given a predicted value
Y (for ease of notation we do not explicitly include its dependency on the input features X) we defined a transformation m(-) to optimise
calibration, essentially using isotonic regression. The latter was derived using the following procedure.

Fitst, we defined an empirical calibration function for an estimator Y of Y |X:

. 1
CAL;(y) = Yi(Y - —
7o) =mean (7| (17 31 < 135 ) )
We then found a,b such that the mean and mode of (a¥ + b) were approximately correctly calibrated; that is, CAL,y_,(y) =y for
y € {mean(a¥ + b),mode(a¥ + b)}, and scaled a,b such that 0 < a¥ +b < 1. Across an evenly spaced grid G of 100 y-values we

computed the function:

c(y)=(1-10") max CAL.,(y)+10"%y 2)
YeGy <y

using the cumulative maximum of CAL(-) to ensure ¢(-) is non-decreasing, and adding a linear term to ensure ¢(-) is increasing. We
extended the domain of ¢(-) to [0, 1] using piecewise linear interpolation, and defined our calibrating transform m(-) as the inverse of ¢(-):

m(y) =c "' (ay+b) 3)

The transformation above was optimised using by further splitting the training set (F1+F2) within our 3-fold cross-validation (CV)
procedure (we use F1, F2 and F3 to denote each fold). For each CV-fold, the following steps were performed:

1. Train all constituent models using F1 (except SPARRAV3, for which PHS provided the scores).

2. Each constituent model was then used to generate predictions for samples in F2.

3. Given those predictions, ensemble weights were inferred via 10-fold CV within F2.

4. Using the previously calculated predictions and ensemble weights, the parameters @ and b were chosen to optimise calibration in F2.

5. The optimal ensemble weights and calibration transformation parameters (a and b) were then used as fixed constants when training
the model in the combined F1+F2 dataset.

Note that, due to computational constrains, the topic model was not retrained within the above procedure. Instead, a pre-trained topic
model (using F1+F2 as a combined dataset) was used to generate features to be used in step 1.
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3.5 Imputation of lengths of stay when discharge date was missing

Some of our predictors concerned lengths-of-stay; that is, total days spent in hospital in the pre-prediction period (elective_bed_days,
emergency_bed_days, and other_bed_days; see Table[S3). In general, these were calculated by finding all stays listed for a given
individual, subtracting the admission date from the discharge date for each stay, and summing the results across all stays. However, for
some hospital stays, no discharge date was present in the source tables. In some cases, this was due to the individual still being in hospital
at the time cutoff, but in others was evidently due to the discharge date simply not being recorded; we identified several individuals who
were admitted with no discharge date who had evidence of community activity during the time they were supposedly in the hospital. To
manage this, we used an imputation procedure for hospital stays in which the discharge date was not recorded. When we see an individual
at a time cutoff # with admission date d and no discharge date, we have options of:

1. Do not count this admission towards the total length of stays; that is, count the stay length as 0 days for that admission. This will
under-estimate the total length of stay.

2. Count time t — d towards the total length of stay. Effectively this imputes the discharge date using the time cutoff. This could lead
to incorrect assumptions of very long hospital stays for individuals; indeed, since the pre-prediction period is three years, the mean
assumed hospital stay length for such patients would be in excess of eighteen months. This is likely to over-estimate the total length
of stay.

3. Count some arbitrary time o towards the total length of stay. Depending on the value of 7y, the total length of stay may be under- or
over-estimated.

All of these options coult potentially decrease the usefulness of these variables by artificially inflating (or deflating) the predicted EA
risk. As a compromise, we decided to use

min(r —d, 1) “)

as the length of stay for admissions with a missing discharge date. Effectively, this strategy uses fy as a default minimum length for stays
with missing discharge date.

To choose g, we use an empirical Bayes-optimal decision rule. Let E be the event that the discharge time for a given admission is not
recorded. We model the time ¢ — d as a (discrete) random variable X with a mixture distribution depending on E. We want to choose #y so
that P(E|X =x) > 1/2 if and only if x > 7). We set

P(X = x|-E) = f(x)

1
PX=xE)= 572 =
X =AE) = 33 36505 ¢
that is; if the discharge time is recorded (in which case the individual is genuinely still in hospital at time 7), we have some distribution of
true lengths of stay, whereas if the discharge time is not recorded, the time # — d has an equal probability of being anywhere between one
day and three years.
Let P(E) = g. Now

PE) _ cq
PX=x) cq+(1-q)f(x)
Given estimates of ¢ and f(+), to find #, we may set this expression to 1/2 and solve for x.

In order to estimate ¢ and f with § and f, we consider the population P of admissions (not individuals) where the admission date is
between May 2013 and May 2014. We then estimate

P(E|X = x) = P(X = x|E)

(&)

g = proportion of P with no recorded discharge date or discharged after May 2016
f(x) = proportion of P with recorded discharge date before May 2016 with length of stay x

We use this population of admissions so as to avoid data leakage, since these are prior to the earliest time cutoff (May 2016) used in
fitting the model. This is also our rationale for treating individuals who were discharged post-May 2016 the same as having no recorded
discharge date: we cannot use this information without data leakage. However, we note that the number of individuals with genuine > 2
year hospital stays is very small.

Following this procedure, estimated values of #y are 26, 19 and 6 for emergency bed days, elective_bed._days and
other_bed_days, respectively.

3.6 Assessment of calibration
We use an estimator for calibration broadly based on the Nadaraya-Watson kernel estimator [Nadaraya, |1964, [Watson, [1964]]. We re-derive
several properties (consistency, bias) to highlight their interpretation in our context.

We assume in general that, for IID predictor/outcome pairs (X;,Y;) ~ (X,Y), i € 1..n, and an optimal predictor function p,;, we have

Y|X ~ Bernoulli[p,, (X)] (6)
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noting that this implies

Popt (X) = E[Y|p0pt (X)] (7

We want to estimate po, (X).

Since we only observe Y =1 or Y = 0, we must estimate E[Y|p(X) = z] as some kind of average of Y about observed values p(X)
close to z. A routine way to do this is to use ‘reliability diagrams’ [Brocker and Smithl [2007]] in which we bin values of p(X) and estimate
E(Y|p(X)) in each bin.

Since for small bin sizes there may be few or no values of p(X) in some bins, we use a kernel estimate ¢, (z) of ¢, (z) = E[Y |p(X) = z]:

< YiYiKs[p(X;),2)]
) = X Kalp(X:). 7

where K3 : (0,1)? — R is some distance-measuring kernel with width §. We avoid the simpler estimate of the K5-weighted mean of ¥;s
for reasons shown below. We note the following:

(®)

Proposition 1. If p(X) has Lesbegue-integrable positive density on (0,1), K(z,x) and c,(x) are Lesbegue-integrable functions of x for
fixed z > 0, and the kernel ‘narrows with 8’ so
6—0
Ex{p(X)Ks[p(X),2]} == z
6—0
Ex{c,[p(X)]Ks5[p(X),2]} == c,(2)
then &(z) becomes a consistent estimator of ¢(z) as 6 — 0

Proof. From Slutsky’s lemma, the law of total expectation and the strong law of large numbers

6(2) = o ZYKs (P(X).2) o @%ummmvai 6 ©

TN F)Ks(f(X),2) b © Ex {p(X)Ks[£(X),

We note that ¢,(Z) is not generally consistent if § > 0. However, the inconsistency is not severe: we note

Proposition 2. If, in addition to the above, Kg(x,z) = Kg(x — z) is a symmetric density with second moment 8 and negligible moments of
higher order; and the densities of p(X) and c,(X) are twice differentiable at z, then ¢&,(z) — c(z) + O(8?)

Proof. We have
Ex{cp[p(X)]Ks[p(X), 2]} = Exepix)[cp(¥)Ks (x = 2)]

=, Fpx)(x)ep(x)Ks (x —2)dx

= | Up0) &)+ fpx) (@) (=) (e (2) + € (v = 2)) K (v — 2)dx

+ A O((x— Z)z) Ks(x—z)dx

= 0 @ep(@)+ [ 0((—2) Kole—aa

1
+ (fpx) (@) (2) + frx) (2)ep(2) /0 (x—2)K5(x —z)dz
= fox)(2)ep(2) +0 (87) (10)

noting the symmetry of K. If we replace ¢, [p(X)] with p(X), the expectation is zf,(x)(z) + 0(8?), and the result follows from the first
part of 9] O

Remark 1. In the ideal case where c,(z) = z (that is, our model is perfectly calibrated) estimator@ is consistent even when & > 0,
whereas the apparently simpler asymptotically consistent (as & — 0) estimator of a weighted sum of Y;’s:

~ LiYiKs[p(Xi),2)]

@& K (%) 2 (n

is not.
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Finally, we note the following:

Proposition 3. Under the assumptions above, with fixed X, the bias of ¢,(z) is

Y.iB(Xi,2)Ks[p(Xi),2]) (12)
Yip(Xi)Ks([p(Xi),7]

where B(X;,z) = p(Xi)cp(2) —z¢p(p(Xi))-

Proof. With fixed X;

Z,Y Ks[p(Xi),2)]

Ey[ep(z) = ()] = By |¢p(z) =

PX)K3[p(X0). 2
o Zz,c,,u ))Kslp(X).2)
L p(X)K; [p(X) .2
_ Lipieyta) ey pO) 102 -
L p(X)Ks[p(X).d

O

Remark 2. This enables straightforward evaluation of bounds on bias given bounds on the form of cp. The estimator ¢, is unbiased if
cp(x) = kx for some k, since B(X;,z) = 0.

Remark 3. An alternative way to draw a kernelised calibration curve is to simply plot a parametric curve

(10 - (EpiKabrx) i
(1) YYiKs[p(Xi),1]
which, for each t, is an only-slightly biased estimate of some point z,c,(z). If a rectangular kernel is used, this is equivalent to binning

values of p(X;) [Brocker and Smith, 2007|]. However, this method does not generally give a curve across the entire range of p(X;).

It is straightforward to estimate

— var Y YiKs[p(Xi), 7]
var(c,(z) | {X1,X2..X,}) = (Z (X p(X)Ks[p(X:),2))

=var()_ wY; | {X1,X2..X,})
i

‘Xl,Xz..X,,)

= wavar(Yi | X1,X>,..Xn)
~ Zw,zp(Xi)(l —p(Xi))

where the approximation is exact if ¢, (z) = z. Together with an estimate of maximum absolute bias b, at z, this enables estimates of
conservative confidence intervals on ¢,(z) at level 1 — o

&(z)+ (bz o (%) SE(c)(2) |x,~)) (15)

In all plots in this paper, we bounded bias under the assumption that there existed & such that |c,(z) — kz| < z%/10.
The calibration estimator derived here is demonstrated in an R script sparra_calibration.R available with the attached R code
for this manuscript.

REFERENCES
Jochen Brocker and Leonard A Smith. Increasing the reliability of reliability diagrams. Weather and forecasting, 22(3):651-661, 2007.

Tiangi Chen, Tong He, Michael Benesty, Vadim Khotilovich, Yuan Tang, Hyunsu Cho, Kailong Chen, Rory Mitchell, Ignacio Cano,
Tianyi Zhou, Mu Li, Junyuan Xie, Min Lin, Yifeng Geng, and Yutian Li. xgboost: Extreme Gradient Boosting, 2019. URL
https://CRAN.R-project.org/package=xgboost. R package version 0.90.0.2.

Health and Social Care Information Programme. A report on the development of SPARRA version 3 (developing risk prediction
to support preventative and anticipatory care in Scotland), 2011. https://www.isdscotland.org/Health-Topics/
Health—and-Social-Community—-Care/SPARRA/2012-02-09-SPARRA-Version—3.pdf, Accessed: 6-3-2020.

S27


https://CRAN.R-project.org/package=xgboost
https://www.isdscotland.org/Health-Topics/Health-and-Social-Community-Care/SPARRA/2012-02-09-SPARRA-Version-3.pdf
https://www.isdscotland.org/Health-Topics/Health-and-Social-Community-Care/SPARRA/2012-02-09-SPARRA-Version-3.pdf
https://doi.org/10.1101/2021.08.06.21261593

medRxiv preprint doi: https://doi.org/10.1101/2021.08.06.21261593; this version posted September 28, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

Erin LeDell, Navdeep Gill, Spencer Aiello, Angi Fu, Arno Candel, Cliff Click, Tom Kraljevic, Tomas Nykodym, Patrick Aboyoun, Michal
Kurka, and Michal Malohlava. h20: R Interface for ‘H20’,2019. URL https://CRAN.R-project.org/package=h2o. R
package version 3.26.0.2.

Matthew C Lenert, Michael E Matheny, and Colin G Walsh. Prognostic models will be victims of their own success, unless. ... Journal of
the American Medical Informatics Association, 26(12):1645-1650, 2019.

James Liley, Samuel R Emerson, Bilal A Mateen, Catalina A Vallejos, Louis JM Aslett, and Sebastian J Vollmer. Model updating after
interventions paradoxically introduces bias. AISTATS proceedings, 2021.

Karel GM Moons, Douglas G Altman, Johannes B Reitsma, John PA Ioannidis, Petra Macaskill, Ewout W Steyerberg, Andrew J Vickers,
David F Ransohoff, and Gary S Collins. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis
(TRIPOD): explanation and elaboration. Annals of internal medicine, 162(1):W1-W73, 2015.

Elizbar A Nadaraya. On estimating regression. Theory of Probability & Its Applications, 9(1):141-142, 1964.

Juan Perdomo, Tijana Zrnic, Celestine Mendler-Diinner, and Moritz Hardt. Performative prediction. In International Conference on
Machine Learning, pages 7599-7609. PMLR, 2020.

Public Health Scotland. AE2 - Accident and emergency records, 2020a. hhttps://www.ndc.scot.nhs.uk/
National-Datasets/data.asp?SubID=3, Accessed: 6-3-2020.

Public Health Scotland. PIS - Prescribing information systems, 2020b. https://www.ndc.scot.nhs.uk/
National-Datasets/data.asp?SubID=9, Accessed: 6-3-2020.

Public Health Scotland. System Watch: urgent care usage, 2020c. https://publichealthscotland.scot/services/
system—-watch/#section—-1-1, Accessed: 6-3-2023.

Public Health Scotland. @~ SMR datasets - ISD Scotland Data Dictionary, 2023. |https://www.ndc.scot.nhs.uk/
Data—-Dictionary/SMR-Datasets/, Accessed: 6-3-2023.

Rafael D Romo, Theresa A Allison, Alexander K Smith, and Margaret I Wallhagen. Sense of control in end-of-life decision-making.
Journal of the American Geriatrics Society, 65(3):¢70—75, 2017.

Matthew Sperrin, David Jenkins, Glen P Martin, and Niels Peek. Explicit causal reasoning is needed to prevent prognostic models being
victims of their own success. Journal of the American Medical Informatics Association, 26(12):1675-1676, 2019.

Geoffrey S Watson. Smooth regression analysis. Sankhya: The Indian Journal of Statistics, Series A, pages 359-372, 1964.

S28


https://CRAN.R-project.org/package=h2o
hhttps://www.ndc.scot.nhs.uk/National-Datasets/data.asp?SubID=3
hhttps://www.ndc.scot.nhs.uk/National-Datasets/data.asp?SubID=3
https://www.ndc.scot.nhs.uk/National-Datasets/data.asp?SubID=9
https://www.ndc.scot.nhs.uk/National-Datasets/data.asp?SubID=9
https://publichealthscotland.scot/services/system-watch/#section-1-1
https://publichealthscotland.scot/services/system-watch/#section-1-1
https://www.ndc.scot.nhs.uk/Data-Dictionary/SMR-Datasets/
https://www.ndc.scot.nhs.uk/Data-Dictionary/SMR-Datasets/
https://doi.org/10.1101/2021.08.06.21261593

