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ABSTRACT 17 

Wastewater surveillance has been widely implemented for monitoring of SARS-CoV-2 18 

during the global COVID-19 pandemic, and near-to-source monitoring is of particular 19 

interest for outbreak management in discrete populations. However, variation in population 20 

size poses a challenge to the triggering of public health interventions using wastewater 21 

SARS-CoV-2 concentrations. This is especially important for near-to-source sites that are 22 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.03.21261377doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.08.03.21261377
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

subject to significant daily variability in upstream populations. Focusing on a university 23 

campus in England, this study investigates methods to account for variation in upstream 24 

populations at a site with highly transient footfall and provides a better understanding of the 25 

impact of variable populations on the SARS-CoV-2 trends provided by wastewater-based 26 

epidemiology. The potential for complementary data to help direct response activities within 27 

the near-to-source population is also explored, and potential concerns arising due to the 28 

presence of heavily diluted samples during wet weather are addressed. Using wastewater 29 

biomarkers, it is demonstrated that population normalisation can reveal significant 30 

differences between days where SARS-CoV-2 concentrations are very similar. Confidence in 31 

the trends identified is strongest when samples are collected during dry weather periods; 32 

however, wet weather samples can still provide valuable information. It is also shown that 33 

building-level occupancy estimates based on complementary data aid identification of 34 

potential sources of SARS-CoV-2 and can enable targeted actions to be taken to identify and 35 

manage potential sources of pathogen transmission in localised communities. 36 

Keywords: COVID-19, near-to-source, normalisation, SARS-CoV-2, wastewater-based 37 

epidemiology 38 

1. INTRODUCTION 39 

Wastewater-based epidemiology (WBE) is a promising tool for complementary surveillance 40 

of infectious diseases and provision of early warning of disease outbreaks (Sims and 41 

Kasprzyk-Hordern 2020), and has received considerable interest during the global COVID-19 42 

pandemic (e.g. Bivins et al. 2020,  Gonzalez et al. 2020, Polo et al. 2020). Since a significant 43 

proportion of individuals infected with the severe acute respiratory syndrome coronavirus 2 44 

(SARS-CoV-2) shed the virus’ ribonucleic acid (RNA) in their faeces (Medema et al. 2020), 45 

SARS-CoV-2 RNA concentrations in wastewater can be used to provide an indicator of the 46 

disease prevalence without relying on clinical testing data. Wastewater networks can, thus, be 47 
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viewed as a reflection of the microbiome of the population using the upstream systems 48 

(Newton et al. 2015). This is beneficial as wastewater surveillance is independent from 49 

people participating in testing (a testing bias towards symptomatic individuals and testing 50 

reluctance may result in underrepresentation of the infected in clinical test data). 51 

To date, SARS-CoV-2 related wastewater surveillance projects have been implemented in at 52 

least 54 countries, covering more than 2,000 different sites (University of California 2021). 53 

The European Union has recognised WBE as a tool to address emerging and future public 54 

health issues (European Commission 2020), and Member States have been mandated to 55 

engage with the development of the European Sewage Sentinel System for SARS-CoV-2, 56 

which will provide systematic surveillance of SARS-CoV-2 and its variants in EU 57 

wastewaters (Gawlik et al. 2021). In England, WBE for SARS-CoV-2 surveillance, led by the 58 

Joint Biosecurity Centre and Defra Group under the Environmental Monitoring for Health 59 

Protection (EMHP) programme, covers in excess of 500 sites as of June 2021. 60 

Wastewater samples are commonly collected at sewage treatment works (STWs), thereby 61 

providing an indicator of SARS-CoV-2 prevalence across the entire STW catchment – in the 62 

Netherlands, for example, samples are taken daily at every STW in the country and analysed 63 

for presence of SARS-CoV-2 (Dutch Water Sector, 2020). However, in-network or near-to-64 

source sampling can provide greater resolution and, potentially, additional insights: If the 65 

population upstream of the sampling point is smaller, then better targeted actions can be 66 

taken to address and mitigate any outbreak detected by monitoring of the wastewater. 67 

Application of wastewater surveillance at a building scale, for example, can aid management 68 

of outbreaks in discrete populations, and may be beneficial in high risk settings such as 69 

schools, prisons and critical points in the food supply chain (Wade et al. 2020). 70 
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Near-to-source wastewater monitoring, employed at a hospital building, was able to detect a 71 

single asymptomatic individual among as many as 400 residents (Karthikeyan et al. 2021). 72 

The same study also found that trends in the number of cases could be successfully captured, 73 

with a strong correlation between the wastewater SARS-CoV-2 concentration (gene copies 74 

(gc)/l) and the number of active COVID-19 patients identified. 75 

However, challenges remain in the interpretation and use of wastewater SARS-CoV-2 data as 76 

an indicator of prevalence – one of which is the impact of variation in the upstream 77 

population size. The importance of accounting for fluctuating population sizes in WBE has 78 

previously been highlighted and investigated in the context of applications such as illicit drug 79 

monitoring (Been et al. 2014). However, in wastewater SARS-CoV-2 monitoring, the value 80 

considered as an indicator of prevalence is still typically reported as a concentration (gc/l) 81 

(i.e. not normalised with respect to population like prevalence values) (e.g. Karthikeyan et al. 82 

2021, Saththasivam et al. 2021, Prado et al. 2021), or even just a binary presence or absence 83 

of SARS-CoV-2 RNA (e.g. Gibas et al. 2021). Using concentration as an indicator of 84 

prevalence may be reasonable for monitoring efforts at a city-scale (i.e. those at a STW) 85 

when the population size and wastewater dilution are relatively static, as a constant average 86 

SARS-CoV-2 load per capita would then correspond to a constant SARS-CoV-2 87 

concentration (assuming constant wastewater production per capita). It is not valid, however, 88 

when population is highly variable and/or there are significant dilution events, since a 89 

constant average SARS-CoV-2 load per capita would then yield a variable SARS-CoV-2 90 

concentration. This is illustrated in Figure 1, which shows the theoretical relationship 91 

between SARS-CoV-2 concentration, SARS-CoV-2 load per capita, population size and 92 

baseflow (i.e. flow not attributed directly to the population), based on a mass balance 93 

approach and assuming a per capita wastewater production of 150 l/d (further details in the 94 

Supplementary Information). 95 
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 96 

Figure 1. Relationship between SARS-CoV-2 concentration and daily load per capita for 97 

different populations and base flows 98 

The impacts of variable population are likely to be exacerbated when interpreting the results 99 

for near-to-source sites, since population movement will not be averaged out to the same 100 

extent that it is at the STW level. This is especially important for near-to-source sites that are 101 

subject to significant daily variability in upstream population (for example due to a lack of 102 

activity at weekends or outside of academic term time at educational sites), and approaches 103 

are required to ensure that the effects of variable populations are not overlooked. 104 

The first aim of this study, therefore, is to investigate methods by which the effects of 105 

variation in the upstream population at a highly dynamic near-to-source site can be accounted 106 

for, and to build a better understanding of the impact of highly variable populations at a near-107 

to-source site on the insights into SARS-CoV-2 prevalence from WBE. Ammoniacal nitrogen 108 

(NH3-N) and orthophosphate (PO4
3-) in the wastewater are considered as potential indicators 109 

of population dynamics and for population normalisation. The work presented here is 110 

specifically focused on a university campus case study, where footfall varies considerably 111 

throughout the year (especially during periods of lockdown), and where knowledge of 112 

COVID-19 prevalence provided by WBE has significant potential to target actions to identify 113 

positive cases and reduce transmission between the university and the wider community.  114 
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Whilst near-to-source surveillance captures wastewater from a smaller and better-defined 115 

population than monitoring at a STW level, the pool of potential candidates for the source of 116 

any SARS-CoV-2 detected may still be large. The university monitored in this study, for 117 

example, currently has approximately 20,900 students based at the campus and over 4,300 118 

staff members. As such, the insights provided by WBE would be of greater assistance to 119 

campus managers if the potential source(s) could be narrowed down further, e.g. to the most 120 

probable building or buildings on site, so that better targeted public health actions may be 121 

taken. The second aim of this study, therefore, is to investigate the potential of 122 

complementary data to help direct response activities to the most appropriate locations within 123 

the site from which wastewater is collected. This is achieved with the use of toilet flush data, 124 

collated at washroom and building levels, which provide information on the major sources of 125 

wastewater at the time of SARS-CoV-2 detection and the relative activity levels at different 126 

locations on the campus. 127 

Lastly, this study identifies samples collected during wet and dry weather periods to enable 128 

exploration of the impact of wet weather periods on wastewater SARS-CoV-2 concentrations 129 

and population normalisation. This aims to establish the value of wastewater monitoring in 130 

wet versus dry periods, and address potential concerns arising due to the presence of heavily 131 

diluted samples during wet weather. 132 

It is intended that the results of this study will give improved confidence in the SARS-CoV-2 133 

trends observed in wastewater from near-to-source sampling sites, and will enable better 134 

targeted actions to identify and manage potential sources of pathogenic transmission in 135 

localised communities. 136 
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2. METHODS 137 

2.1. Case study site selection 138 

The University of Exeter’s Streatham Campus was monitored as a near-to-source pilot as part 139 

of the UK National Surveillance Programme. Wastewater samples were collected in three 140 

locations at the university: Two were downstream of student residential accommodation, and 141 

one downstream of the main campus (consisting of multiple academic, administrative and 142 

social buildings). This study focuses on the main campus monitoring site. The results are 143 

expected to be of particular benefit here, since the number of people on campus is much more 144 

variable than in accommodation blocks (due to working patterns and lecture scheduling, for 145 

example), and population normalisation will thus have greater impact on the understanding of 146 

prevalence. The maximum size of the potential upstream population is also considerably 147 

larger, given that a large proportion of the university’s 25,000 students and staff will have 148 

access to the main campus buildings (although not at the same time), whereas only a small 149 

proportion will be associated with individual accommodation sites. As such, any insights 150 

provided by this study that enable the potential source of SARS-CoV-2 detected in the 151 

wastewater to be narrowed down further will be much more valuable for the larger, main 152 

campus site. 153 

Furthermore, whilst the university does hold data on the number of students and staff that 154 

have tested positive for SARS-CoV-2, there are no data on the total number of students and 155 

staff using the campus each day (or whether those that have tested positive have actually been 156 

on the main campus site on a given day) and, thus, prevalence cannot be calculated from 157 

existing sources of information. 158 

2.2. SARS-CoV-2 population normalisation 159 

The daily wastewater SARS-CoV-2 load per capita (Ld, gc/capita/day) (i.e. a value that is 160 

comparable with prevalence) can be calculated using Eq. 1, where Cd is the SARS-CoV-2 161 
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concentration (gc/l), Qd is the daily flow rate (l/day), and Nd is the population size (in this 162 

case, the number of individuals using the university campus).  163 

𝐿𝑑 =
𝐶𝑑𝑄𝑑

𝑁𝑑
 Eq. 1 

However, the population size on any given day is unknown and must, therefore, be estimated 164 

if this equation is to be used.  165 

There are multiple potential approaches to population estimation. In WBE, biomarkers 166 

(substances excreted by humans) that have homogeneous excretion throughout a community 167 

at low variance can be used as indicators of population size (Choi et al. 2018). These include, 168 

for example, creatinine and coprostanol (Daughton 2012), and the cross-assembly phage 169 

(crAssphage) (Wu et al. 2021). Water quality parameters, such as biochemical oxygen 170 

demand (BOD), chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN) 171 

and ammonia or ammonium, may also be considered as population biomarkers (Xagoraraki 172 

and O’Brien 2019, Nuijs et al. 2011): Been et al. (2014), for example, used measured 173 

ammonium concentrations in conjunction with the expected daily per capita ammonium 174 

discharge to estimate population size for the purposes of illicit drug monitoring, and Rico et 175 

al. (2017) generated population estimates based on TN, TP, BOD and COD and typical daily 176 

per capita discharges for each parameter. 177 

Provided that daily flow rate (Qd, l/day) and biomarker concentration (Xd, mg/l) data is 178 

available for a historical period with known population (Nd), the daily discharge per capita of 179 

a biomarker (x, mg/capita/day) can be estimated using Eq. 2, and the population on any given 180 

day using Eq. 3.  181 

𝑥 = (
𝑋𝑑𝑄𝑑

𝑁𝑑
) Eq. 2 
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𝑁𝑑 =
𝑋𝑑𝑄𝑑

𝑥
 

Eq. 3 

Once the daily discharge per capita of a specific biomarker is known, concentrations of a 182 

substance of interest (in this case, SARS-CoV-2 RNA) can then be population normalised 183 

using Eq. 4, without calculating the population size and without any ongoing requirement for 184 

flow rate data (based on substitution of Eq. 3 into Eq. 1): 185 

𝐿𝑑 =
𝐶𝑑𝑥

𝑋𝑑
 Eq. 4 

Where Ld is the daily per capita load of SARS-CoV-2 at day d (gc/capita/day) and Cd is the 186 

SARS-CoV-2 concentration in the wastewater at day d (gc/l). 187 

Population estimates may also be generated using non-wastewater data: Thomas et al. (2017) 188 

and Deville et al. (2014), for example, produced dynamic population estimates using mobile 189 

phone communication data. With respect to the case study site in particular, there is ongoing 190 

investigation into the potential use of wi-fi tracking for population monitoring under the 191 

‘Riba to Reality’ project (UKRI 2020); whilst there are no results available for use from this 192 

yet, it is a promising development. Additional data available for the case study site that may 193 

be indicative of population includes metered water and electricity supply and washroom-level 194 

flush counts. 195 

Each of these methodologies is subject to limitations, however, and there are some barriers to 196 

implementation in a near-to-source study, where it should be noted that not everyone on site 197 

will contribute to the wastewater collected since some visits may only be short. Whilst 198 

mobile phone-based population estimates have the advantage that they can account for people 199 

who spend only a short period of time in the monitored location, irrespective of whether they 200 

produce any wastewater, this may be a disadvantage in near-to-source WBE as the population 201 

estimate is likely to exceed the number of people that contribute to the wastewater being 202 
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sampled, and thus result in an underestimate of SARS-CoV-2 gene copies per capita. To 203 

avoid this problem, a population normalisation methodology based on wastewater 204 

characteristics is considered more appropriate for a near-to-source site with a highly dynamic 205 

population. 206 

For other non-wastewater indicators such as metered water, electricity supply and flush 207 

counts, data is only available for a subset of buildings on campus. As there is insufficient 208 

evidence that the occupancy dynamics of these buildings are representative of those of the 209 

whole campus, it is inappropriate to use these for population normalisation (although 210 

building-level population estimates may aid SARS-CoV-2 source identification, as discussed 211 

in Section 2.3). 212 

There are also potential disadvantages of using biomarkers in wastewater for population 213 

normalisation. For the case study site, ammoniacal nitrogen and orthophosphate 214 

concentrations are available, but it is recognised that nutrient concentrations will be affected 215 

by industry (Xagoraraki and O’Brien, 2019) and, where there is significant industrial input 216 

into the sewer network, this may lead to errors in population estimates (Nuijs et al. 2011). 217 

Other studies, however, have concluded that use of such nutrients is appropriate (e.g. Choi et 218 

al. 2018, Been et al. 2014), and Zheng et al. (2017) found population estimates based on 219 

ammonia-nitrogen to show good agreement with estimates provided by wastewater treatment 220 

plant operators with local knowledge. Furthermore, given that the focus of this study is a 221 

near-to-source site, and it is known with a high degree of certainty that there are no industrial 222 

inputs to the wastewater, these concerns are not considered a barrier in this study.  223 

A remaining issue with this approach is the need to calculate the daily biomarker load 224 

excreted per capita. Whilst previous studies have either estimated a site-specific value using 225 

historical data (e.g. Rico et al. 2017) or used published values from the literature (e.g. Nuijs 226 
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et al. 2011), neither of these approaches is appropriate for this study. To calculate a site-227 

specific value, data is required from a period with known population; however, no 228 

wastewater data was collected at the case study site prior to the pandemic (when the campus 229 

could be assumed to be at full capacity, i.e. a known population size), and occupancy figures 230 

during the period of wastewater monitoring are unknown. Use of daily values from literature 231 

is also inappropriate since these are typically calculated at a STW level and thus capture 232 

discharge from every occupant over a full 24 hours, whereas campus users are only present 233 

for part of the day and their biomarker discharge will, therefore, be proportionately smaller. 234 

Based on Eq. 4, and given that the daily biomarker discharge per capita (x) is constant at a 235 

given site but cannot be calculated, this study calculates values that are proportional to the 236 

SARS-CoV-2 load per capita (gene copies per mg of biomarker) instead of the actual load per 237 

capita (gene copies per capita) (Eq. 5). These values are not comparable between sites; 238 

however, they are sufficient for understanding the effects of population normalisation on 239 

SARS-CoV-2 trends at a single site. Ammoniacal nitrogen and orthophosphate are both 240 

considered as potential biomarkers. 241 

𝐿𝑡 ∝
𝐶𝑑
𝑋𝑑

 Eq. 5 

2.3. Source identification 242 

As discussed in Section 2.2, supplementary data, including metered water supply, electricity 243 

supply and flush counts, are available for a subset of buildings on campus, and may be used 244 

to analyse occupancy dynamics within these buildings. Preliminary investigation shows very 245 

poor agreement between building-level population estimates based on metered water and 246 

electricity supply at the case study site (see Supplementary Information for example) – 247 

potentially due to seasonal and other non-population-related influences – and, therefore, only 248 

flush counts are considered further. 249 
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Given that flush count data relates directly to the production of wastewater, this information 250 

can be used to assess the relative contribution of different buildings to the wastewater 251 

sampled, and thus provide additional insights into the potential source(s) of any SARS-CoV-252 

2 RNA detected in the wastewater. 253 

It has previously been shown that the number of flushes per occupant varies by building 254 

(Melville-Shreeve et al. 2021); therefore, flush counts cannot be compared directly between 255 

buildings and instead are used to estimate the occupancy of each building on any given day. 256 

The maximum capacity of each building in which flush counts were monitored is shown in 257 

Figure 2, and it is assumed that on weekdays during the autumn term of 2019 (pre-pandemic) 258 

all buildings were operating at full capacity. The mean daily flush count per capita is then 259 

estimated for each building using Eq. 6, and building occupancies during the wastewater 260 

monitoring period are estimated using Eq. 7. 261 

𝑓𝑖 =
∑ 𝐹𝑖,𝑑𝑑∈𝑻

|𝑻|
 Eq. 6 

𝑃𝑖,𝑑 =
𝐹𝑖,𝑑
𝑓𝑖

 Eq. 7 

Where fi is the mean daily per capita flush count for building i, Fi,d is the total flush count for 262 

building i on day d, T denotes the set of term time days where building occupancy is assumed 263 

to equal building capacity, and Pi,d is the estimated population of building i on day d. 264 

This methodology is not used to estimate the total population of the campus on a daily basis 265 

for the purposes of population normalisation as only as subset of the buildings have flush 266 

counts monitored. As significant variability is found between buildings for the daily per 267 

capita flush counts and the population estimates (see Section 3.3), it is not considered 268 

appropriate to assume that the population dynamics for the monitored buildings are indicative 269 

of those for the whole campus. Based on flush count data, it is not possible to either eliminate 270 
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or target any of the buildings that are not monitored as a potential source of any SARS-CoV-271 

2 detected in the wastewater; however, the population estimates provided can be used to 272 

prioritise/deprioritise each of the buildings with flush count data available in the search for 273 

the source of the SARS-CoV-2. A set of flush data for every toilet on campus would yield 274 

additional value as a future extension to this study. 275 

2.4. Wet and dry weather days 276 

Days are classified as wet weather or dry weather (or neither) based on Environment Agency 277 

rainfall data for the nearest rain gauge (station ID 45184, located approximately 4km from 278 

the case study site) (Environment Agency, 2021). A day is considered a dry weather day if no 279 

rainfall has been recorded on that day or in the previous six hours. A day is considered a wet 280 

weather day if the total rainfall for that day exceeds 2mm (with the threshold set based on the 281 

depth of rainfall expected to cause runoff from impervious surfaces (Ladson 2019)). Days 282 

that fall into neither category (i.e. have rainfall but less than 2mm, or have had rainfall in the 283 

preceding six hours) are not classified as either wet or dry. 284 

2.5. Data collection and handling 285 

This study incorporates both wastewater data and supplementary data relating to occupancy 286 

of the campus, and a schematic of the case study site illustrating the data collection locations 287 

is given in Figure 2. Wastewater samples were collected downstream of the academic, 288 

administrative and social buildings (wastewater from student residences on campus are not 289 

contributory), and they were analysed to provide concentrations of SARS-CoV-2, 290 

ammoniacal nitrogen and orthophosphate. Wastewater flow rate was measured at the same 291 

location. Flush counts were collected from five buildings, which have a combined occupancy 292 

of 4,346 at full capacity. 293 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.03.21261377doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.03.21261377
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

Further detail on the data collection methodologies and data handling for each data type is 294 

provided in the following sections.  295 

 296 

Figure 2. Case study site schematic, illustrating sampling locations and wastewater flow 297 

from campus buildings. Surface drainage is omitted for clarity. 298 

2.5.1. Wastewater characteristics 299 

Methodologies for the SARS-CoV-2, ammoniacal nitrogen and orthophosphate data 300 

collection and processing are summarised below. Further details are available in Wade et al. 301 

(2020) and Hoffman et al. (2021). 302 

Composite wastewater samples were collected over a 24-hour period using HACH AS950 303 

autosamplers (100ml every 15 minutes); these were then retrieved and kept at 4°C to prevent 304 

degradation of RNA during transportation to a laboratory for analysis. Quantitative 305 

Polymerase Chain Reaction with a reverse transcriptase step (RT-qPCR) was used to quantify 306 

the N1 gene from the SARS-CoV-2 virus in the wastewater samples. This provides a 307 

measurement of the number of RNA copies in the sample, which is reported as gene copies 308 

per litre of wastewater sample collected. The practical limit of detection (LOD) is 133 gc/l. 309 

No adjustments for analytical efficiency are applied. 310 
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Concentrations of ammoniacal nitrogen and orthophosphate were determined using 311 

colorimetric assays. In both cases, outliers (more than three standard deviations from the 312 

mean) are omitted from further analyses, since these may originate from a sample that was 313 

poorly mixed and thus unrepresentative of the average wastewater composition at that time. 314 

These represent 0% of the ammoniacal nitrogen measurements and 1% of the orthophosphate 315 

measurements (two samples) in the analysis period. 316 

The level and velocity of wastewater in the sewer were monitored at two-minute intervals in 317 

the same location as collection of wastewater samples, and were used to calculate wastewater 318 

flow rates. To enable comparison with the wastewater constituent concentrations measured in 319 

the composite samples, flow data is resampled to provide daily values. 320 

2.5.2. Flush counts 321 

Flush monitoring systems were installed in washrooms at the University of Exeter, as 322 

described by Melville-Shreeve et al. (2021a, 2021b). These captured flush data for 323 

washrooms in six buildings, covering a total of 38 washrooms, and provided real time flush 324 

counts for 119 toilets (approximately 18% of toilets on campus). Wheelchair-accessible 325 

washrooms were omitted for operational reasons, but all other washrooms in the selected 326 

buildings were monitored. The selected buildings represent typical university department 327 

buildings. The monitoring system provided high resolution data, with either a ‘zero’ (no 328 

flush) or a ‘one’ (flush) recorded every minute for every toilet. 329 

In the case of any faults in the system, gaps may appear in the data and give the impression of 330 

a reduced daily flush count if not identified and accounted for. Therefore, for quality 331 

assurance purposes, daily data completeness (the total number of data points collected, 332 

expressed as a percentage of the expected number of data points for the time period) is 333 

evaluated at a washroom level. Since estimating flush counts for periods with insufficient 334 
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completeness would provide results with unknown accuracy, all washrooms with less than 335 

90% data completeness during the wastewater monitoring period are omitted from further 336 

analysis. This leaves 22 washrooms, covering five buildings, as illustrated in Figure 2. 337 

Additionally, any day with less than 90% data completeness in any washroom is omitted 338 

from further analysis. No outliers (more than three standard deviations from the mean) are 339 

present in the total daily flush counts. 340 

Detailed data completeness results for individual washrooms are provided in the 341 

Supplementary Information (Figure S1), and days omitted from analyses due to insufficient 342 

site-level flush count data availability are identified in Figure 3, Section 2.6. 343 

Since flush counts are required to provide an indication of building occupancy, flushes 344 

attributable to cleaning are identified and removed from the daily building level totals (as 345 

these are not related to the building occupancy and do not contribute to SARs-CoV-2, 346 

ammoniacal nitrogen or orthophosphate measured in the wastewater). A washroom is 347 

assumed to have been cleaned if every toilet in the washroom has been flushed in a 15 minute 348 

period at least once during the day; the number of flushes attributed to cleaning (a maximum 349 

of one per toilet per day) is then subtracted from the total flush count. Further detail on the 350 

impact of flush count adjustments for cleaning is provided in the Supplementary Information. 351 

2.6. Data availability and key dates 352 

Wastewater SARS-CoV-2, ammoniacal nitrogen and orthophosphate data is available from 353 

11th November 2020, and sampling is ongoing. Calibrated wastewater flow rate data is 354 

available from the same date, up until 23rd March 2021. Within these periods, wastewater 355 

constituent data is typically available for six days a week, although sampling was reduced 356 

during the university’s Christmas break (12th December 2020 – 3rd January 2021), and flow 357 

rate data is available for every day. Flush data was collected from 1st July 2019 until 29th 358 
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March 2021, although gaps are present where days have been omitted due to insufficient data 359 

completeness. 360 

The period 11th November 2020 to 29th March 2021, i.e. when both wastewater constituent 361 

and flush data is available, is selected for analysis of the impact of population dynamics and 362 

SARS-CoV-2 trends. Additional flush data from a period with assumed full occupancy 363 

(weekdays during the 2019 autumn term) is also used in the source identification, as detailed 364 

in Section 2.3.  365 

Figure 3 shows the availability of each data source over these two periods, with data gaps 366 

shown in red. Key dates within the wastewater monitoring period which may affect the 367 

population on campus are summarised in Table 1. 368 

 369 

Figure 3. Daily data availability after cleaning, a) during a period of expected full 370 

occupancy, and b) for the wastewater analysis period. Red indicates periods of missing data. 371 

Table 1. Key dates in the wastewater SARS-CoV-2 analysis period 372 

Date Description Abbreviation 

2nd December 2020 End of second national lockdown NL2-E 

11th December 2020 End of university term T-E 
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24th December 2020 Start of university closure period CP-S 

1st January 2021 End of university closure period CP-E 

4th January 2021 Start of university term T-S 

6th January 2021 Start of third national lockdown NL3-S 

 373 

3. RESULTS AND DISCUSSION 374 

3.1. Population dynamics 375 

Population dynamics indicated by ammoniacal nitrogen and orthophosphate are analysed to 376 

check that they appear plausible and to confirm that these biomarkers are a reasonable basis 377 

for population normalisation for the case study site. 378 

Site-specific values for the daily discharge per capita of ammoniacal nitrogen and 379 

orthophosphate are unknown and cannot be calculated with the available information, and 380 

thus absolute population cannot be estimated. The total biomarker load is, however, 381 

proportional to population (based on Eq. 3) and can be used to illustrate population dynamics 382 

and trends. Daily loads of ammoniacal nitrogen and orthophosphate, each of which is 383 

expected to be proportional to the population on campus, are therefore shown in Figure 4. 384 

These are calculated using the measured wastewater flow rate and biomarker concentration 385 

(QdXd). 386 
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 387 

Figure 4. Daily ammoniacal nitrogen and orthophosphate loads, showing: a) change over 388 

time; and b) correlation. Key dates are indicated using abbreviations defined in Table 1. 389 

Figure 4a suggests that population is highly variable, whichever biomarker is considered. 390 

Two general patterns are observed: Firstly, a seven-day cycle, with daily biomarker loads 391 

typically low (<500,000 mg ammoniacal nitrogen or <200,000 mg orthophosphate) at 392 

weekends and higher during the week; and secondly, a longer term trend with levels dropping 393 

throughout December and rising through January. This matches what would be expected, 394 

since the main campus was not used for lectures at weekends and fewer staff would have 395 

been working. In December, the population on campus would be expected to drop towards, 396 

and following, the end of term (T-E in Figure 1) as students started to return home and 397 

lectures ceased. Few samples were taken during the Christmas closure period (CP-S to CP-398 

E), when the population on campus would have been close to zero, but where available the 399 

biomarker loads are typically representative of a low population. Population would then be 400 

expected to rise following the end of the Christmas closure period (CP-E) and start of term 401 

(T-S), although remain somewhat suppressed due to the start of the third national lockdown 402 

(NL3-S), and this is reflected in an increase in the weekday biomarker loads. 403 
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The correlation between ammoniacal nitrogen and orthophosphate loads (Figure 4b) is strong 404 

but not perfect (Pearson correlation coefficient r = 0.792), indicating that the population 405 

estimates and population normalisation results yielded by each will differ. This may be 406 

attributed to variations in the per capita discharge of each biomarker and the potential 407 

presence of additional sources of either, or both, and is not unexpected given previous studies 408 

have also reported discrepancies between population estimates based on different wastewater 409 

constituents (e.g. Nuijs et al. 2011). Given that no population estimates from alternative 410 

sources are available for reference, it is not possible to determine whether ammoniacal 411 

nitrogen or orthophosphate provides a more accurate representation of population dynamics 412 

and, therefore, both are considered in the following normalisation (Section 3.2). 413 

If samples taken during periods of wet weather are omitted, the correlation increases 414 

marginally (r = 0.804), and if only samples taken on dry weather days are included, the 415 

correlation increases further (r = 0.917). This suggests that confidence in population 416 

estimates and population normalisation should be greatest during dry weather days; however, 417 

population normalisation is not restricted to these days since this would prevent normalisation 418 

of over 70% of samples, and there is still reasonable agreement between population estimates 419 

based on the different biomarker loads even on wet weather days (r = 0.758). 420 

Due to the topology and geology of the site (steep sandstone and mudstone), ingress to the 421 

sewer (infiltration of groundwater) is not expected to be a major contributor to the wastewater 422 

sampled; however, a similar study in an area with a high water table and a poorly maintained 423 

pipe network may yield different results due to the increased impact of wet weather periods.   424 

3.2. Impact of population normalisation on wastewater SARS-CoV-2 trends 425 

SARS-CoV-2 RNA concentrations measured in wastewater samples at the case study site 426 

over the period 11th November 2021 to 29th March 2021 are shown in Figure 5 (blue lines). 427 
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Samples with a concentration below the LOD are displayed with a value of 20 gc/l so that 428 

general trends can be observed; this value is half the LOD and selected based on the 429 

assumption that all values below the LOD are equally probable. The concentrations in Figure 430 

5 show that there is only intermittent detection of SARS-CoV-2 during the monitoring period 431 

(13% of samples collected contain a detectable level of SARS-CoV-2), with the most 432 

frequent detection and the maximum concentration both occurring in December 2020. 433 

All SARS-CoV-2 RNA concentrations above the LOD are normalised with respect to 434 

ammoniacal nitrogen and orthophosphate, and shown with ‘+’ and ‘×’ symbols respectively 435 

in Figure 5, providing values that are expected to be directly proportional to the daily SARS-436 

CoV-2 load per capita. To aid comparison of relative magnitudes with different units, y-axes 437 

are scaled so that the maximum gc/l, gc/mg ammoniacal nitrogen and gc/mg orthophosphate 438 

(all on 15th November 2020) all appear at the same level, and similar for the minimum 439 

detected values (all on 16th March 2021). 440 

 441 

Figure 5. Wastewater SARS-CoV-2 concentrations and normalised values over the 442 

wastewater monitoring period. Wet weather days are indicated with a ‘◊’ symbol, and dry 443 

weather days with a ‘|’ (top axis). 444 
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Figure 5 shows that population normalisation (whether based on ammoniacal nitrogen or 445 

orthophosphate) changes the picture of SARS-CoV-2 prevalence trends provided by the 446 

wastewater monitoring. The wastewater samples taken on 19th November 2020 and 10th 447 

January 2021, for example, have very similar SARS-CoV-2 RNA concentrations (1045 and 448 

1048 gc/l respectively), but there is significant difference in their normalised values: Based 449 

on these, the daily per capita load is shown to be 333 % (based on ammoniacal nitrogen for 450 

normalisation) or 644% (based on orthophosphate for normalisation) higher on 10th January 451 

than on 19th November. This compares with an increase of just 0.3% in concentration. 452 

Neither of these samples were taken on a wet weather day, so the change cannot be attributed 453 

to dilution effects. This suggests, therefore, that population normalisation can have significant 454 

impact on the understanding of the relative severity of peaks in SARS-CoV-2, and that the 455 

presence of similar SARS-CoV-2 RNA concentrations may give a false impression of similar 456 

levels of prevalence. 457 

This is supported by analysis of the rankings of the SARS-CoV-2 RNA concentrations and 458 

population normalised values. Whilst the rankings based on gc/mg ammoniacal nitrogen and 459 

gc/mg orthophosphate both have a strong correlation with the SARS-CoV-2 RNA 460 

concentration (Spearman’s rank correlation coefficients of  0.95 and 0.91 respectively), the 461 

sample on 10th January is an example of where population normalisation significantly 462 

changes the ranking (from 6th / 12 based on concentration, to 3rd based on gc/mg ammoniacal 463 

nitrogen or gc/mg orthophosphate) and may alter the importance placed on the measurement 464 

and any response actions that may be considered. 465 

A comparison of concentrations and population normalised values for all samples with a 466 

detectable level of SARS-CoV-2 is presented in Figure 6, illustrating more clearly the 467 

relationship between each metric and which measurements correspond to dry and wet 468 
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weather days. In each case, linear lines of best fit and Pearson correlation coefficients shown 469 

are calculated based on the log10 values. 470 

 471 

Figure 6. Correlations between wastewater SARS-CoV-2 concentrations and normalised 472 

values. 473 

Figure 6 shows that, although strongly correlated, the SARS-CoV-2 concentration (gc/l) is 474 

perfectly linearly related to neither the gc/mg ammoniacal nitrogen (r = 0.899) nor the gc/mg 475 

orthophosphate (r = 0.914). This reinforces the assertion that population normalisation alters 476 

the SARS-CoV-2 prevalence trends provided by WBE, since the relative magnitude (with 477 

respect to the full data set) of all SARS-CoV-2 concentrations and normalised loads would be 478 

unaltered only if there is a perfect, linear relationship (r = 1) between SARS-CoV-2 479 

concentration and the load per unit mass of biomarker. Whilst it may appear that the 480 

difference in the trends is likely to be minor, due to the strong correlation, the difference 481 
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between the linear best fit lines and the normalised values is in fact considerable (Root Mean 482 

Square Percentage Error (RMPSE) = 83.7% for SARS-CoV-2 gc/mg ammoniacal nitrogen, 483 

and RMSPE = 89.7% for SARS-CoV-2 gc/mg orthophosphate. 484 

Comparison of the two population normalised values (gc/mg ammoniacal nitrogen and gc/mg 485 

orthophosphate) shows that these exhibit a very strong correlation (r = 0.981), suggesting that 486 

both will provide a similar understanding of trends in daily per capita loads of SARS-CoV-2.  487 

Given that there is greater confidence in population normalisation using samples from dry 488 

weather days (Section 3.1), correlation coefficients are also calculated based on dry weather 489 

samples only. Again, these show there to be a very strong (nearly perfect) correlation 490 

between the two population normalised metrics (r = 0.997), and a weaker correlation between 491 

these and the SARS-CoV-2 RNA concentration (r = 0.930 and 0.952 for normalisation based 492 

on ammoniacal nitrogen and orthophosphate respectively). These correlation coefficients are 493 

based on only four samples (as this is the total number of samples with a SARS-CoV-2 494 

concentration above the LOD collected on dry weather days) and, therefore, the confidence 495 

intervals (detailed fully in the Supplementary Information, Table S1) are wider than for the 496 

correlation coefficients based on all samples. However, the correlation coefficients still 497 

support the conclusion that population normalisation alters the SARS-CoV-2 trends provided 498 

by WBE, as there is not a perfect linear relationship between SARS-CoV-2 concentration and 499 

SARS-CoV-2 normalised by either biomarker. They also support the suggestion that 500 

normalisation using either metric is similarly beneficial, as the correlation between SARS-501 

CoV-2 gc/mg ammoniacal nitrogen and gc/mg orthophosphate is very strong even when 502 

considering the full confidence interval (0.867 ≤ r ≤ 1.000 for a significance level of 0.05). 503 
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3.3. Potential sources of SARS-CoV-2 504 

Estimated daily flush counts per occupant for each of the monitored buildings during the 505 

period of assumed full occupancy, as calculated using Eq. 6 and required to estimate dynamic 506 

building occupancies for SARS-CoV-2 source identification, are summarised in Table 2. The 507 

total flush counts during the assumed full occupancy period, from which these values are 508 

calculated, are provided in the Supplementary Information (Figure S2). The coefficients of 509 

variation indicate that there will be a high degree of certainty in population estimates based 510 

on the estimated flush count per occupant for Building C, and greatest uncertainty for 511 

Building A. The significant variability between buildings in the mean daily flush count per 512 

capita broadly matches the trends observed by Melville-Shreeve et al. (2021a) and may be 513 

explained by variation in what each building is used for. Buildings that are used for teaching 514 

(A, B, D and E), for example, may have a very high capacity but a relatively low occupancy 515 

duration for each individual, and thus a low mean number of flushes per occupant; 516 

conversely, each user of a building that is predominantly used for offices (C) may spend a 517 

longer period of time in the building and therefore contribute more flushes. However, any 518 

changes in building use as a result of the pandemic (such as a building with teaching space 519 

being used only for research) may contribute further uncertainty in the daily per capita 520 

flushes and associated occupancy estimates. 521 
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Table 2. Daily per capita flush counts used to estimate dynamic population, calculated based 522 

on building capacities and flush counts during a full occupancy period 523 

Building 

Estimated number of flushes per occupant per day 

Mean Standard deviation 
Coefficient of 

variation 

A 0.336 0.101 0.30 

B 0.283 0.061 0.21 

C 2.033 0.172 0.08 

D 0.033 0.006 0.19 

E 0.578 0.113 0.20 

 524 

Building-level occupancy estimates during the wastewater monitoring period, based on total 525 

flush counts (available in the Supplementary Information, Figure S4) and the estimated 526 

number of flushes per occupant per day (Table 2) are provided in Figure 7. The estimated 527 

number of occupants in each building (Figure 7a) exhibits a clear weekly pattern, with near 528 

zero occupancy in all buildings at weekends. Similarly to the campus-level population trends 529 

indicated by the wastewater biomarker loads (Figure 4a), building occupancy drops 530 

throughout December, and is lowest between the start of the Christmas closure period (CP-S) 531 

and the following start of term (T-S). 532 

Figure 7b shows how occupants are distributed between the monitored buildings and, 533 

therefore, the relative contribution of each building to the wastewater monitored for SARS-534 

CoV-2. This is particularly insightful on days with low total occupancy numbers, showing for 535 

example that there are several days where occupants are detected only in Building C. Whilst 536 

this does not guarantee that there was no-one in the other monitored buildings, it does mean 537 

that nobody in them contributed to the wastewater being sampled, and thus these buildings 538 
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can be eliminated when searching for the source of any SARS-CoV-2 detected in the 539 

wastewater on these days.  540 

 541 

Figure 7. Building occupancy estimates based on flush count data: a) Absolute occupancy; 542 

and b) Relative occupancy (fraction of total occupants in monitored buildings). 543 

To illustrate the potential benefit of these building-level occupancy estimates for SARS-CoV-544 

2 source identification, Figure 8 shows the wastewater SARS-CoV-2 metrics for the one-545 

month period in which detection was most frequent (and, thus, source identification is of 546 

greatest potential benefit) overlaid on corresponding occupancy estimates.  547 
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 548 

Figure 8. Estimated occupancy of buildings with monitored flush counts and measures of 549 

site-level SARS-CoV-2 in wastewater during the period 11th November to 11th December 550 

2020, showing a) absolute occupancy; and b) relative occupancy. Wet weather days are 551 

indicated with a ‘◊’ symbol, and dry weather days with a ‘|’. 552 

On 15th November 2020, the highest wastewater SARS-CoV-2 levels seen at the university 553 

were recorded. Figure 8b shows that buildings A, B, and D can be removed as candidates for 554 

the source, since their estimated occupancy on this day was zero. Whilst there is uncertainty 555 

in most occupancy estimates due to variation in the building-specific daily flushes per capita 556 

values, there is greater certainty of any occupant that may have been present not contributing 557 

to the wastewater on days where the estimated occupancy is zero (i.e. zero flushes). However, 558 

it is noted that flush data was not captured at wheelchair-accessible washrooms, and thus the 559 
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possibility of users of these buildings contributing to the wastewater cannot be absolutely 560 

ruled out.  561 

Furthermore, Figure 8a shows that the occupancy of all buildings with monitored flush counts 562 

were very low on this day. If it is assumed that the occupancy of these buildings is broadly 563 

representative of occupancy across the campus on this day, then this suggests that the actual 564 

number of people infected may also be very low, despite both the SARS-CoV-2 565 

concentration and the population normalised values being very high (since the smaller the 566 

population, the higher the per capita value resulting from a given SARS-CoV-2 load). 567 

On days where specific buildings cannot be eliminated based on a zero-occupancy estimate, 568 

building-level occupancy information may still aid efforts to trace the source of SARS-CoV-2 569 

detected by enabling identification of buildings with the greatest occupancy and greatest 570 

wastewater contribution. Figure 8b shows that on 11th November, for example, over 60% of 571 

the total occupants of five monitored buildings were in Building E – hence, there is greater 572 

probability of locating the infected individual(s) in this building, and this should be a higher 573 

priority for targeted testing if capacity is limited. 574 

3.4. Future opportunities 575 

Multiple opportunities are identified to add value to outputs set out in this study. Specifically, 576 

the installation of flush monitoring technology across all washrooms upstream of the 577 

autosampler could enable a more definitive set of conclusions to be drawn. Disaggregation of 578 

flush counts from male and female washrooms may also improve accuracy when assessing 579 

the relative contribution of occupants in different buildings to the wastewater sampled, due to 580 

the presence of (unmonitored) urinals in the male washrooms. 581 

In addition, from an operational perspective, additional autosamplers could be installed (but 582 

remain largely offline) at the outlet from each building. These could be sampled the day after 583 
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a positive signal is observed in at the main campus, enabling a single building to be pin-584 

pointed. Such measures could in turn enable patchwork closure of buildings when prevalence 585 

exceeds a pre-defined threshold, minimising disruption in future waves of a pandemic. 586 

4. CONCLUSIONS 587 

This study has investigated the use of ammoniacal nitrogen and orthophosphate for 588 

normalisation of SARS-CoV-2 detected in wastewater, to account for the impact of highly 589 

variable populations at a near-to-source monitoring site; evaluated the impact of population 590 

normalisation on the understanding of SARS-CoV-2 prevalence trends provided by the 591 

wastewater data; demonstrated how complementary (non-wastewater) data sources can help 592 

to inform a better targeted response; and explored the potential impact of wet weather periods 593 

on the results. Key findings include: 594 

• Population normalisation alters the trends in SARS-CoV-2 prevalence indicated by 595 

WBE and, in a near-to-source site with a highly variable population such as a 596 

university campus, it can reveal significant differences in prevalence between days 597 

where recorded SARS-CoV-2 concentrations are very similar. Population 598 

normalisation, therefore, is considered critical for providing a comprehensive 599 

understanding of the results from WBE when population size is highly variable. 600 

• Normalisation using either ammoniacal nitrogen or orthophosphate is similarly 601 

beneficial, with both providing a similar (but not identical) understanding of 602 

population dynamics and trends in population normalised SARS-CoV-2 in the 603 

wastewater. This indicates that multiple biomarkers that are of questionable reliability 604 

for population normalisation at a STW level due to their presence in industrial 605 

discharges can be appropriate for near-to-source studies. 606 
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• Agreement between population estimates based on different biomarkers is greatest 607 

when wet weather days are omitted, indicating that confidence in the results of 608 

population normalisation should be greatest when the weather is dry. However, as 609 

there is still a reasonable level of agreement on wet days, these can still provide 610 

valuable information. 611 

• Use of flush count data to estimate the occupancy of different buildings in within the 612 

near-to-source site can enable priority locations for targeted testing to be identified 613 

when SARS-CoV-2 is detected in the wastewater. This is particularly beneficial on 614 

low occupancy days when no flushes are recorded in some buildings, so it is known 615 

with certainty that no occupants of these buildings contributed to the wastewater in 616 

which SARS-CoV-2 was detected. 617 

• Technically feasible strategies to further advance this study have been set out. Such 618 

solutions focus on yet more granular data acquisition including a wider deployment of 619 

flush monitoring and short term autosampling being added at a building-level when 620 

the main campus data suggests increased prevalence. 621 

Lastly, it is noted that there were restrictions in place on mobility and/or student activities, 622 

along with guidance to ‘work from home where possible’, for the majority this study period, 623 

due to the COVID-19 pandemic. As such, the number of people using the main campus site 624 

(and the difference between high and low occupancy periods) was considerably lower than 625 

usual. For near-to-source sites with higher variability in population – and for the case study 626 

site as restrictions are lifted and the number of people using the campus increases – the 627 

importance of population normalisation is expected to be even greater. 628 
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