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Abstract 1 

Aims 2 

Increased left atrial (LA) volume is a known risk factor for atrial fibrillation (AF). There is also emerging 3 

evidence that alterations in LA function due to an atrial cardiomyopathy are associated with an increased 4 

risk of AF. The availability of large-scale cardiac MRI data paired with genetic data provides a unique 5 

opportunity to assess the joint genetic contributions of LA structure and function to AF risk. 6 

Methods and results 7 

We developed deep learning models to measure LA traits from cardiovascular magnetic resonance 8 

imaging (MRI) in 40,558 UK Biobank participants and integrated these data to estimate LA minimum 9 

(LAmin), maximum (LAmax), and stroke volume (LASV), as well as emptying fraction (LAEF). We 10 

conducted a genome-wide association study (GWAS) in 35,049 participants without pre-existing 11 

cardiovascular disease, identifying 20 common genetic loci associated with LA traits. Eight of the loci 12 

associated with LA traits were previously associated with AF: the AF risk alleles were associated with an 13 

increased LA minimum volume (LAmin) and a decreased LAEF. A Mendelian randomization analysis 14 

confirmed that AF causally affects LA volume (IVW P = 6.2E-06), and provided evidence that LAmin 15 

causally affects AF risk (IVW P = 4.7E-05). In UK Biobank participants, a polygenic prediction of 16 

LAmin was significantly associated with risk for AF (HR 1.09 per SD; P = 1.6E-36) and ischemic stroke 17 

(HR 1.04 per SD; P = 4.7E-03). 18 

Conclusions 19 

We performed the largest and highest resolution assessment of LA structure and function to date. We then 20 

identified 20 common genetic variants associated with LA volumes or LAEF, 19 of which were novel. 21 

We found that a polygenic prediction of the minimal LA volume was associated with AF and stroke. 22 

Finally, we found an inverse relation between genetic variants associated with AF risk and LAEF. Our 23 

findings provide evidence of a causal relation between LA contractile function and AF.  24 
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Introduction 1 

Atrial fibrillation (AF) is a common arrhythmia that is projected to affect up to 12 million Americans by 2 

20501. As a leading cause of stroke2,3, the risk factors for AF have been the subject of extensive 3 

investigation4–6. Enlargement of left atrial (LA) volumes is commonly observed with hypertension7, heart 4 

failure8, or after a diagnosis of AF9,10—and AF plays a causal role in this process11. Enlargement of the 5 

LA and decreased LA function have also been identified as independent risk factors for AF10,12–17 and 6 

stroke18–20. Together these atrial structural, contractile, or electrophysiological changes that have clinical 7 

consequences have been termed atrial cardiomyopathies21,22.  8 

 9 

The link between LA function and AF risk has prompted interest in determining the heritability and 10 

common genetic basis for variation in LA measurements. A large-scale genome-wide association study 11 

(GWAS) in 30,201 individuals with LA measurements ascertained by echocardiography did not identify 12 

any loci with P < 5E-0823. Recently, a genome-wide association study of deep learning-derived diastolic 13 

measurements in 34,245 UK Biobank participants identified one variant associated with LA volume near 14 

NPR324,25.  15 

 16 

Taking advantage of the precision of cardiovascular magnetic resonance imaging (MRI), we developed 17 

deep learning models to produce two-dimensional measurements of the LA in 40,558 participants in the 18 

UK Biobank26,27, and applied a surface reconstruction technique to integrate these data into three-19 

dimensional LA volume estimates. We reproduced prior observational associations between LA 20 

measurements and AF, heart failure, hypertension, and stroke. We then undertook analyses to identify 21 

common genetic variants associated with LA volumes in over 35,000 UK Biobank participants. Finally, 22 

using common genetic variants as instruments for Mendelian randomization, we performed bidirectional 23 

causal analyses between LA volume and AF. 24 
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Results 1 

Reconstruction of LA volumes from cardiovascular magnetic resonance 2 

images 3 

We trained deep learning models to annotate the LA and left ventricular blood pools in four views 4 

(distinct models for the short axis view, and the two-, three-, and four-chamber long axis views). We then 5 

applied these models to all available UK Biobank cardiovascular magnetic resonance imaging (MRI) data 6 

(Online Methods)26–28. The quality of the deep learning models for measuring the LA was high for the 7 

long axis views, and as expected, lower for the short axis views because this view was not designed to 8 

capture the LA (Supplementary Note). We integrated the data from these separate cross-sections to 9 

compute the surface of a 3-dimensional representation of the LA, yielding LA volume estimates at 50 10 

timepoints throughout the cardiac cycle for 40,558 participants (Figure 1). We conducted analyses on the 11 

maximum LA volume (LAmax), the minimum LA volume (LAmin), the difference between those two 12 

volumes (stroke volume; LASV), and the emptying fraction (LASV/LAmax; LAEF).  13 

LA traits are associated with AF, heart failure and stroke 14 

We analyzed the pattern of cardiac chamber volumes throughout the cardiac cycle in order to identify 15 

individuals with abnormal atrial contraction (Supplementary Note). Interestingly, a subset of 1,013 16 

participants with abnormal atrial contraction had markedly elevated LA volumes, similar to those with 17 

pre-existing AF (Figure 2), and were excluded from downstream analyses. 18 

 19 

In the remaining 39,545 participants, we evaluated the association between LA measurements and 20 

prevalent or incident AF (Supplementary Note). The LA phenotype most strongly associated with AF 21 

was the LA minimal volume (LAmin). The 813 individuals with pre-existing AF had a greater LAmin 22 

(+8.8mL, P = 9.2E-117). In the ~2.2 years of follow-up time available on average after MRI acquisition, 23 

the risk of incident AF was increased among those with greater LAmin (293 cases; HR 1.73 per standard 24 

deviation [SD] increase; 95% CI 1.60-1.88; P = 4.0E-39). We also observed significant associations 25 
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between LA measurements and hypertension, heart failure, and stroke (Figure 3 and Supplementary 1 

Tables 1-3). 2 

Common genetic variant analysis of LA size and function identifies 20 loci 3 

After establishing that the LA measurements replicated previously established clinical associations, we 4 

then examined the association between common genetic variants and seven LA traits. We conducted these 5 

analyses in 35,049 participants with genetic data and without a history of AF, coronary artery disease, or 6 

heart failure (Table 1; Supplementary Figure 1). First, we examined the SNP-heritability of the LA 7 

traits which ranged from 0.17 (LAEF) to 0.37 (LAmax; Supplementary Table 4). Genetic correlation 8 

between the LA measurements ranged from 0.23 (between LAmax and LAEF) to 0.85 (between LAmax 9 

and LAmin; Supplementary Table 4). 10 

 11 

Next, we performed genome-wide association studies (GWAS) for LAmax, LAmin, LAEF, and LASV, 12 

as well as for body surface area (BSA)-indexed LA volumes (Table 2). Finally, as a sensitivity analysis, 13 

we performed GWAS of LA volumes after indexing on left ventricular end diastolic volume 14 

(Supplementary Materials and Supplementary Figure 2). For all analyses, linkage disequilibrium 15 

score regression intercepts were near 1, indicating no significant evidence of inflation due to population 16 

stratification (Supplementary Table 5)29. 17 

 18 

In the GWAS of LA traits conducted without indexing to BSA, we identified five loci associated with 19 

LAmax, eight with LAmin, four with LAEF, and two with LASV (Figure 4). Four loci were shared 20 

between LAmax and LAmin, with lead SNPs near HLA-B, IRAK1BP1, BEND3, and FBXO32/RSPH6A. 21 

LAmax was additionally associated with SNPs at the HMGA2 locus, and LAmin was associated with 22 

SNPs near ANKRD1, SSSCA1, IGF1R, and MYO18B. The four LAEF loci were located near FAF1, 23 

CASQ2, MYH6, and MYO18B. The two LASV-associated loci included SNPs near HLA-C and MYH6. 24 

 25 
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Indexing on BSA yielded three additional loci shared by both LAmax and LAmin (TTN, PITX2, and 1 

NPR3), as well as MYO18B for LAmax, UQCRB, HTR7, and GOSR2 for LAmin, and OBP2B for LASV. 2 

Additional loci were identified in a sensitivity analysis that accounted for left ventricular end diastolic 3 

volume (LVEDV; Supplementary Table 6). Because adjustment for heritable covariates can induce 4 

spurious association signals, interpretation of these loci requires caution (see Supplementary Note)30. 5 

Genetic relationship between AF risk and LA dysfunction 6 

To gain more insight into the genetic relationship between LA measurements and AF, we first evaluated 7 

their genetic correlations. Using ldsc, the strongest genetic correlation was found between LAmin and AF 8 

(rg 0.37, P = 2.0E-10), a direction of effect that corresponds to a positive correlation between LA 9 

dysfunction (i.e., increased LAmin) and risk for AF (Supplementary Table 7)31,32. We also tested for 10 

association between LA measurements and stroke (all-cause or cardioembolic) from MEGASTROKE; the 11 

strongest association was between LAmin and all-cause stroke with nominal significance (rg 0.21, P = 12 

0.01), which was directionally concordant with increased AF risk33. 13 

 14 

We then assessed the overlap between the 20 distinct LA loci identified in our study and 134 loci 15 

previously found to be associated with AF32. We found that 8 of the 20 LA loci overlapped with an AF 16 

locus, which was a significant enrichment based on permutation testing (P = 2E-04; minimum possible P 17 

= 1E-04, see Methods)34. The 8 loci found in both the LA GWAS and the AF GWAS are nearest to 18 

FAF1/C1orf85, CASQ2, TTN, PITX2, MYH6/MYH7, IGF1R, GOSR2, and MYO18B. At all 8 loci, the 19 

effect of each SNP on AF risk was in opposition to its effect on LAEF, and in most cases the effect of 20 

each SNP on AF was concordant with its effect on LAmin (Figure 5). None of the loci that were linked 21 

with both LA measurements and AF were associated at genome-wide significance with LAmax. 22 

Causal link between LA minimal volume and AF risk 23 

Because the genetic correlation analysis suggested that the strongest cross-trait association was between 24 

LAmin and AF, we performed bidirectional Mendelian randomization (MR) analyses to assess whether 25 
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this relationship was causal. First, we assessed the causal effects of LAmin on the risk for AF. Variants 1 

that were associated with LAmin with P < 1E-06 were clumped and ambiguous alleles were excluded, 2 

leaving 19 SNPs. These variants were looked up in summary statistics from a prior AF GWAS without 3 

UK Biobank participants to model the outcome35. The inverse variance weighted (IVW) model identified 4 

a significant association between LAmin and AF (OR 1.77 per SD increase in LAmin, 95% CI 1.3-2.3, P 5 

= 4.7E-05). Simple median, weighted median, MR Egger, and MR-PRESSO showed the same direction 6 

of effects (Supplementary Figure 3). MR-Egger results did not reach nominal significance, and did not 7 

yield evidence for horizontal pleiotropy (intercept P = 0.48). Within the subset of the UK Biobank with 8 

imaging data available, three of the 19 SNPs had evidence for pleiotropic association with AF risk factors 9 

(Supplementary Figure 4) that we derived from the CHARGE-AF risk score4. A sensitivity analysis 10 

excluding these three variants yielded similar results (IVW OR 1.89 per SD increase in LAmin, P = 7.3E-11 

06; Supplementary Table 8; Supplementary Figure 5). 12 

 13 

We also tested the causal effect of AF on LAmin, with 36 instruments taken from the 2017 AF GWAS, 14 

conducted without UK Biobank participants, that were also available in the LAmin summary statistics35. 15 

Increasing genetic risk of AF was significantly associated with LAmin (0.086 mL increase per unit 16 

increase of log of odds of AF liability, 95% CI 0.049-0.123 mL, P = 6.2E-06) using the IVW approach. 17 

The simple median, weighted median, MR-Egger, and MR-PRESSO exhibited similar directional effects 18 

and a nominal significance. The intercept of the MR-Egger and MR-Egger bootstrap were not 19 

significantly different from zero (MR-Egger intercept P = 0.83, MR-Egger bootstrap intercept P = 0.40; 20 

Supplementary Figure 6). 21 

A polygenic risk score for AF is associated with LA phenotypes 22 

We constructed a 1.1-million SNP polygenic risk score (PRS) with PRScs from the Christophersen, et al, 23 

AF GWAS that did not include UK Biobank participants, and applied this score in UK Biobank 24 

participants with imaging35,36. After excluding participants with a history of AF diagnosed prior to MRI, 25 
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and participants with abnormal atrial contraction, 36,518 participants remained for analysis. The AF PRS 1 

was statistically significantly associated with all measures of LA size and function, with a small effect 2 

size (Supplementary Table 9). The strongest association was with LAmin (0.049 SD increase in LAmin 3 

per SD increase in the PRS; 95% CI 0.039-0.058; P = 9.8E-24). 4 

A polygenic estimate of LA volume predicts AF, stroke, and heart failure 5 

We created a 1.1 million SNP genome-wide polygenic score for each LA trait using PRScs36. We tested 6 

this score in the 421,339 UK Biobank participants who did not participate in the LA GWAS, of whom 7 

22,356 developed AF. The strongest association was with the BSA-indexed LAmin polygenic score, 8 

which was linked to a modestly increased risk for incident AF or atrial flutter (HR = 1.09 per 1 SD 9 

increase in the score; P = 1.6E-36) (Figure 6; Supplementary Table 10). This score was also associated 10 

with small increases in risks of incident all-cause stroke (7,823 cases; HR = 1.04 per SD; P = 4.7E-04), 11 

ischemic stroke (5,492 cases; HR = 1.04 per SD; P = 4.7E-03), and heart failure (11,465 cases; HR = 1.05 12 

per SD; P = 2.6E-08). In a sensitivity analysis that censored participants who developed AF prior to a 13 

diagnosis of heart failure, the magnitude of effect and strength of association between the LAmin score 14 

and heart failure was attenuated (8,247 cases; HR = 1.03 per SD; P = 0.01; Supplementary Table 11). 15 

Discussion 16 

We used a unique resource of more than 40,000 cardiac MRI images available in the UK Biobank to 17 

enable one of the largest and highest resolution assessments of LA structure and function to date. We 18 

trained deep learning models to segment LA cross sections from cardiovascular MRI data and then 19 

derived estimates of LA volume. In turn, we performed an extensive series of epidemiological, genetic, 20 

polygenic and Mendelian randomization analyses to link these LA traits to cardiovascular outcomes. Our 21 

findings permit at least five primary conclusions.  22 

 23 
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First, we were able to replicate previous observations demonstrating associations between greater LA 1 

volume and cardiovascular diseases7–10,19,20. Participants with a history of AF had larger LA volumes; and 2 

participants with larger LA volumes were more likely to be subsequently diagnosed with AF, stroke, or 3 

heart failure. 4 

 5 

Second, these measurements enabled the largest genetic analysis to date of LA measurements. To our 6 

knowledge, one locus (near NPR3) has previously been associated at genome-wide significance with LA 7 

measurements25. In this work, 20 distinct genetic loci were associated with LAmax, LAmin, LAEF, 8 

LASV, or the BSA-indexed versions of these phenotypes. Forty percent of these loci (8 of 20) were 9 

previously associated with AF, significantly more than expected by chance.32. At all 8 loci, the allele 10 

associated with increased AF risk was directionally associated with a lower LAEF, and generally with 11 

greater LA volumes. The uniformly opposed effect directions of these SNPs for AF risk and LAEF may 12 

be consistent with the concept of atrial cardiomyopathy22. 13 

 14 

As an example of the pattern of opposed SNP effects on LAEF and AF risk, we identified a missense 15 

variant within CASQ2 (rs4074536; p.Thr66Ala) as a lead SNP for LAEF on chromosome 1. The T allele 16 

of this SNP (encoding Thr66) corresponds with a reduced LAEF in our GWAS, and with reduced 17 

expression of CASQ2 in the right atrial appendage and left ventricle in GTEx37. This variant is also in LD 18 

(r2=1.0) in non-African 1KG populations for the AF lead SNP rs448492232,38. In the study by Roselli and 19 

colleagues, the rs4484922-G allele is associated with an increased risk for AF; notably, that risk-20 

increasing allele corresponds to the LAEF-reducing T allele of rs4074536. The rs4074536-T allele has 21 

also previously been associated with a longer QRS complex duration39,40. CASQ2 encodes calsequestrin 2, 22 

which resides in the sarcoplasmic reticulum in abundance and binds to calcium ions during the cardiac 23 

cycle. Missense variants in this gene have also been associated with catecholamine-induced polymorphic 24 

ventricular tachycardia, typically following a recessive inheritance pattern41,42. 25 

 26 
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Even among LA-associated loci that were not previously associated with AF, several showed the same 1 

consistent pattern of inverse effect between AF risk and LAEF (e.g., near NPR3, SSSCA1, and HMGA2). 2 

However, this pattern did not uniformly hold. For example, at the gene-dense locus near 3 

FBXO46/DMWD/RPSH6A, the LA volume-increasing (and LAEF-decreasing) variants were weakly 4 

associated with decreased AF risk. 5 

 6 

Also notable was the PITX2 locus, which was the first locus associated with AF. In the present GWAS, 7 

SNPs at that locus were associated with BSA-indexed LAmax and LAmin. The lead SNP for AF 8 

(rs2129977 from Roselli, et al, 2018) was in close LD with the lead SNP for LAmax and LAmin 9 

(rs2634073; r2 = 0.85)32,38. Consistent with clinical expectations, the AF risk allele was associated with 10 

greater left atrial maximum and minimum volumes. These analyses excluded participants with a history 11 

of AF or abnormal atrial contraction on MRI; therefore, these results support the hypothesis that the 12 

PITX2 locus may be associated with an increase in LA volume that occurs prior to AF onset. 13 

 14 

Fourth, we developed polygenic scores to gain additional insight into the relationship between LA 15 

volumes and cardiovascular diseases. A genome-wide 1.1-million variant AF PRS derived from 16 

Christophersen, et al, 2017 was associated with all of the LA phenotypes—and most strongly with 17 

LAmin—even after excluding participants known to have AF35. This genetic evidence is consistent with 18 

and extends prior observational evidence, and suggests that some of the genetic drivers of AF risk may 19 

manifest in ways that are detectable in LA size and function.  20 

 21 

A 1.1-million variant polygenic predictor of BSA-indexed LAmin was modestly associated with incident 22 

AF (Figure 6), and weakly with stroke, in the UK Biobank. The score was also associated with heart 23 

failure—an association which was almost completely attenuated after excluding participants who were 24 

diagnosed with AF prior to heart failure. This attenuation suggests that much of the heart failure 25 

association may be mediated through AF. 26 
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 1 

Finally, we found strong evidence of genetic correlation between LA phenotypes and AF. We pursued 2 

Mendelian randomization analyses to more formally assess the hypothesis of bidirectional causation 3 

between LA phenotypes and AF. These revealed strong evidence of a causal effect of AF on LAmin, as 4 

has been previously observed11. There was also evidence that LA volumes, particularly LAmin, may be 5 

causal for AF. The causal effect persisted even after excluding three variants associated with at least one 6 

risk factor from CHARGE-A4. However, because AF can be paroxysmal and remain undiagnosed, we 7 

cannot exclude the possibility of cryptic reverse causation: namely, that some participants may have had 8 

larger atria because of undiagnosed paroxysmal AF, such that AF itself induced the genetic association 9 

with LA volumes. 10 

Limitations 11 

This study has several limitations. All LA measurements were derived from deep learning models of 12 

cardiovascular MRI. Because a complete trans-axial stack of atrial images was not part of the UK 13 

Biobank imaging protocol, the LA measurements are estimates that are interpolated from cross sections of 14 

the LA. Because contrast protocols were not used during image acquisition, we were not able to ascertain 15 

atrial fibrosis. The deep learning models have not been tested outside of the specific devices and imaging 16 

protocols used by the UK Biobank and are unlikely to generalize to other data sets without fine tuning. 17 

Disease labels were determined by diagnostic and procedural codes; because AF can be paroxysmal and 18 

may go undetected, it is likely that a subset of the participants had undiagnosed AF prior to MRI, which 19 

would bias causal estimates of the impact of LA volume on disease risk away from the null. The study 20 

population was largely composed of people of European ancestries, limiting generalizability of the 21 

findings to global populations. The participants who underwent MRI in the UK Biobank tended to be 22 

healthier than the remainder of the UK Biobank population, which itself is likely to be healthier than the 23 

general population. At present, there is little follow-up time subsequent to the first MRI visit for most UK 24 

Biobank participants. 25 
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Conclusions 1 

Measures of LA structure and function are heritable traits that are associated with AF, stroke, and heart 2 

failure. Genetic predictors of LA volume are linked to an elevated risk of AF and, to a lesser extent, 3 

stroke and heart failure. In future work, it will be interesting to determine if targeting the genes and 4 

pathways associated with abnormalities in LA function will be helpful to reduce the risk of AF, heart 5 

failure, and stroke.  6 

 7 

  8 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.02.21261481doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.02.21261481


 

LA Genetics - Page 13 of 44 

Methods 1 

Study design 2 

Except where otherwise stated, all analyses were conducted in the UK Biobank, which is a richly 3 

phenotyped, prospective, population-based cohort that recruited 500,000 participants aged 40-69 years in 4 

the UK via mailer from 2006-201043. We analyzed 487,283 participants with genetic data who had not 5 

withdrawn consent as of February 2020. Access was provided under application #7089 and approved by 6 

the Partners HealthCare institutional review board (protocol 2019P003144).  7 

 8 

Statistical analyses were conducted with R version 3.6 (R Foundation for Statistical Computing, Vienna, 9 

Austria).  10 

Cardiovascular magnetic resonance imaging protocols 11 

At the time of this study, the UK Biobank had released images in over 45,000 participants of an imaging 12 

substudy that is ongoing26,27. Cardiovascular magnetic resonance imaging was performed with 1.5 Tesla 13 

scanners (Syngo MR D13 with MAGNETOM Aera scanners; Siemens Healthcare, Erlangen, Germany), 14 

and electrocardiographic gating for synchronization27. Several cardiac views were obtained. For this 15 

study, four views (the long axis two-, three-, and four-chamber views, as well as the short axis view) were 16 

used. In these views, balanced steady-state free precession cines, consisting of a series of 50 images 17 

throughout the cardiac cycle for each view, were acquired for each participant27. For the three long axis 18 

views, only one imaging plane was available for each participant, with an imaging plane thickness of 19 

6mm and an average pixel width and height of 1.83mm. For the short axis view, several imaging planes 20 

were acquired. Starting at the base of the heart, 8mm-thick imaging planes were acquired with 21 

approximately 2mm gaps between each plane, forming a stack perpendicular to the longitudinal axis of 22 

the left ventricle to capture the ventricular volume. For the short axis images, the average pixel width and 23 

height was 1.86mm. 24 
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Semantic segmentation and quality control 1 

We labeled pixels using a process similar to that described in our prior work evaluating the thoracic 2 

aorta44. Cardiac structures were manually annotated in images from the short axis view and the two-, 3 

three-, and four-chamber long axis views from the UK Biobank by a cardiologist (JPP). To produce the 4 

models used in this manuscript, 714 short axis images were chosen, manually segmented, and used to 5 

train a deep learning model with PyTorch and fastai v1.0.6128,45. The same was done separately with 98 6 

two-chamber images, 66 three-chamber images, and 445 four-chamber images. The models were based 7 

on a U-Net-derived architecture constructed with a ResNet34 encoder that was pre-trained on ImageNet46–8 

49. The Adam optimizer was used50. The models were trained with a cyclic learning rate training policy51. 9 

80% of the samples were used to train the model, and 20% were used for validation. Held-out test sets 10 

with images that were not used for training or validation were used to assess the final quality of all 11 

models. 12 

 13 

Four separate models were trained: one for each of the three long axis views, and one for the short axis 14 

view. During training, random perturbations of the input images (augmentations) were applied, including 15 

affine rotation, zooming, and modification of the brightness and contrast. 16 

 17 

For the short axis images, all images were resized initially to 104x104 pixels during the first half of 18 

training, and then to 224x224 pixels during the second half of training. The model was trained with a 19 

mini-batch size of 16 (with small images) or 8 (with large images). Maximum weight decay was 1E-03. 20 

The maximum learning rate was 1E-03, chosen based on the learning rate finder28,52. A focal loss function 21 

was used (with alpha 0.7 and gamma 0.7), which can improve performance in the case of imbalanced 22 

labels53. When training with small images, 60% of iterations were permitted to have an increasing 23 

learning rate during each epoch, and training was performed over 30 epochs while keeping the weights 24 

for all but the final layer frozen. Then, all layers were unfrozen, the learning rate was decreased to 1E-07, 25 

and the model was trained for an additional 10 epochs. When training with large images, 30% of 26 
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iterations were permitted to have an increasing learning rate, and training was done for 30 epochs while 1 

keeping all but the final layer frozen. Finally, all layers were unfrozen, the learning rate was decreased to 2 

1E-07, and the model was trained for an additional 10 epochs. The semantic segmentation model training 3 

hyperparameters for the two-, three-, and four-chamber long axis images were similar, and are detailed in 4 

the Supplementary Note. 5 

 6 

Each model was applied to all available images from its respective view that were available in the UK 7 

Biobank as of November 2020.  8 

Poisson surface reconstruction 9 

To integrate the output from each of the four models into one LA volume estimate, Poisson surface 10 

reconstruction was performed. Among the views included in the UK biobank cardiac MRI dataset, none 11 

fully captures the 3-D anatomical structure of the LA. The short axis stack only occasionally included the 12 

lower portion of the chamber, while the three long-axis (i.e., two-, three-, and four-chamber) views 13 

provided only single-slice cross-sections of the LA at different orientations. To integrate information from 14 

the four incomplete MRI views into a consistent 3D representation of the LA anatomy, we followed a 15 

procedure similar to Pirruccello et al. (2021)54. Briefly, we first co-rotated the MRI views into the same 16 

reference system using standard DICOM metadata (i.e., from the Image Position (Patient) [0020,0032] 17 

and Image Orientation (Patient) [0020,0037] tags). Then, we applied the Poisson surface reconstruction 18 

algorithm55 to interpolate 3-D surfaces through the points marking the boundaries of the LA chamber 19 

segmentations. In addition to the interpolation point coordinates, the Poisson algorithm requires as input 20 

the local normal directions, which constrain the curvature of the reconstructed surface. In our approach, 21 

we assumed that the normals lie onto the MRI view planes and are radially oriented outwards from the 22 

center of gravity of the LA segmentation. 3D surfaces of the LA were reconstructed for each of the 50 23 

MRI frames captured during the cardiac cycle. At each timepoint, the volume of the LA was computed 24 

using routines for triangulated meshes included in the VTK library (Kitware Inc.). From the reconstructed 25 
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volume traces, we estimated the maximum and minimum LA volumes, as well as LA stroke volume and 1 

emptying fraction. 2 

Identification of abnormal atrial contraction patterns 3 

We sought to identify participants with abnormal atrial contraction patterns at the time of acquisition of 4 

the magnetic resonance images. Although the imaging protocol was ECG-gated, the instantaneous ECG 5 

signal was not available. Therefore, we used the filling patterns of the atrium and ventricle as markers of 6 

normal filling.  7 

 8 

To create a training set, we first pulled CINE videos from the 2-, 3-, and 4-chamber long axis views of all 9 

participants with a history of AF. A cardiologist (JPP) evaluated whether the videos appeared to represent 10 

a typical cardiac cycle including an atrial contraction. A deep learning model was then trained to classify 11 

filling patterns as representing a normal atrial contraction or not. Each input channel represented the pixel 12 

counts of a cardiac chamber from a different long-axis view, divided by the maximum number of pixels 13 

seen for each channel for that participant, over the entire cardiac cycle. This approach prevented the 14 

model from accessing information about the absolute size of the chambers, forcing it instead to identify 15 

patterns based on relative size differences throughout the cardiac cycle. In total, 8 channels were used as 16 

input: four from the 4-chamber long axis images (left atrium, right atrium, left ventricle, right ventricle), 17 

two from the 3-chamber long axis images (left atrium, left ventricle), and two from the 2-chamber long 18 

axis images (left atrium, left ventricle). Cases were excluded if all 8 channels were not available. 19 

Therefore, the shape of the input was 50x8. Training was performed with FastAI version 2.2.528, using the 20 

TimeseriesAI library version 0.2.15 (github.com/timeseriesAI/tsai) to train an InceptionTime model56. 21 

The Ranger optimization function was used with cross entropy loss, and the number of filters in the 22 

InceptionTime model was 32, all of which are the software defaults in the TimeseriesAI library. Ranger 23 

incorporates RAdam and Lookahead to improve training stability early and later during training, 24 

respectively57,58. 20% of samples were randomly chosen as the validation set. The model was trained with 25 
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a batch size of 32. Variable learning rates from 5E-06 to 5E-03 were permitted during training. Training 1 

was conducted using the One-Cycle policy for 20 epochs51,52. 2 

Evaluation of the relationship between the left atrium and cardiovascular 3 

diseases 4 

We focused on three disease definitions related to LA structure and function: AF or flutter, ischemic 5 

stroke, and heart failure (defined below in Online Methods). For prevalent disease that was diagnosed 6 

prior to the time of imaging, linear models were used to test for an association between each disease (as a 7 

binary independent variable) and LA phenotypes (as the dependent variables), adjusting for the MRI 8 

serial number, sex, age, and the interaction between sex and age.  9 

 10 

For incident disease, participants with pre-existing diagnoses prior to the MRI were excluded from the 11 

analysis. A Cox proportional hazards model was used, with survival defined as the time between MRI and 12 

either the time of censoring, or disease diagnosis. The model was adjusted for the MRI serial number, sex, 13 

age, the interaction between sex and age, the cubic natural spline of height, the cubic natural spline of 14 

weight, and the cubic natural spline of BMI. As a sensitivity analysis, adjustment was additionally made 15 

for heart rate, P duration, QRS duration, P-Q interval, QTc interval, left ventricular end systolic volume, 16 

left ventricular end diastolic volume, and left ventricular ejection fraction. 17 

Genotyping, imputation, and genetic quality control 18 

UK Biobank samples were genotyped on either the UK BiLEVE or UK Biobank Axiom arrays and 19 

imputed into the Haplotype Reference Consortium panel and the UK10K+1000 Genomes panel59. Variant 20 

positions were keyed to the GRCh37 human genome reference. Genotyped variants with genotyping call 21 

rate < 0.95 and imputed variants with INFO score < 0.3 or minor allele frequency <= 0.005 in the 22 

analyzed samples were excluded. After variant-level quality control, 11,253,549 imputed variants 23 

remained for analysis.  24 

 25 
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Participants without imputed genetic data, or with a genotyping call rate < 0.98, mismatch between self-1 

reported sex and sex chromosome count, sex chromosome aneuploidy, excessive third-degree relatives, or 2 

outliers for heterozygosity were excluded from genetic analysis59. Participants were also excluded from 3 

genetic analysis if they had a history of AF or flutter, hypertrophic cardiomyopathy, dilated 4 

cardiomyopathy, heart failure, myocardial infarction, or coronary artery disease documented prior to the 5 

time they underwent cardiovascular magnetic resonance imaging at a UK Biobank assessment center. Our 6 

definitions of these diseases in the UK Biobank are provided in Supplementary Table 12. 7 

Genome-wide association study of the left atrium 8 

We analyzed four primary LA phenotypes, as well as LAmax, LAmin, and LASV estimates that were 9 

adjusted for BSA or LVEDV. In total, we conducted 10 genome-wide association studies with these 10 

traits. Before conducting genetic analyses, a rank-based inverse normal transformation was applied60. All 11 

traits were adjusted for sex, age at enrollment, age and age2 at the time of MRI, the first 10 principal 12 

components of ancestry, the genotyping array, and the MRI scanner’s unique identifier.  13 

 14 

BOLT-REML v2.3.4 was used to assess the SNP-heritability of the phenotypes, as well as their genetic 15 

correlation with one another using the directly genotyped variants in the UK Biobank61. Genome-wide 16 

association studies for each phenotype were conducted using BOLT-LMM version 2.3.4 to account for 17 

cryptic population structure and sample relatedness61,62. We used the full autosomal panel of 714,577 18 

directly genotyped SNPs that passed quality control to construct the genetic relationship matrix (GRM), 19 

with covariate adjustment as noted above. Associations on the X chromosome were also analyzed, using 20 

all autosomal SNPs and X chromosomal SNPs to construct the GRM (N=732,214 SNPs), with the same 21 

covariate adjustments and significance threshold as in the autosomal analysis. In this analysis mode, 22 

BOLT treats individuals with one X chromosome as having an allelic dosage of 0/2 and those with two X 23 

chromosomes as having an allelic dosage of 0/1/2. Variants with association P < 5·10-8, a commonly used 24 

threshold, were considered to be genome-wide significant. 25 
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 1 

We identified lead SNPs for each trait. Linkage disequilibrium (LD) clumping was performed with 2 

PLINK-1.963 using the same participants used for the GWAS. We outlined a 5-megabase window (--3 

clump-kb 5000) and used a stringent LD threshold (--r2 0.001) in order to account for long LD blocks. 4 

With the independently significant clumped SNPs, distinct genomic loci were then defined by starting 5 

with the SNP with the strongest P value, excluding other SNPs within 500kb, and iterating until no SNPs 6 

remained. Independently significant SNPs that defined each genomic locus are termed the lead SNPs.  7 

 8 

No lead SNPs deviated from Hardy-Weinberg equilibrium (HWE) at a threshold of P < 1E-0663. 9 

 10 

Linkage disequilibrium (LD) score regression analysis was performed using ldsc version 1.0.029. With 11 

ldsc, the genomic control factor (lambda GC) was partitioned into components reflecting polygenicity and 12 

inflation, using the software’s defaults. 13 

Genetic correlation with atrial fibrillation 14 

We used ldsc version 1.0.1 to perform cross-trait LD score regression to estimate genetic correlation 15 

between the LA measurements, atrial fibrillation (from Roselli, et al, 2018), and all-cause or 16 

cardioembolic stroke (from Malik, et al, 2018)31–33. Summary stats were pre-processed with the 17 

munge_sumstats.py script from ldsc 1.0.1 using the default settings, filtering out variants with imputation 18 

INFO scores less than 0.9 or minor allele frequencies below 0.01, as well as strand-ambiguous variants. 19 

Overlap of left atrial loci with atrial fibrillation loci 20 

We identified the gene nearest to SNPs associated with AF from Supplementary Table 16 of Roselli, et 21 

al32. For this exercise, we used each of the 134 SNPs that achieved association P < 5E-8 in the primary 22 

GWAS (column ‘I’) or in the meta-analysis (column ‘AD’). We counted the number of AF nearest genes 23 

that fell within 500kb of the LA lead SNPs from our study. We used SNPsnap to generate 10,000 sets of 24 

SNPs that matched the LA lead SNPs based on parameters including minor allele frequency, SNPs in 25 
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linkage disequilibrium, distance from the nearest gene, and gene density34. We then repeated the same 1 

counting procedure for each of the 10,000 synthetic SNPsnap lead SNP lists, to set a neutral expectation 2 

for the number of overlapping AF nearest genes based on chance. This allowed us to compute a one-tailed 3 

permutation P value (with the most extreme possible P value based on 10,000 randomly chosen sets of 4 

SNPs being 1E-04). 5 

Mendelian randomization 6 

We sought to assess a potential causal relationship between LAmin and AF using Mendelian 7 

randomization (MR). We considered LAmin as the exposure and AF as the outcome. The genetic 8 

instruments for LAmin were generated using the genome-wide association results from this analysis. The 9 

variants from the exposure summary statistics were clumped with P < 1E-06, r2 < 0.001, and a radius of 5 10 

megabases using the TwoSampleMR package in R64. The variants with ambiguous alleles were removed. 11 

19 variants were harmonized with a large AF GWAS that did not include UK Biobank participants35. The 12 

inverse variance weighted (IVW) method was performed as the primary MR analysis. We also performed 13 

simple median, weighted median, MR-Egger, and MR-PRESSO to account for violations of the 14 

instrumental variable assumptions. Since MR-Egger provides robust estimates under the InSIDE 15 

(Instrument Strength Independent of Direct Effect) assumption, we additionally conducted the MR-Egger 16 

bootstrap method to confirm the results from MR-Egger. 17 

 18 

To assess risk of pleiotropy of the LA genetic instruments, each SNP was tested for association with risk 19 

factors from CHARGE-AF4 within the same participants in which the GWAS was conducted. Association 20 

between each of the 19 variants and seven risk factors (height, weight, systolic blood pressure, diastolic 21 

blood pressure, use of antihypertensive medications [ascertainment described below in Online Methods], 22 

diagnosis of diabetes, and current smoking) was tested in a linear regression model that accounted for age 23 

and age2 at the time of MRI, sex, the MRI serial number, the genotyping array, and genetic principal 24 
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components 1-10. Associations were considered significant if they exceeded Bonferroni significance (P < 1 

3.8E-04). 2 

 3 

To understand the bidirectional causal effects, we also performed an MR analysis using AF variants from 4 

the 2017 GWAS as the exposure and LAmin as the outcome. After applying the same clumping threshold 5 

and filtering methods to AF summary statistics, 36 remaining variants were harmonized with the LAmin 6 

association results and used to construct the instrumental variable. The primary and sensitivity analyses 7 

were then conducted in the same manner as described above. 8 

Polygenic risk analysis 9 

A polygenic score for the LAmin GWAS was computed using PRScs with a UK Biobank European 10 

ancestry linkage disequilibrium panel36. This method applies a continuous shrinkage prior to the SNP 11 

weights. PRScs was run in ‘auto’ mode on a per-chromosome basis. This mode places a standard half-12 

Cauchy prior on the global shrinkage parameter and learns the global scaling parameter from the data; as 13 

a consequence, PRScs-auto does not require a validation data set for tuning. Based on the software default 14 

settings, only the 1.1 million SNPs found at HapMap3 sites that were also present in the UK Biobank 15 

were permitted to contribute to the score. 16 

 17 

This score was applied to the entire UK Biobank. Participants related within 3 degrees of kinship to those 18 

who had undergone MRI, based on the precomputed relatedness matrix from the UK Biobank, were 19 

excluded from analysis59. We analyzed the relationship between this polygenic prediction of the LAmin 20 

and incident diagnoses of AF in the UK Biobank using a Cox proportional hazards model as implemented 21 

by the R survival package65. We excluded participants with disease that was diagnosed prior to enrollment 22 

in the UK Biobank. We counted survival as the number of years between enrollment and disease 23 

diagnosis (for those with disease) or until death, loss to follow-up, or end of follow-up time (for those 24 

without disease). We adjusted for covariates including sex, the cubic basis spline of age at enrollment, the 25 
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interaction between the cubic basis spline of age at enrollment and sex, the genotyping array, the first five 1 

principal components of ancestry, and the cubic basis splines of height (cm), weight (kg), BMI (kg/m2), 2 

diastolic blood pressure (mmHg), and systolic blood pressure (mmHg). 3 

Definitions of diseases and medications 4 

We defined AF or flutter, dilated cardiomyopathy, hypertrophic cardiomyopathy, heart failure, diabetes, 5 

and ischemic stroke based on self report, ICD codes, and procedural codes (Supplementary Table 12). 6 

The data were obtained from the UK Biobank in June 2020, at which time the recommended phenotype 7 

censoring date was March 31, 2020. The UK Biobank defines that date as the last day of the month for 8 

which the number of records is greater than 90% of the mean of the number of records for the previous 9 

three months ( https://biobank.ndph.ox.ac.uk/ukb/exinfo.cgi?src=Data_providers_and_dates ). 10 

 11 

We identified participants taking antihypertensive medications based on the Anatomical Therapeutic 12 

Classification (ATC)66. Medications taken by UK Biobank participants were previously mapped to ATC 13 

codes67. We considered medications with ATC codes beginning with C02, C09, C08CA, C03AA, 14 

C08CA01, or C03BA04 to be antihypertensives (medication names enumerated in Supplementary Table 15 

13). 16 
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Appendices 1 

Data availability 2 

UK Biobank data are made available to researchers from research institutions with genuine research 3 

inquiries, following IRB and UK Biobank approval. GWAS summary statistics and polygenic score 4 

weights will be available upon publication at the Broad Institute Cardiovascular Disease Knowledge 5 

Portal ( http://www.broadcvdi.org ). LA measurements will be returned to the UK Biobank for use by any 6 

approved researcher. All other data are contained within the article and its supplementary information. 7 

Code availability 8 

The code used to perform Poisson surface reconstruction from segmentation output is located at 9 

https://github.com/broadinstitute/ml4h and is available under an open-source BSD license.  10 
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Tables 1 

Table 1: Participant characteristics 2 

 Women Men Both 

N 18,916 16,133 35,049 

Age at time of MRI 64 (8) 65 (8) 64 (8) 

BMI (kg/m^2) 26 (5) 27 (4) 26 (4) 

Height (cm) 163 (6) 176 (7) 169 (9) 

Weight (kg) 69 (13) 83 (13) 75 (15) 

Systolic Blood Pressure (mmHg) 136 (19) 142 (17) 139 (19) 

Diastolic Blood Pressure (mmHg) 77 (10) 81 (10) 79 (10) 

Left atrium maximum volume (cm^3) 64 (15) 79 (19) 71 (18) 

Left atrium minimum volume (cm^3) 28 (9) 37 (12) 32 (11) 

Left atrium stroke volume (cm^3) 36 (8) 43 (11) 39 (10) 

Left atrium emptying fraction (%) 57 (8) 54 (7) 56 (8) 

Characteristics of the participants who contributed to the GWAS are listed as mean (standard deviation). 3 
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Table 2: GWAS lead SNPs 1 

Trait CHR BP dbSNP 
Effect 
Allele 

Other 
Allele 

EAF BETA SE P 
Nearest 
Gene 

LAmax 6 31294375 rs9265346 G A 0.33 0.045 0.007 1.10E-09 HLA-B 

LAmax 6 79554193 rs6926537 T A 0.512 -0.039 0.007 9.10E-09 IRAK1BP1 

LAmax 6 107433645 rs60237682 T C 0.683 -0.041 0.007 3.80E-08 BEND3 

LAmax 12 66343400 rs1038196 G C 0.486 0.039 0.007 1.10E-08 HMGA2 

LAmax 19 46213416 rs62111731 A G 0.479 0.042 0.007 7.10E-10 FBXO46 

LAmax 
indexed 

2 179650954 rs6715901 G A 0.507 -0.043 0.008 1.20E-08 TTN 

LAmax 
indexed 

4 111665783 rs2634073 T C 0.166 0.057 0.01 2.00E-08 PITX2 

LAmax 
indexed 

5 32831670 rs13154066 T C 0.402 -0.05 0.008 6.60E-11 NPR3 

LAmax 
indexed 

6 31229203 rs9264391 G A 0.893 -0.089 0.014 9.30E-11 HLA-C 

LAmax 
indexed 

6 107442277 rs9480737 A G 0.682 -0.05 0.008 8.80E-10 BEND3 

LAmax 
indexed 

19 46166806 rs140153691 T TGC 0.639 -0.047 0.008 4.10E-09 GIPR 

LAmax 
indexed 

22 26156505 rs133873 T A 0.775 -0.055 0.009 9.60E-10 MYO18B 

LAEF 1 51322205 rs79948214 A G 0.984 0.161 0.029 4.70E-08 FAF1 

LAEF 1 116310967 rs4074536 T C 0.702 -0.052 0.008 7.80E-11 CASQ2 

LAEF 14 23874117 rs440466 T C 0.622 0.056 0.008 7.30E-14 MYH6 

LAEF 22 26159289 rs133885 G A 0.548 0.046 0.007 3.60E-10 MYO18B 

LAmin 6 31294375 rs9265346 G A 0.33 0.044 0.007 8.30E-09 HLA-B 

LAmin 6 79518638 rs35790661 C CCA 0.63 -0.043 0.007 4.40E-09 IRAK1BP1 

LAmin 6 107442277 rs9480737 A G 0.682 -0.041 0.007 3.10E-08 BEND3 

LAmin 10 92681480 rs780162510 CATA C 0.49 0.04 0.007 2.20E-08 ANKRD1 

LAmin 11 65336819 rs3782089 C T 0.928 0.074 0.013 4.70E-08 SSSCA1 

LAmin 15 99248018 rs4966014 C T 0.3 0.045 0.008 4.20E-09 IGF1R 

LAmin 19 46315357  AT A 0.476 0.047 0.007 1.20E-11 RSPH6A 

LAmin 22 26164079 rs133902 C T 0.56 -0.041 0.007 4.30E-09 MYO18B 

LAmin 
indexed 

2 3912741 rs56289263 C T 0.938 -0.093 0.017 4.40E-08 DCDC2C 

LAmin 
indexed 

2 179650954 rs6715901 G A 0.507 -0.041 0.007 4.50E-08 TTN 

LAmin 
indexed 

4 24289655 rs1533093 C T 0.862 -0.062 0.011 3.80E-08 DHX15 

LAmin 
indexed 

4 111665783 rs2634073 T C 0.166 0.057 0.01 1.20E-08 PITX2 

LAmin 
indexed 

5 32831670 rs13154066 T C 0.402 -0.043 0.008 1.40E-08 NPR3 

LAmin 
indexed 

6 31294375 rs9265346 G A 0.33 0.047 0.008 1.00E-08 HLA-B 
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LAmin 
indexed 

6 107442277 rs9480737 A G 0.682 -0.049 0.008 1.00E-09 BEND3 

LAmin 
indexed 

8 97223162 rs35216833 C T 0.456 0.042 0.007 1.00E-08 UQCRB 

LAmin 
indexed 

10 92586289 rs112343361 A ACT 0.497 -0.046 0.008 1.80E-09 HTR7 

LAmin 
indexed 

15 99248018 rs4966014 C T 0.3 0.047 0.008 1.80E-08 IGF1R 

LAmin 
indexed 

17 45097337 rs8078336 G T 0.965 -0.137 0.025 2.70E-08 GOSR2 

LAmin 
indexed 

19 46292259 rs7246377 G A 0.534 -0.049 0.007 2.80E-11 DMWD 

LAmin 
indexed 

22 26156512 rs133874 A G 0.773 -0.061 0.009 6.80E-12 MYO18B 

LASV 6 31225196 rs199610865 T TA 0.853 -0.055 0.01 2.90E-08 HLA-C 

LASV 14 23869029 rs376439 A G 0.606 0.045 0.007 2.70E-10 MYH6 

LASV 
indexed 

6 31225196 rs199610865 T TA 0.853 -0.067 0.011 4.70E-10 HLA-C 

LASV 
indexed 

9 136138765 rs8176685 
GCGCC
CACCA
CTA 

G 0.82 -0.059 0.01 3.20E-09 OBP2B 

LASV 
indexed 

14 23869029 rs376439 A G 0.606 0.048 0.008 8.10E-10 MYH6 

BP: GRCh37-base position. dbSNP: dbSNP identifier, where available. EAF: Effect allele frequency. 1 

BETA: BOLT-LMM effect size of the effect allele. SE: Standard error. P: BOLT-LMM P-value. 2 

“Indexed” indicates that the trait has been divided by body surface area. 3 

  4 
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Figures 1 

Figure 1 2 

 3 

Study overview. Left panel: Orientation of the different planes in which images of the atrium were 4 

captured. Middle panel: Example images from each of the four imaging planes; after interpretation with 5 

the deep learning model, the left atrium is colored in blue. Right panel: schematic overview representing 6 

reconstruction of the left atrium based on information obtained from the deep learning output from the 7 

four imaging planes. 8 

  9 
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Figure 2 1 

2 

In the left panel, a flow diagram breaks down the imaged population into groups with and without AF, 3 

and then further into groups that do and do not appear to have normal atrial contraction patterns. In the 4 

right panel, the LAmin volume is depicted for these groups with violin plots; the median for each group 5 

is demarcated with a vertical line. 6 
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Figure 3 1 

2 

Left panel (“Prevalent disease”): the difference in LA volumes (Y axis) between UK Biobank 3 

participants with atrial fibrillation (“AF”), heart failure (“CHF”), hypertension (“HTN”), or stroke 4 

occurring prior to MRI compared to participants without disease (X axis). Right panel (“Incident 5 

disease”): hazard ratios for incidence of AF, CHF, HTN, and stroke (Y axis) occurring after MRI per 1 6 

standard deviation increase in LA volumes (X axis). Point estimates are represented by a circle; 95% 7 

confidence intervals for the estimate are represented by error bars. 8 

 9 
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Figure 4 1 

2  
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Manhattan plots show the chromosomal position (X-axis) and the strength of association (-log10 of the P 1 

value, Y-axis) for all raw and BSA-indexed phenotypes. Loci that contain SNPs with P < 5E-08 are 2 

colored red and labeled with the name of the nearest gene to the most strongly associated SNP. 3 
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Figure 5 1 

2 

The 8 loci associated with LA measurements and AF are displayed. All loci (except those near CASQ2 3 

and PITX2) have multiple patterns of linkage disequilibrium and are therefore represented multiple times. 4 

Black dots represent an association P < 5E-8; gray dots represent P < 5E-6. Effect sizes are oriented with 5 

respect to the minor allele. Effect size for AF loci represents the logarithm of the odds ratio. 6 

 

s. 
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Figure 6 1 

2 

Disease incidence curves for the 417,881 participants who were unrelated to within 3 degrees of the 3 

participants who underwent MRI in the UK Biobank. Those in the top 5% for the BSA-indexed LAmin 4 

PRS are depicted in red; the remaining 95% are in gray. X-axis: years since enrollment in the UK 5 

Biobank. Y-axis: cumulative incidence of AF (19,875 cases in the bottom 95% and 1,272 cases in the top 6 

5%). Those in the top 5% of genetically predicted LAmin-indexed had an increased risk of AF (Cox HR 7 

1.22, P = 1.2E-11) compared with those in the remaining 95% in up to 12 years of follow-up time after 8 

UK Biobank enrollment. 9 

 

p 
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