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Abstract 

Since early March 2020, the COVID-19 epidemic across the United Kingdom has led 

to a range of social distancing policies, which resulted in changes to mobility across 

different regions. An understanding of how these policies impacted travel patterns 

over time and at different spatial scales is important for designing effective 

strategies, future pandemic planning and in providing broader insights on the 

population geography of the country. Crowd level data on mobile phone usage can 

be used as a proxy for population mobility patterns and provide a way of quantifying 

in near-real time the impact of social distancing measures on changes in mobility. 

Here we explore patterns of change in densities, domestic and international flows 

and co-location of Facebook users in the UK from March 2020 to March 2021. We 

find substantial heterogeneities across time and region, with large changes observed 

compared to pre-pandemic patterns. The impacts of periods of lockdown on 

distances travelled and flow volumes are evident, with each showing variations, but 

some significant reductions in co-location rates. Clear differences in multiple metrics 

of mobility are seen in central London compared to the rest of the UK, with each of 

Scotland, Wales and Northern Ireland showing significant deviations from England at 

times. Moreover, the impacts of rapid changes in rules on international travel to and 

from the UK are seen in substantial fluctuations in traveller volumes by destination. 
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While questions remain about the representativeness of the Facebook data, previous 

studies have shown strong correspondence with census-based data and alternative 

mobility measures, suggesting that findings here are valuable for guiding strategies. 
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Introduction 
The COVID-19 pandemic and measures to mitigate it have resulted in 

unprecedented changes to population dynamics around the World (Banholzer et al., 

2021; Flaxman et al., 2020; Hsiang et al., 2020; Lai et al., 2020; Ruktanonchai et al., 

2020; Unwin et al., 2020). Most countries have implemented prevention policies such 

as regional lockdowns and social distancing (Kissler et al., 2020; Thakkar et al., 

2020; Wellenius et al., 2020) to slow the spread of the disease and limit impacts on 

health systems. The impact of these policies on population dynamics is unclear and 

likely varies significantly by geography, demographics and over time (Buckee et al., 

2020; Buckee et al., 2021; Gibbs et al., 2021). Understanding these impacts and 

relationships is important for guiding ongoing efforts to mitigate the effects of the 

COVID-19 pandemic, as well as for future pandemic preparedness planning. 

 

Over the 12 months from March 2020, the UK recorded more than 4 million cases of 

COVID-19, resulting in around 120,000 deaths (Public Health England, 2021). A 

wide variety of national and regional restrictions were put in place throughout the 

course of 2020 and into early 2021. This involved national stay at home ‘lockdown’ 

measures in March 2020, November 2020 and January 2021. Additionally, England, 

Scotland, Wales and Northern Ireland all implemented differing restrictions at 

different times, with regionally stratified ‘tiered’ systems. Moreover, international 

travel restrictions in and out of the UK were under constant review and change, as 

situations changed domestically and abroad. Many of these mitigation policies 

involved restrictions relating to social contact and travel, but the effects of these on 

changes in population densities, travel patterns and mixing at fine spatial and 

temporal scales have not been examined together across the course of the 

pandemic. 

 

Multiple sources of digital data on proxies for population mobility and behaviours 

have been put forward and used to examine changing dynamics and understand the 

impacts of disease mitigation measures (Gonzalez et al., 2008; Jeffrey et al., 2020). 

During the course of the COVID-19 pandemic, many new sources of mobility data 

have been utilised and made available, principally deriving from mobile phones and 
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their usage. These include mobility data and reports made available by technology 

giants such as Google (Google, 2020), Apple (Apple, 2020) and Facebook 

(Facebook GeoInsights, 2020). Many studies have examined social connectedness 

(Chang et al., 2021; Fritz & Kauermann, 2020; Kuchler et al., 2020; Lai et al., 2020) 

or human movement (Beria & Lunkar, 2021; Ruktanonchai et al., 2020; Galeazzi et 

al., 2020; Gibbs et al., 2021; Kraemer et al., 2021) and their relation to the dynamics 

and spread of COVID-19. 

 

Here we explore aggregated and anonymised data from Facebook on the movement 

patterns of active users in the UK using geolocation services during the period March 

2020 - March 2021. These data are made available at fine temporal and spatial 

scales, in near-real time and in multiple forms, enabling insights not possible with 

many other sources of mobility data. We examine the changes in domestic 

movement patterns and densities compared to a pre-pandemic baseline, co-location 

probabilities, as well as variations in international travel in and out of the UK. 
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Data and methods 

Facebook data 

Facebook disease prevention maps (Facebook, 2021) provide information on the 

location, movement and interactions of active Facebook users. The data is produced 

using geolocation (GPS) services from mobile devices with the Facebook app 

installed and with location services switched on. The location of Facebook users is 

mapped using a Bing tile architecture (Microsoft, 2018), assigning users to individual 

tiles. The minimum tile size available (level 16) is approximately 600m x 600m. 

However, due to the constraints in collating location data from a large number of 

Facebook users, mobility data is commonly supplied by Facebook at lower 

resolutions (greater tile sizes). For datasets that use administrative regions, tile data 

is then aggregated by Facebook using Pitney-Bowes polygon boundaries (Lyer et 

al., 2020; Precisely, 2020). 

 

In this paper we include data from four available datasets: population density (tile 

level), movement between tiles, co-location and international travel, spanning the 

period from 10th March 2020 to 9th March 2021. This encompasses three periods of 

tight restrictions that included stay-at-home orders and closure of many businesses 

by the UK government in England, which we here term ‘lockdowns’: 23rd March 

2020 - 12th May 2020; 5th November 2020 - 1st December 2020; and 6th January 

2021 - 9th March 2021. These are from now on referred to as lockdown one, 

lockdown two and lockdown three, respectively. Similar restrictions were imposed at 

the same time (or at very similar times) in Wales, Scotland and Northern Ireland. 

  

Facebook provides the data in a range of time periods. Population density and 

movement between tiles datasets are provided daily across three 8-hour time 

periods: 00:00 - 08:00, 08:00 - 16:00 and 16:00 - 00:00. These will be referred to as 

nighttime, daytime and evening respectively. International travel data is provided 

daily and the co-location data is provided weekly. All time periods are kept as 

Coordinated Universal Time (UTC). Therefore between 29th March 2020 and 24th 

October 2020, the 8-hour time periods represent 01:00 - 09:00, 09:00 - 17:00 and 

17:00 - 01:00 in the UK due to the shift from Greenwich mean time (GMT) into British 
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summer time (BST). In addition to this data, Facebook also provides baseline values 

of mobility for certain datasets. They are calculated prior to the introduction of 

government measures on population mobility in order to allow comparisons between 

pre-COVID and current movements of Facebook users. 

 

There are a number of measures applied to the data to ensure the privacy and 

anonymity of Facebook users that may also impact the interpretation of the mobility 

data. Firstly, only Facebook users with location services actively enabled within the 

specified time period are included in each dataset. In addition, thresholds for the 

number of individuals recorded in each dataset are applied. In the population 

density, movement between tile and co-locations datasets, this is 10 users per tile, 

movement vector or administrative region respectively. In the international 

movement dataset, there is a minimum threshold of 1000 users moving between two 

countries per day. Finally, absolute values of Facebook user mobility are not able to 

be shared publicly. Instead, values of relative change are calculated using the data, 

often comparing baseline values to current mobility of Facebook users. Together, 

this ensures the identity and security of Facebook users is maintained. 

 

Combining Facebook data into larger aggregations can provide human mobility data 

relevant to pre-established administrative boundaries. In this paper we aggregate 

Facebook data using two classified systems: Nomenclature of territorial units for 

statistics (NUTS) level 1 regions (Figure 1) (December 2020 boundaries; Office for 

National Statistics, 2017) and UK Local Authority Districts (LAD) (April 2020 

boundaries; Office for National Statistics, 2020). When aggregating data, we took the 

centroid coordinate of each Bing tile and matched it with the LAD/NUTS region in 

which it fell. We then summed the data within each aggregation. It is important to 

note that aggregating data does not overcome disclosure issues as these are 

applied at tile level by Facebook before sharing with external partners. Additionally, 

due to the mismatch between the shape of Bing tiles and the boundaries of the 

aggregations, a marginal error is expected when using this method that is 

unavoidable given the structure of the data. To account for some of the mismatch 

caused when aggregating tiles to LAD, we used a population weighted method of 

assigning tiles to large population centres. We did this on occasions when, due to 

mismatches between tiles and LAD boundaries, areas with expected high population 
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densities (e.g. London LADs) had no Bing tiles assigned to them. Tile to aggregation 

lookups are provided in the supplementary materials. 

 

The data used in this study are proprietary data owned by Facebook. The data are 

not publicly available but are available to researchers by application to the Facebook 

Data for Good Partner Program (https://dataforgood.fb.com/, 

diseaseprevmaps@fb.com). The research was approved by the University of 

Southampton Ethics and Research Governance committee (Ref.48113). 

Changes in densities  

The population density (tile level) dataset represents the average number of 

Facebook users within a given Bing tile over an 8-hour time period. The tile 

resolution of the population density data provided varies between datasets. For 

Britain-wide population density, Bing tile level 13 data is provided. For smaller 

regions (e.g. individual cities such as London), data can be provided by Facebook 

down to Bing tile level 16. 

 

For each day, population density data is provided in the three 8-hour time periods. 

Within each time period, active Facebook users are assigned to their modal Bing tile. 

Tiles that do not reach 10 users are removed from the dataset. For each tile that 

overcomes the user threshold, data is provided on the tile location and the average 

number of active Facebook users assigned to that tile. Additionally, for each tile 

within each day of the week and individual time period that is included, a single 

baseline value is provided. This is calculated from the average population density of 

Facebook users over a 90-day period up to and including the 9th March 2020. As 

there are 7 weekdays and 3 time periods per day, each tile has a total of 21 baseline 

values.  

 

In order to determine the impact of mobility measures on the population density of 

Facebook users across the UK we first extracted tile level 13 data for the entirety of 

the UK. This data was then aggregated to NUTS level 1 to compare the impact of the 

measures across different UK regions. Then, to examine how these changes were 

reflected at smaller spatial scales, we extracted tile level 16 data for the entirety of 
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London. For both regional and London analysis of Facebook user population density 

we calculated values of change relative to the pre-COVID baseline period. 

Changes in domestic mobility 

The UK movement between tiles (flows) data represents the movement of Facebook 

users between two UK Bing tiles across two adjacent 8-hour time periods. For each 

8-hour time period, the Bing tile where a Facebook user spends most of their time 

(modal tile) is recorded. This is repeated at the following 8-hour time period to 

produce a vector between two Bing tiles. The number of Facebook users that 

produce the same vector between two time periods is summed to give a total 

number of users that moved between two Bing tiles across the same two 8-hour time 

periods. The Euclidean distance between these tiles is also provided. If less than 10 

Facebook users are recorded as travelling across an individual vector the data is 

withheld by Facebook. In addition to the number of people moving between two tiles, 

a baseline value is provided for each tile to tile vector that crosses the privacy 

threshold. This is the average number of Facebook users that moved between two 

tiles in the same two adjacent time periods per weekday in the 45 day period up to 

and including 9th March 2020.  

 
In order to examine changes in the movement of Facebook users within the UK, we 

extracted tile level 12 data for movement of Facebook users. We aggregated this 

data to LADs and separated journeys into those moving between two different tiles in 

the same LADs (within LAD) and between two different LADs (between LAD). In 

addition, we aggregated the number of Facebook users who were present in the 

same modal tile between two adjacent time periods. Maintaining the two LAD 

journey types, we then calculated the total distance travelled by Facebook users by 

multiplying each tile to tile vector volume by the length between the two tiles. Each 

distance was then summed to give a total distance travelled between or within LADs. 

We then calculated the relative change in flows/distance travelled relative to the 

baseline number of Facebook users. 
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Co-location 

Facebook co-location is the probability that two Facebook users from different 

Pitney-Bowes administrative regions are present within the same level 16 Bing tile 

for a random minute during one week. To calculate this metric, Facebook assigns 

users to the administrative unit where they are consistently observed overnight over 

the course of one week (i.e. home location). Users that do not have a consistent 

overnight location are removed from the dataset. Facebook then calculates the 

probability that a user from two different home locations are present within the same 

level 16 Bing tile within a 5-minute time bin during one-week. Facebook does not 

indicate where or precisely when co-location events occur. For example, the co-

location rate for Southampton and London sums over co-location events that happen 

in Southampton, in London and in all other administrative units to give a single value 

of co-location between Southampton and London. 

 

In order to calculate the co-location probability of Facebook users within different UK 

regions, we matched administrative regions to their NUTS 1 region (Figure 1c). For 

each NUTS 1 region, we calculated the weekly mean of the log-value of all co-

location probabilities where at least one of the Facebook users home locations was 

within that region. For example, the weekly mean log co-location value of Northern 

Ireland is the average log co-location value of all weekly co-location probabilities 

where at least one user's home location was within an administrative boundary in 

Northern Ireland. For each NUTS level 1 region, this provides the probability of a 

Facebook user who’s home location is within that region spends one-minute within a 

level 16 Bing tile with a Facebook user from a different administrative boundary.  

Changes in international travel 

International travel pattern data consists of the daily number of Facebook users 

moving between different countries. To produce this, Facebook calculates the 

number of unique Facebook users with location services enabled travelling from the 

origin to the destination country each day (date defined by UTC time zone). For data 

to be provided, a minimum of 1000 unique Facebook users is required for each 

country pair.  
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To determine weekly changes to international travel, we extracted all journeys 

originating from and ending in the UK. We then determined the ten countries with the 

highest travel volumes for travel to and from the UK respectively. Values of change 

in travel volumes were calculated relative to the highest mean weekly movement 

observed across the study period. This was calculated separately for travel in and 

out of the UK (Highest mean weekly movement out: UK - Ireland, week commencing 

10th August 2020; Highest mean weekly movement in: Spain - UK, week 

commencing 10th March 2020).
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Results 
Analyses show substantial changes in mobility patterns over the course of the March 

2020 - March 2021 period, with strong regional and international differences. Here 

we present summary findings from the analysis of Facebook user data, with 

additional outputs and analyses presented in supplemental materials. 
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Figure 1. Percentage changes in (A) distances travelled and (B) population movement (flows) of Facebook users within (C) UK 
NUTS level 1 regions. Journeys included are those made that begin during 00:00 - 08:00 and end during 08:00 - 16:00 on 
weekdays between March 10th 2020 and March 9th 2021. See supplementary material for other time periods and weekends. The 
change is relative to a pre-COVID baseline (see Methods for details). Regions follow NUTS level 1 ultra generalised clipped 
boundaries in the UK (Office for National Statistics, 2019). 
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Figure 1 shows percentage changes in flows and distances travelled by Facebook 

users over the study period, broken down by NUTS level 1 regions for journeys 

ending between the 08:00 - 16:00 period. It highlights some of the substantial 

impacts that the pandemic and mitigation restrictions had on mobility across the 

country, with substantial changes seen relative to the baseline period (the 90 days 

up to and including 9th March 2020). Figure 1 suggests that the first national 

lockdown had the largest impact on population mobility, with both the percentage 

change in flows and distances travelled decreasing by about 75%. While the second 

and third lockdown had minimal impact on the percentage changes in flows and 

distances travelled, it slightly reduced the fluctuation in mobility patterns. The second 

lockdown appears to have had the smallest impact on population mobility as mobility 

during the period remained similar to the levels just prior to it. Little evidence is seen 

in Figure 1 of changes to mobility patterns due to the regional restrictions put in 

place in the East Midlands and North West in England over the 2-3 months prior to 

the second lockdown, with both of those regions showing very similar patterns to 

those areas not put under such restrictions. 

 

The patterns of percentage change in distances travelled and percentage change in 

flows for weekdays (Monday to Friday) during the daytime (08:00 - 16:00) are almost 

identical. Over the period of the first lockdown, as indicated by the shaded region, a 

substantial drop in percentage changes for both flows and travel distance is seen. As 

restrictions for the first lockdown ease, a gradual increase is observed for both 

percentage changes in flows and distances travelled, with fluctuations in between. 

Unlike the first lockdown, there was not a significant decrease in percentage change 

in flows and distances travelled across the second lockdown. It is apparent that there 

was little change in distances travelled and population movement. In late December 

2020, there was a sudden drop in percentage change in flows and distances 

travelled prior to the third lockdown; this may reflect the differing travel patterns over 

the Christmas holiday period, with a percentage drop of 87% on 25th December and 

above 75% for most of the 24th - 29th December period. Over the third lockdown, 

population movement was stable, similar to the second lockdown. 

 

Figure 1 also shows that administrative units within the London region typically show 

the largest deviation from general patterns. While most regions have higher or 
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similar flows and distance travelled to the baseline period (i.e. closer to a percentage 

change of zero), the London region has a much lower percentage change for most of 

the study period. As well as this, across the study period, Wales displays patterns in 

movement and travel similar to the other regions. However, over the second 

lockdown, Wales displays the greatest percentage change for both flows and 

distances travelled. Finally, Scotland does not follow the occasional dips in 

percentage change in flows and distances travelled with the other regions. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 4, 2021. ; https://doi.org/10.1101/2021.08.03.21261545doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.03.21261545
http://creativecommons.org/licenses/by-nc/4.0/


15 
 

Figure 2. Percentage changes in (A, C) daily movement (flows) of Facebook users 
and (B, D) total distance travelled on weekdays between March 10th 2020 and 
March 9th 2021. A and B show the changes corresponding to different journey types 
(between and within UK local authority districts). C and D show the changes 
corresponding to all journeys across adjacent 8-hour time periods. Time period 
shown represents the second time period, where the journey ends. The change is 
relative to a pre-COVID baseline (see Methods for details). See supplementary 
material for changes to weekend flows and distances. 

 

Panels A and B in Figure 2 show that both percentage changes in flows and distance 

travelled within local authority districts (LAD) and between LAD over weekdays are 

very similar throughout the study period. Very much like Figure 1, the largest 

decrease in percentage changes is observed over the first lockdown. Small changes 
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over the second lockdown are seen and there were large decreases prior to the third 

lockdown. Over the second and third lockdown period, both percentage changes in 

flows and distances travelled were generally constant. Journeys that were between 

LAD showed slightly lower percentage changes compared to journeys within LAD.  

 

Panels C and D of Figure 2 show how changes in flows and distances vary by period 

of the day. Changes in both human mobility and distances travelled for the GMT time 

periods 08:00 - 16:00 and 16:00 - 00:00 showed similar patterns with 08:00 - 16:00 

having a slightly lower percentage change in both flows and distances travelled. The 

00:00 - 08:00 period shows some strong variations, which converge with the patterns 

of the other two time periods for the rest of the study period after the second 

lockdown period. The figure is impacted strongly by the shift to British Summer Time 

(BST) between 29th March 2020 and 24th October 2020, where the 8-hour time 

periods changed to represent 01:00 - 09:00, 09:00 - 17:00 and 17:00 - 01:00. This 

meant that the 00:00 - 08:00 GMT period switched to represent 01:00 - 09:00 BST, 

and therefore captured a greater amount of commuting/school-related travel, 

diverging from the other two periods during BST, when compared against GMT 

baseline periods. Nevertheless, the fluctuations for weekends and national holidays 

remain apparent throughout, with stronger impacts during the nighttime period 

apparent.
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Figure 3. Weekly average log co-location probabilities for Facebook users whose 
home location is within different UK NUTS level 1 regions. Data included between 
March 10th 2020 and March 9th 2021.  

 

Figure 3 examines trends in co-location probabilities by NUTS level 1 regions over 

the study period. The general pattern here shows similarities to Figures 1 and 2, but 

also with notable differences. Unsurprisingly, co-location probabilities were 

substantially lower throughout most of the study period than those in early March 

prior to restrictions. Each lockdown was associated with drops in probabilities, 

though generally the drops for lockdowns two and three were not as substantial or 

low. However, the impact of the lockdown restrictions, especially for periods two and 

three, are more evident in co-location than mobility measures. Except for early 

March 2020, the summer and Christmas holiday periods consistently had the highest 

probabilities. 

 

While for most of the observed dates, all the NUTS level 1 regions of the UK exhibit 

similar co-location trends, Northern Ireland showed the lowest probabilities 

compared to the other regions, whereas the region consistently highest was London. 
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Similar to the observations from Figures 1 and 2 above, during the lockdown periods 

changes tended to be minimal, but with gradual increases seen. 

 

Figures 1 - 3 highlight changes that occurred over time and regionally in relation to 

the mobility and co-locations of Facebook users. In particular, the London region was 

highlighted as an outlier and Figures 1 and 2 emphasise the switch that occurred 

across the country in terms of increasing local movements over long distance travel. 

Figure 4 shows patterns of Facebook user densities at fine spatial scales for London 

and its surrounding area for four time periods. 

 

Figure 4. Relative changes in the average population density of daytime Facebook 
users within London under different mobility restrictions. A) Lockdown one 
(05/04/2020 - 12/05/2020).  B) Summer 2020 (05/07/2020 - 31/08/2020). C) 
Lockdown two (05/11/2020 - 01/12/2020). D) Lockdown three (05/01/2021 - 
08/03/2021). Time period is between 08:00 - 16:00 UTC. Data does not coincide with 
the beginning of lockdown one as data collection did not commence until 
05/04/2020. The change is relative to a pre-COVID baseline (see Methods for 
details). 
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Regional population density for all regions excluding London generally increased or 

remained similar to the pre-COVID baseline during the first lockdown 

(Supplementary figure 1). However, increases in population density were not 

observed during lockdown two and three (Supplementary figure 1) where regional 

population density was generally lower than the pre-COVID baseline. London 

however showed large decreases in population density during lockdown one, and 

remained consistently lower than other regions (Supplementary figure 1). Within 

London, there were notable differences in the tile densities of Facebook users. 

During the first lockdown, central London showed large decreases, of the order of 

80-90% in the population of Facebook users relative to the pre-COVID baseline 

period. In the more residential areas outside central London, increases in the relative 

number of Facebook users were observed (Figure 4A). During summer 2020 and 

throughout lockdown two and three the relative population density of Facebook users 

in central London remained lower than the pre-COVID baseline, however the 

increase in areas outside of central London was not as large. 
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Figure 5. Weekly relative movement of Facebook users travelling (A) out of, and (B) 
into the UK for the 10 countries with the largest travel volumes across the study 
period. Gaps in the data represent periods where less than 1000 Facebook users 
travelled between the UK and another country. Movement is relative to the highest 
weekly movement in and out of the UK observed during the study period. 

 
 
The pandemic and mitigation measures extended beyond local restrictions to 

international travel as well, with a set of recommendations and restrictions 

implemented by the UK and destination countries. Figure 5 shows the major effects 

that these domestic and international travel guidelines and restrictions had on 

movements of Facebook users into and out of the UK. Changing restrictions across 

the study period lead to major fluctuations in travel patterns, with some countries 

showing substantial increases in traveller numbers followed by rapid decreases as 

restrictions were imposed.  
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Across the first lockdown in March 2020, travel to and from all observed countries 

was greatly reduced. Following a relaxation of restrictions across the UK summer 

period (June - August 2020), travel to common holiday destinations such as Spain, 

France and Greece increased. In late July and August 2020, an increase in travel 

back into the UK from Spain, France and Greece can be observed from the top 

panel of Figure 5, potentially indicating holiday-makers returning in a hurry before 

restrictions are implemented. However, relative travel to and from many countries 

such as Germany and the Netherlands remained low across the study period. Over 

the study period, travel to and from Ireland was consistently higher than the other 

countries.  
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Discussion 

The COVID-19 pandemic has altered population mobility patterns globally since 

March 2020, and has likely resulted in some permanent shifts in commuting and 

international travel. Understanding these will be important for designing future 

pandemic preparedness and mitigation strategies, and the past year has highlighted 

the wide range of digital data sources that exist to aid this (Apple, 2020, Facebook 

GeoInsights, 2020, Google, 2020). Here we have explored what one of those data 

sources can tell us about changes that occurred across the UK in response to the 

pandemic and the policies implemented to mitigate its impacts. 

 
The analyses presented here reveal heterogeneities across time and space in terms 

of changes to the travel patterns of Facebook users over the March 2020 - 2021 

period, as well as some of the heterogeneities that exist within the UK in terms of 

population geography and behaviours. Compared to the 90 day period prior to 10th 

March 2020, it is clear that travel over relatively long distances between regions 

dropped substantially, particularly in the week prior to the implementation of the first 

lockdown, and during the first lockdown where travel flows were as much as 80% 

lower. This was not matched by movements over shorter distances, which, while 

reduced from normal levels, became more dominant as people remained within their 

local areas. Flows, distances travelled and co-location probabilities remained 

remarkably stable within each of the three ‘lockdown’ periods defined here, though 

clear increases in mobility patterns are seen in March 2021. The impact that each 

lockdown had on differences relative to the baseline period however were very 

different, with the second period resulting in only around 20-30% reduction in travel 

flows and distances generally compared to those of 60-70% in the first period. Figure 

3 is revealing though, with each lockdown period exhibiting a more marked drop in 

co-location, and thus showing the desired impact of such interventions in reducing 

contacts. Co-location probabilities showed a peak for many regions over the 

Christmas period, and was likely a contributing factor to the growth of the major 

wave of infections seen from January 2021, 
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Local and regional differences were evident throughout the analyses. Though 

partially a function of where borders between regions were drawn, London remained 

an outlier throughout, with the largest reductions in travel flows and distances, but 

smallest reductions in co-location probabilities. Figure 4 highlights the extremes 

experienced in the region, with central London showing consistently lower densities 

throughout as workers, shoppers and tourists stayed away. In contrast, outer London 

showed substantially higher daytime densities, as working from home and local 

travel took over. While little evidence was seen for differing mobility patterns in 

regions of England under local restrictions, the other nations of the UK where types 

and timings of restrictions often differed to a degree, exhibited some strong 

variations compared to English regions. Scotland and in particular Northern Ireland 

maintained lower co-location probabilities throughout much of the study period, 

suggesting that the restrictions put in place in these nations potentially were more 

successful in reducing contact rates. Internationally, figure 5 paints a picture of 

unprecedented fluctuations over short time periods, as the UK government and 

those overseas wrestled with balancing the reopening of international tourism and 

business with the clear risks of infection importation (du Plessis et al., 2020; Lemey 

et al., 2021; Ruktanonchai et al., 2020). 

 
A major source of uncertainty in translating the findings of the analyses presented 

here to population-wide inferences is the limited data on potential biases. While 

Facebook usage, smartphone ownership and use of location-enabled services has 

grown over the past few years, privacy restrictions mean that biases remain 

challenging to quantify, with the data potentially skewed towards younger and 

middle-aged groups, and not capturing the movements of children or the elderly. 

While there are likely biases in the data analysed that prevent conclusive inferences 

on population level insights, recent analyses have highlighted strong correlations 

with demographic variables from census-based data (Gibbs et al., 2021), giving 

confidence in its representativeness within the UK. Moreover, the patterns observed 

match those seen in alternative data sources (Jeffrey et al., 2020), and an ongoing 

area of future work is focussed on measuring these biases and extending dataset 

inter-comparisons. This will include the integration and comparison of data from call 

detail records with smartphone location history (e.g. Ruktanonchai et al, 2020), as 

well as examining associations with mobility data derived from surveys, census and 
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other more traditional sources (e.g. Ruktanonchai et al, 2018; Wesolowski et al., 

2013). 

 

Another source of uncertainty arises from the lack of matching 2019 comparison 

data. UK population mobility patterns change significantly throughout a typical year 

(e.g. ONS 2018), and therefore, comparisons to a 90-day baseline period prior to 

March 10th 2020 do not provide a full picture of the extent of deviations from ‘normal’ 

patterns at each time of year. Moreover, changing Facebook usage throughout the 

study period may have impacted findings. The lockdown periods when people were 

often confined to their homes lead to a greater use of the internet, and social media 

in particular (Fritz & Kauermann, 2020, Mellon & Prosser, 2017). This may have led 

to different segments of the population being recorded in the data more often during 

different periods, and more movements captured in the lockdown periods. The 

differential privacy algorithms implemented by Facebook (Facebook GeoInsights, 

2020) meant that varying levels of detail could be captured, which was a function of 

population and Facebook user densities. For example, Figure 4 showing detailed 

changes for London was not possible to produce for much of the UK where 

population densities were low, and subjective decisions were required on the scales 

of analyses undertaken and presented. Finally, the regional insights are subject to 

the modifiable areal unit problem (Openshaw 1983), whereby results are likely to be 

sensitive to the boundaries used. 

 

The COVID-19 pandemic continues to be an unprecedented event in terms of 

numbers of people impacted around the World and changes to lifestyles. It is also 

unprecedented in terms of our abilities to observe and quantify many of those 

impacts through new ‘big’ digital datasets. Here we have shown what can be 

obtained through one of these data sources. While the data from Facebook are 

imperfect, valuable insights into how UK populations reacted to different 

interventions have been uncovered. These emphasise the potential of such sources 

to guide strategies in near-real time and support future pandemic planning.  
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