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ABSTRACT 14 

This paper aims to determine whether population normalisation significantly alters the 15 

SARS-CoV-2 trends revealed by wastewater-based epidemiology, and whether it is beneficial 16 

and/or necessary to provide an understanding of prevalence from wastewater SARS-CoV-2 17 

concentrations. It uses wastewater SARS-CoV-2 data collected from 394 sampling sites, and 18 

implements normalisation based on concentrations of a) ammoniacal nitrogen, and b) 19 

orthophosphate. Wastewater SARS-CoV-2 metrics are evaluated at a site and aggregated 20 

level against three indicators prevalence, based on positivity rates from the Office for 21 

National Statistics Coronavirus Infection Survey and test results reported by NHS Test and 22 

Trace. Normalisation is shown to have little impact on the overall trends in the wastewater 23 
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SARS-CoV-2 data on average. However, significant variability between the impact of 24 

population normalisation at different sites, which is not evident from previous WBE studies 25 

focussed on a single site, is also revealed. Critically, it is demonstrated that while the impact 26 

of normalisation on SARS-CoV-2 trends is small on average, it is not reasonable to conclude 27 

that it is always insignificant. When averaged across many sites, normalisation strengthens 28 

the correlation between wastewater SARS-CoV-2 data and indicators of prevalence; 29 

however, confidence in the improvement is low. Lastly, it is noted that most data were 30 

collected during periods of national lockdown and/or local restrictions, and thus the impacts 31 

and benefits of population normalisation are expected to be higher when normal travel habits 32 

resume. 33 

Keywords: COVID-19, normalisation, SARS-CoV-2, wastewater-based epidemiology 34 

INTRODUCTION 35 

Wastewater-based epidemiology (WBE) has been widely recognised as a valuable tool for 36 

monitoring the circulation of COVID-19 (e.g. European Commission 2020, Ahmed et al. 37 

2020, Wade et al. 2020 , Prado et al. 2021, Westhaus et al. 2021), and is currently being used 38 

in at least 54 countries worldwide (University of California 2021). The concentration, or load, 39 

of RNA fragments from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 40 

have been shown to correlate well with clinical case data (Hoffmann et al. 2021, Huisman et 41 

al. 2021), and can complement clinical surveillance (Medema et al. 2020). WBE can also 42 

provide a useful early warning of emergence or re-emergence of the disease, and timely 43 

insights for public health interventions, with previous studies having shown that SARS-CoV-44 

2 can be detected in wastewater several days before cases are reported (Medema et al. 2020). 45 

Estimation of population size is a major source of uncertainty in WBE and multiple studies 46 

have highlighted the importance of accounting for fluctuations (e.g. due to commuters, 47 
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students and tourists) (Daughton 2012, Béen et al 2014, Chen et al. 2014, O’Brien et al. 2014, 48 

Hou et al. 2021, Wade et al. 2021). Census data, for example, may provide population 49 

estimates, but this is infrequently updated, only accounts for the permanent residential 50 

population (Lai et al. 2011), and does not address transient changes (Daughton 2012). The 51 

design capacity of sewage treatment works (STWs) may also be used to estimate population 52 

size, but this too is not usually reflective of the real-time load in the system (Hou et al. 2021). 53 

Instead, it is preferable to use a dynamic estimate of the actual population in the catchment, 54 

for example based on by-products of human metabolism in wastewater (Zuccaro et al. 2008). 55 

To date, population normalisation using dynamic population estimates has been investigated 56 

for WBE applications such as illicit drug monitoring (Béen et al. 2014) and monitoring of 57 

pharmaceutical use (Zhang et al. 2019). However, in the case of COVID-19 monitoring, 58 

wastewater SARS-CoV-2 RNA concentration (i.e. not a population-normalised load per 59 

capita value) is still typically reported and considered as an indicator of prevalence (e.g. 60 

Karthikeyan et al. 2021, Saththasivam et al. 2021, Prado et al. 2021). This study, therefore, 61 

aims to investigate whether population normalisation i) significantly alters the SARS-CoV-2 62 

trends revealed by WBE, and ii) is beneficial and/or necessary to provide an understanding of 63 

prevalence from wastewater SARS-CoV-2 concentrations. This will facilitate better-informed 64 

interpretation of wastewater SARS-CoV-2 data and provide insights into whether changes in 65 

concentration correspond to a change in prevalence or are the result of fluctuations in 66 

population. The knowledge provided will also be of increasing use moving forward, as 67 

restrictions on movement are likely to be eased or lifted, and population mobility increases. 68 

The availability of alternative indicators of SARS-CoV-2 prevalence for benchmarking of the 69 

wastewater-based insights makes this study particularly interesting, as similar ‘gold standard’ 70 

data has not been available for previous studies that have investigated population 71 

normalisation for WBE in the context of applications such as illicit drug-use monitoring. 72 
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Furthermore, due to the widespread implementation of WBE for SARS-CoV-2 monitoring in 73 

England, this study is able to analyse data from 394 different sewerage network sites of 74 

various types (STW, in-network and near-to-source), thus providing insights into variability 75 

between sites, which past studies have not addressed. 76 

MATERIALS AND METHODS 77 

Wastewater sampling and analysis 78 

Analysis is based on a total of 41,968 wastewater samples, collected from 176 STWs, 202 in-79 

network sites and 16 near-source sites during the period 22nd July 2020 to 25th June 2021; 80 

these represent all sites covered under the Environmental Monitoring for Health Protection 81 

(EMHP) programme in England having a minimum of 14 samples measuring SARS-CoV-2 82 

above the limit of quantification (LOQ) and associated ammoniacal nitrogen (NH3-N) and 83 

orthophosphate (PO4
3-) data available. Samples were collected four to seven days per week, 84 

either as a grab sample (80%) or composite sample (20%), and transported to laboratories at 4 85 

°C. Grab samples were taken once a day during peak flow, composite samples collected over 86 

a 24-hour period. Concentrations of the N gene from the SARS-CoV-2 virus in each sample 87 

were quantified using Reverse Transcriptase qPCR (RT-qPCR). Where concentrations are 88 

below the practical limit of detection (LOD) or limit of quantification (LOQ), values equal to 89 

half the corresponding limit (variable between laboratories) are used for visualisation of 90 

trends in the following analysis but are omitted from evaluation of the impacts of 91 

normalisation and any calculation of correlation coefficients due to their uncertainty. 92 

NH3-N and PO4
3- concentrations were determined using colorimetric assays; samples with 93 

NH3-N or PO4
3- concentrations reported as <LOD, <LOQ or zero (0.92% of total) are omitted 94 

from analyses. Samples with an NH3-N concentration below 12 mg/l (lower bound of the 95 
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typical range of NH3-N concentrations for wastewater (Henze et al. 2001)) are categorised as 96 

dilute. 97 

Flow rates were monitored at a subset of the sites (14 STWs and 4 near-to-source) at two 98 

minute intervals, and resampled to provide daily values. Further operational and technical 99 

details are available in Wade et al. (2020), Hoffman et al. (2021) and Jones et al. (2020). 100 

Mean population estimates 101 

The mean population served by sampling sites is estimated based on Office for National 102 

Statistics (ONS) mid-2019 population estimates (Office for National Statistics, 2020), 103 

aggregated at lower-layer super output area (LSOA) level and projected onto the 104 

corresponding catchment. There is sufficient information available to estimate the mean 105 

population for 96.6% of STWs and 97.5% of network sites, but no near-to-source sites. 106 

Population normalisation 107 

NH3-N and PO4
3- concentrations in the wastewater are used for the population normalisation, 108 

since such traditional water quality parameters are routinely monitored (Lai et al. 2011) and 109 

have been widely used to estimate real-time population size (e.g. Rico et al. 2017, Xiao et al. 110 

2019, Béen et al 2014). They are also less time consuming and expensive to monitor, and 111 

potentially subject to less uncertainty than other biomarkers that may be present at lower 112 

concentrations (Xiao et al. 2019). Two approaches are considered, depending on data 113 

availability, as outlined below: 1) using dynamic population estimates based on NH3-N and 114 

PO4
3-; and 2) normalising using only the NH3-N and PO4

3- concentrations. 115 

Using dynamic population estimates 116 

For each site with daily flow rate data (Qd) and a mean population estimate (𝑃) available, the 117 

daily discharge per capita of each water quality parameter (x) is estimated using Eq. 1, based 118 

on samples collected during periods of national lockdown (5th November to 2nd December 119 
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2020 and 5th January to 8th March 2021) (when population variability is expected to be 120 

suppressed): 121 

𝑥𝑏 =
(𝑋𝑏,𝑑𝑄𝑑)

𝑃
 

Eq. 1 

Where b indicates the water quality parameter (NH3-N or PO4
3-), X the concentration and d 122 

the day.  123 

Dynamic population estimates (P) for each site on day d are then obtained using Eq. 2 124 

(yielding one estimate based on NH3-N and another on PO4
3-), and the SARS-CoV-2 gene 125 

copies (gc) per capita per day (L) using Eq. 3 (or directly with Eq. 4). Uncertainty in the Pd 126 

and Ld estimates resulting from uncertainty in xb is quantified based on the standard deviation 127 

of the daily discharge per capita of the water quality parameter during the lockdown period. 128 

Where S is the SARS-CoV-2 concentration (gc/l). 129 

Using water quality parameter concentrations 130 

For sites without flow data and an ONS population estimate, there is insufficient information 131 

to calculate population-normalised SARS-CoV-2 loads by the above approach, as x cannot be 132 

calculated. Therefore, the SARS-CoV-2 gc per unit of water quality parameter (Sd/Xb,d) is 133 

calculated for each sample instead. Eq. 4 shows that, if xb is assumed to be constant, the 134 

Sd/Xb,d values will be directly proportional to the population-normalised values and, thus, 135 

reveal the same trends. This approach has wider applicability as its data requirements are 136 

𝑃𝑑 =
𝑋𝑏,𝑑𝑄𝑑

𝑥𝑏
 Eq. 2 

𝐿𝑑 =
𝑆𝑑𝑄𝑑

𝑃𝑑
 Eq. 3 

𝐿𝑑 =
𝑆𝑑𝑥𝑏
𝑋𝑏,𝑑

 Eq. 4 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.03.21261365doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.03.21261365
http://creativecommons.org/licenses/by-nc-nd/4.0/


lower; however, as x is site-specific, the values it provides are not comparable between sites. 137 

Furthermore, uncertainty resulting from any variability in x at a given site cannot be 138 

quantified. 139 

Clinical case and prevalence indicators 140 

Wastewater SARS-CoV-2 metrics are evaluated against three indicators of clinical cases and 141 

prevalence at a site level: 142 

1. Positivity rates from the ONS Coronavirus Infection Survey (CIS) (Office for 143 

National Statistics 2021) (estimate of the percentage of the population testing 144 

positive). These are available for 46 STW sites until 8th February 2021 (prevalence 145 

was too low beyond this point to provide sub-regional estimates). 146 

2. The test positivity rate, based on Pillar 1 and 2 cases reported by NHS Test and 147 

Trace at LSOA level, projected onto wastewater sampling catchments and 148 

aggregated by specimen date. These are available for 170 STW and 197 in-network 149 

sites. Pillar 1 data captures swab testing in Public Health England labs and NHS 150 

hospitals, and health and care workers; Pillar 2 captures swab testing for the wider 151 

population (Department of Health & Social Care 2020). 152 

3. Total number of Pillar 1 and 2 cases, calculated as above. This is converted to cases 153 

per 100,000 using mean population estimates when required to compare sites on a 154 

like-for-like basis. 155 

Zero values for each metric are omitted from analyses when the corresponding sample is not 156 

already omitted due to the SARS-CoV-2 concentration being below the LOQ (0% of 157 

positivity rates from the CIS and 6.38% of Pillar 1 and 2 positivity rate and case numbers), as 158 

these cannot be captured in a log model. 159 
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It is noted that none of the reference metrics are expected to provide a perfect measure of 160 

prevalence in the upstream population; there remains uncertainty and, thus, complete 161 

agreement with wastewater data is not a realistic expectation. 162 

RESULTS AND DISCUSSION 163 

Normalisation using dynamic population estimates 164 

Site-specific water quality parameter loads 165 

The mean daily per capita loads of NH3-N (xNH3-N) and PO4
3- (xPO43

-) for 12 STW sites with 166 

flow data and an ONS population estimate are shown in Figure 1; error bars indicate the 167 

standard deviation. The mean values vary significantly between sites, with xNH3-N values in 168 

the range 4,388 - 36,704 mg/d/capita, and xPO43
- 528 - 3,172 mg/d/capita. All xPO43

- estimates 169 

are within the typical range reported in the literature (400 – 4,500 mg/d/capita (Metcalf & 170 

Eddy 2013)), but xNH3-N values are above the expected range (3,000 – 12,000 mg/d/capita 171 

(Metcalf & Eddy 2013)) in 58% of sites. This may be attributed partly to unusually high 172 

NH3-N concentrations (median above the expected range (Metcalf & Eddy 2013) in 25% of 173 

sites), but also to the use of grab sampling (and thus a potentially inaccurate estimate of daily 174 

load) at some sites. The degree of variation between sites also suggests that the mean 175 

population estimates used in the calculation of xNH3-N and xPO43
- may be inaccurate, 176 

potentially due to uncertainty in the mapping of STW catchments to LSOAs. Industrial 177 

discharges may also influence these parameters (Lai et al. 2011, Castiglioni et al. 2012) and 178 

contribute to variability between sites, and the high NH3-N concentrations suggest significant 179 

industrial contribution. 180 
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 181 

Figure 1. Estimated daily per capita water quality parameter loads, based on samples 182 

collected during periods of national lockdown. Only available for sites with flow data and an 183 

ONS population estimate. N indicates the number of samples upon which the estimate is 184 

based. 185 

Standard deviation also varies considerably between sites; in the best case, it represents only 186 

2.0% of the mean (for xPO43
- at STW38), suggesting a high degree of certainty in population 187 

estimates at this site. In the worst case, it represents 85.1% of the mean (for xPO43
- at STW28), 188 

suggesting population estimates at this site will be subject to a very high degree of 189 

uncertainty. Where standard deviation is high, this indicates that either population was not 190 

constant during the lockdown periods or that the assumption of constant NH3-N and PO4
3- 191 

discharge per capita is not valid for this site (for example, due to variable contributions from 192 

industry and surface runoff). 193 

These results confirm that, although SARS-CoV-2 concentrations may be normalised using 194 

only the water quality parameter concentrations, these values will not be directly comparable 195 

between sites due to the site-specific nature of relationships between these parameters and 196 

population. 197 
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SARS-CoV-2 gc per day per capita 198 

Separate SARS-CoV-2 gc per day per capita estimates are generated using i) XNH3-N and xNH3-199 

N, and ii) XPO43
- and xPO43

-. Agreement between the estimates is strong at all 12 sites, with a 200 

minimum Pearson’s correlation coefficient (based on log10 values) of r = 0.959, and a mean 201 

of r = 0.992. Estimates for all sites are provided in the Supplementary Information (SI), 202 

Figure S1, and correlation coefficients in Table S1. 203 

Impact on trends identified 204 

Estimated SARS-CoV-2 gc per day per capita values are not directly proportional to the 205 

SARS-CoV-2 concentrations at any site, indicating that population normalisation changes the 206 

SARS-CoV-2 trends identified in WBE. However, for the 12 sites analysed, correlation 207 

between the metrics is very strong (mean r = 0.981), suggesting that the impact of population 208 

normalisation is small. Figure 5a shows the trends in SARS-CoV-2 concentration and 209 

population-normalised metrics at the site where they exhibit a weaker correlation (i.e. where 210 

population normalisation has a greater impact). While the relative magnitudes of some peaks 211 

are altered, the same broad trends are identifiable. Figures 5b and 5c illustrate the extent to 212 

which the concentration and population-normalised metrics deviate from a perfect linear 213 

relationship. These show that population-normalisation increases the SARS-CoV-2 value the 214 

most in samples that are affected by dilution, suggesting that the impact of normalisation may 215 

be partially attributed to variable levels of dilution rather than varying population; however, 216 

the correlation between SARS-CoV-2 concentration remains imperfect even if dilute samples 217 

are omitted from the regression analyses. 218 

Results for all 12 sites are summarised in the SI, Table S2. 219 
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 220 

Figure 2. Impact of population normalisation on SARS-CoV-2 trends identified in wastewater 221 

at an example site: a) SARS-CoV-2 metrics as a time series, showing trends; b) correlation 222 

between SARS-CoV-2 gc/l and SARS-CoV-2 gc/d/capita estimated using XNH3-N and xNH3-N; 223 

and c) correlation between SARS-CoV-2 gc/l and SARS-CoV-2 gc/d/capita estimated using 224 

XPO43
- and xPO43

-. Squares indicate dilute samples; crosses indicate <LOQ samples 225 

(including <LOD); vertical lines indicate standard deviation of estimate; grey shading 226 

indicates period under full national lockdown. 227 

Impact on correlation with indicators of prevalence 228 

Wastewater SARS-CoV-2 concentration exhibits a moderate correlation with Pillar 1 and 2 229 

positivity and with Pillar 1 and 2 case rates when each of the 12 sites is considered 230 

independently (mean correlation coefficients r = 0.640 and r = 0.687 respectively, based on 231 

log10 values). Note that these correlation coefficients are based on time-synchronised data and 232 
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do not account for any potential lead in the wastewater signals, and are thus likely to be an 233 

underestimate. 234 

In 92% of sites, this correlation is strengthened when using population-normalised 235 

wastewater SARS-CoV-2 metrics instead (mean correlation coefficients increased to r = 236 

0.667 and r = 0.712 if normalising using NH3-N; r = 0.668 and r = 0.712 if normalising using 237 

PO4
3-), suggesting that population normalisation is beneficial if using wastewater data to 238 

provide a better understanding of SARS-CoV-2 prevalence. However, although the 239 

improvement is relatively consistent across sites, 95% confidence intervals for the r values 240 

are wider than the increase in r in all cases, indicating that confidence in the improvements is 241 

low. The relatively minor impact of population normalisation may be attributed to most of the 242 

data having been collected during periods of national lockdown and/or local restrictions, and 243 

thus suppressed population variability. Individual correlation coefficients for each site are 244 

provided in the SI, Table S3 and Table S4. 245 

Population normalisation may also improve the comparability of SARS-CoV-2 data from 246 

different sites, since it enables loads to be expressed as a per capita value; therefore, a 247 

comparison of the correlation between prevalence-related metrics and different wastewater 248 

SARS-CoV-2 metrics across all sites simultaneously is provided in Figure 3. Again, this 249 

shows that population normalisation based on either NH3-N or PO4
3- strengthens the 250 

correlation between prevalence indicators (Pillar 1 and 2 positivity rate or cases per 100,000) 251 

and wastewater SARS-CoV-2 metrics, although confidence in this increase is low since the 252 

95% confidence intervals for the r values with and without normalisation overlap. 253 

In the majority of cases, the correlations with population-normalised wastewater metrics 254 

identified in Figure 3 are weaker than when sites are analysed individually (true for 100% of 255 

sites when evaluating correlations with case numbers, and for 83 - 92% of sites when 256 
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evaluating correlations with positivity rate). This suggests that population-normalisation 257 

alone is insufficient to enable direct inter-site comparison of wastewater SARS-CoV-2 levels, 258 

and that other site-specific characteristics to which concentrations are sensitive (such as 259 

hydraulic retention time and sampling technique (Li et al. 2021, Wade et al. 2021)) must be 260 

accounted for. Potential inaccuracies in estimation of the mean population, as discussed 261 

above, may also contribute to the ineffectiveness of population-normalisation for improving 262 

inter-site comparisons. 263 

 264 

Figure 3. Correlation between prevalence indicators and wastewater SARS-CoV-2 metrics 265 

across all sites with enough data to estimate daily SARS-CoV-2 loads per capita. Different 266 

colours represent different sites. 267 

Normalisation using water quality parameter concentrations only 268 

SARS-CoV-2 gc per unit of water quality parameter  269 

Normalisation using NH3-N and PO4
3- concentrations provides two separate estimates for 270 

SARS-CoV-2 gc per unit of water quality parameter, both of which are expected to be 271 

directly proportional to SARS-CoV-2 gc per day per capita, and thus directly proportional to 272 
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each other. Correlation between SARS-CoV-2 gc/mg NH3-N and gc/mg PO4
3- varies between 273 

the 394 sites analysed, with a maximum correlation coefficient (based on log10 values) of r = 274 

0.999, minimum of r = 0.592 and mean of r = 0.956. On average, the correlation is weakest at 275 

near-to-source sites (mean r = 0.929, N = 16) and similarly strong at STW and network sites 276 

(mean r = 0.956, N = 176 and mean r = 0.958, N = 202 respectively). This suggests weaker 277 

confidence in the results of normalisation for near-to-source sites; however, this mean is 278 

based on only a small number of sites and still indicates a very strong correlation on average. 279 

The distribution of correlation coefficients at all sites is provided in the SI, Figure S2. 280 

Impact on trends identified 281 

Analysis of the impact of normalisation using water quality parameter concentrations on the 282 

trends identified with WBE provides insights into the impact of population normalisation  283 

across a larger number of sites (since population-normalised values are directly proportional 284 

to those normalised with NH3-N and PO4
3- concentrations only), including different site 285 

types. Figure 4 shows how the correlation between SARS-CoV-2 concentration (gc/l) with a) 286 

SARS-CoV-2 gc/mg NH3-N, and b) SARS-CoV-2 gc/mg PO4
3- (an indicator of the extent to 287 

which normalisation alters the SARS-CoV-2 trends) varies between the 394 sites. Across all 288 

sites, the average correlation is high (r = 0.950 if normalising with NH3-N, r = 0.934 with 289 

PO4
3-), again suggesting that normalisation has little impact on trends. However, there is 290 

considerable variability between sites, with 5% of sites having a correlation coefficient below 291 

0.8 based on normalisation with NH3-N and/or PO4
3-; therefore, it cannot be concluded more 292 

generally that the impact of population normalisation is negligible. 293 

Figure 4 also reveals differences in the effects of normalisation between site type. Sites with 294 

the lowest correlation coefficients (i.e. where the impacts of population normalisation are 295 

greatest) are all either in-network or STW sites. This is somewhat counterintuitive since 296 
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greater variability in population may be expected at near-to-source sites; however, it is also 297 

noted that only 16 near-to-source sites are included in the analysis, compared with 176 STW 298 

and 202 in-network, and therefore confidence in their representativeness of that site type 299 

more widely is lower. Figure 4 also shows that correlation coefficients are typically greater 300 

when dilute samples are omitted from the analysis, suggesting that the normalisation is 301 

addressing variable levels of dilution as well as population. 302 

 303 

Figure 4. Distribution of Pearson correlation coefficients across all sites for correlation 304 

between SARS-CoV-2 concentration (gc/l) and normalised metrics: a) SARS-CoV-2 gc/mg 305 

NH3-N, and b) SARS-CoV-2 gc/mg PO4
3-. Samples with SARS-CoV-2 concentrations below 306 

LOQ are omitted from calculation of correlation coefficients.   307 

To illustrate the impact of normalisation using water quality parameters, Figure 5 provides 308 

the results for an example site with a (relatively) low correlation between SARS-CoV-2 309 

concentration and SARS-CoV-2 per unit of NH3-N or PO4
3-. Relatively high levels of SARS-310 

CoV-2 mean that changes in the trends are of particular interest here. Figure 5a shows that 311 

normalisation reduces the relative magnitude of several peaks with high SARS-CoV-2 312 

concentrations; the sample collected on 1st April (‘A’ in Figure 5a), for example, has the 9th 313 

highest concentration recorded during the monitoring period, but this ranks only 70th when 314 

normalised with NH3-N, or 69th when normalised with PO4
3-. This is significant as, based on 315 
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concentrations, this sample may suggest concerning levels of COVID-19 in the upstream 316 

population, whereas once normalised it appears less exceptional. Conversely, there are also 317 

occasions where normalisation increases the relative significance of SARS-CoV-2 detection 318 

(e.g. 17th January, ‘B’ in Figure 5a) and may, therefore, reveal high SARS-CoV-2 loads that 319 

would be obscured if relying on concentrations alone.   320 

 321 

Figure 5. Example of the impact of normalisation using NH3-N or PO4
3- on SARS-CoV-2 322 

trends identified in wastewater: a) All results as a time series, showing trends; b) correlation 323 

between SARS-CoV-2 gc/l and SARS-CoV-2 gc/mg NH3-N; and c) correlation between SARS-324 

CoV-2 gc/l and SARS-CoV-2 gc/mg PO4
3-. Squares indicate dilute samples; crosses indicate 325 

<LOQ samples (including <LOD); grey shading indicates period under full national 326 

lockdown. 327 
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Figure 5b and Figure 5c show the correlation between SARS-CoV-2 concentration and 328 

normalised metrics. Notably, they show that omitting samples affected by dilution has 329 

negligible impact on the lines of best fit or the strength of the correlations. This indicates that 330 

alteration in the SARS-CoV-2 trends provided by normalisation cannot be attributed (solely) 331 

to the requirement for flow normalisation to account for dilution effects, and that the impacts 332 

of population change are important. 333 

Impact on correlation with indicators of prevalence 334 

The change in correlation between prevalence and wastewater SARS-CoV-2 metrics resulting 335 

from the use of gc/mg NH3-N or PO4
3- instead of gc/l at each site individually is shown in 336 

Figure 6. A summary of the mean changes, including a breakdown by site type, is provided in 337 

Table 1. These correlation coefficients are identical to those that are calculated using 338 

population-normalised values, given Ld ∝ Sd/Xb,d, and thus provide insights into the benefits 339 

(or otherwise) of population normalisation. 340 
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 341 

Figure 6. Comparison of correlation between prevalence indicators and wastewater SARS-342 

CoV-2 concentration and correlation between prevalence indicators and normalised 343 

wastewater SARS-CoV-2 metrics. Pearson correlation coefficients (r values) are calculated 344 

using log10 prevalence and wastewater metrics. Percentages indicate proportion of sites 345 

above/below y = x line. 346 

Table 1 shows that on average, across all sites, correlation with all three indicators of 347 

prevalence is improved by normalising the wastewater SARS-CoV-2 using either NH3-N or 348 

PO4
3-. However, as for population normalisation, increases in the mean correlation 349 

coefficients are small (maximum 0.077), of low confidence (95% confidence intervals 350 

overlap in all cases), and are statistically significant (based on a Mann-Whitney U test with 351 

significance level α = 0.05) only for correlation with the CIS positivity rate. Figure 6 also 352 

shows that the benefits are not universal for either STW or in-network sites, and there is no 353 

indication that the sites with the weakest correlations (i.e. where improvement is most 354 

needed) are improved more consistently or more significantly. 355 
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The wastewater SARS-CoV-2 concentrations are most strongly correlated with the CIS 356 

positivity estimate (mean r = 0.564, compared with r = 0.196 and r = 0.254 for the Pillar 1 357 

and 2 positivity and cases respectively), and the improvement provided by normalisation is 358 

most consistent here too, with the correlation strengthened for at least 95% of sites 359 

(depending on the water quality parameter selected). However, the impacts of normalisation 360 

shown in Table 1 are not directly comparable between prevalence indicators, as results 361 

related to correlation with CIS data are based on a smaller sample of the sites than those 362 

related Pillar 1 and 2 data. Results based on only the 44 sites with ONS data (SI, Table S5) 363 

show a stronger correlation with metrics based on Pillar 1 and 2 data, but still weaker (on 364 

average) than with the CIS positivity estimate. Normalisation continues to increase the mean 365 

correlation coefficients. 366 

On average, correlations shown here between wastewater SARS-CoV-2 metrics and 367 

prevalence indicators are lower than those calculated for the 12 sites to which population 368 

normalisation was applied. For all metrics except the CIS positivity estimate (which was not 369 

available for sites with population normalisation), this difference is statistically significant 370 

(based on α = 0.05), indicating that the 12 sites used for population normalisation are not 371 

representative of wastewater sampling sites more widely and that conclusions drawn from 372 

these cannot be assumed to be applicable to other sites. However, for both the full and 373 

reduced sets of sites, normalisation is shown, on average, to strengthen the correlation 374 

between prevalence metrics and wastewater metrics. In both cases, it is also found that the 375 

relative increase in the mean correlation coefficients provided by normalisation is less than 376 

that provided by using Pillar 1 and 2 cases instead of positivity, thus highlighting the 377 

importance of the choice of prevalence indicator.  378 
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Table 1. Summary of the impact of using population normalised wastewater SARS-CoV-2 metrics instead of SARS-CoV-2 concentration on 379 

correlation with prevalence indicators for each site. Pearson correlation coefficients are calculated using log10 prevalence and wastewater 380 

metrics. 381 

Reference 

indicator of 

prevalence 

Site type Number 

of sites 

with 

data 

Correlation between 

prevalence indicator and 

SARS-CoV-2 gc/l 

Proposed 

wastewater 

SARS-CoV-

2 metric 

Correlation between 

prevalence indicator and 

proposed wastewater 

metric 

Percenta

ge of sites 

with 

increased 

correlatio

n 

Change in correlation 

coefficient 

Significant 

difference (α = 

0.05) 

Mean Min Max Mean Min Max Mean Min Max 

CIS positivity 

rate 

Sewage 

treatment 

works 

44 

0.564 0.133 0.841 

gc/mg NH3-N 0.637 0.229 0.867 100.0 0.073 0.013 0.198 ✓ 

gc/mg PO4
3- 

0.641 0.242 0.861 97.7 0.077 -0.002 0.210 
✓ 

Pillar 1 and 2 

positivity rate 

Network 
196 0.192 -0.945 0.779 

gc/mg NH3-N 0.227 -0.982 0.903 72.4 0.035 -0.353 0.313  

gc/mg PO4
3- 0.218 -0.920 0.714 66.3 0.026 -0.449 0.306  

Sewage 

treatment 

works 170 0.201 -0.640 0.719 

gc/mg NH3-N 0.207 -0.703 0.747 61.2 0.006 -0.574 0.335  

gc/mg PO4
3- 

0.222 -0.708 0.746 62.9 0.021 -0.286 0.375 
 

Any 
366 0.196 -0.945 0.779 

gc/mg NH3-N 0.218 -0.982 0.903 67.2 0.021 -0.574 0.335  

gc/mg PO4
3- 0.220 -0.920 0.746 64.8 0.023 -0.449 0.375  

Pillar 1 and 2 

total cases 

Network 
194 0.267 -0.564 0.791 

gc/mg NH3-N 0.292 -0.738 0.769 67.5 0.026 -0.253 0.448  

gc/mg PO4
3- 0.275 -0.678 0.775 59.8 0.008 -0.485 0.302  

Sewage 

treatment 

works 170 0.240 -0.542 0.768 

gc/mg NH3-N 0.251 -0.543 0.791 68.8 0.011 -0.580 0.384  

gc/mg PO4
3- 

0.238 -0.577 0.794 55.9 -0.002 -0.382 0.317 
 

Any 
364 0.254 -0.564 0.791 

gc/mg NH3-N 0.273 -0.738 0.791 68.1 0.019 -0.580 0.448  

gc/mg PO4
3- 0.258 -0.678 0.794 58.0 0.003 -0.485 0.317  

382 
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Implications 383 

This study has shown that SARS-CoV-2 data can be normalised using NH3-N or PO4
3- 384 

concentrations to account for population, and both provide strongly correlated results. If a 385 

site-specific daily per capita load of either NH3-N and PO4
3- is known or can be calculated, 386 

then per capita SARS-CoV-2 loads can be calculated. However, although the results illustrate 387 

that the relationship between water quality parameter load and population size is highly site-388 

specific, they also show that normalisation based on this alone is insufficient to enable direct 389 

comparison of SARS-CoV-2 loads between sites. Alternatively, SARS-CoV-2 concentrations 390 

can be normalised without knowledge of these site-specific water quality parameter loads 391 

and, whilst this does not provide per capita values, it does provide the same impact on trends 392 

and correlation with prevalence indicators. This approach also has the benefit of lower data 393 

requirements, facilitating wider application, but does not enable quantification of uncertainty 394 

in the normalised SARS-CoV-2 value resulting from uncertainty in the daily water quality 395 

parameter load per capita. 396 

Normalisation of wastewater SARS-CoV-2 data with NH3-N or PO4
3- is shown, on average, 397 

to have little impact on the overall trends. This suggests that the significance of fluctuations 398 

in the upstream population size is typically negligible in comparison with that of variability in 399 

the total SARS-CoV-2 loads, which matches previous observations regarding the impact of 400 

population change in WBE for illicit drug monitoring (Béen et al. 2014). However, this study 401 

also reveals significant variability between the impact of population normalisation at different 402 

sites, which is not evident from previous WBE studies that focus on a single site. Critically, 403 

this research demonstrates that while the impact of normalisation on SARS-CoV-2 trends is 404 

small on average, it is not reasonable to conclude that it is always insignificant. 405 

When averaged across a large number of sites, normalisation using either population 406 

estimates or water quality parameter concentrations strengthens the correlation between 407 
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wastewater SARS-CoV-2 data and reference indicators of prevalence. However, confidence 408 

in this improvement is low and, as with the impact on trends, there is significant variability in 409 

the benefit (or otherwise) between sites. 410 

Lastly, it is noted most of the data used in this study was collected during periods of national 411 

lockdown and/or local restrictions, and thus movement of people is expected to have been 412 

significantly lower than usual. Variations in population size, and thus the impacts and 413 

benefits of population normalisation, are expected to increase when normal travel habits 414 

resume. 415 
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