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Abstract

Parkinson’s Disease (PD) is a progressive neurodegenerative movement disorder charac-

terized by loss of striatal dopaminergic neurons. Progression of PD is usually captured by a

host of clinical features represented in different rating scales. PD diagnosis is associated with

a broad spectrum of non-motor symptoms such as depression, sleep disorder as well as motor

symptoms such as movement impairment, etc. The variability within the clinical phenotype

of PD makes detection of the genes associated with early onset PD a difficult task. To address

this issue, we developed CuNA, a cumulant-based network analysis algorithm that creates

a network from higher-order relationships between eQTLs and phenotypes as captured by

cumulants. We also designed a multi-omics simulator, CuNAsim to test CuNA’s qualitative

accuracy. CuNA accurately detects communities of clinical phenotypes and finds genes asso-

ciated with them. When applied on PD data, we find previously unreported genes INPP5J,

SAMD1 and OR4K13 associated with symptoms of PD affecting the kidney, muscles and ol-

faction. CuNA provides a framework to integrate and analyze RNA-seq, genotype and clinical

phenotype data from complex diseases for more targeted diagnostic and therapeutic solutions

in personalized medicine. CuNA and CuNAsim binaries are available upon request.
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1 Introduction1

A primary goal in complex disease genetics is to understand how genes influence the symp-2

toms, that is, the mapping from genotype to phenotype. The knowledge about etiology3

and pathogenesis of a disease provides a basis for targeted treatment and prevention. Case-4

control genome wide association studies (GWAS) and whole-exome sequencing (WES) are5

useful methods to understand the rare causative mutations that underlie complex diseases6

with small effects from common variants [1]. Quantitative Trait Loci (eQTL) studies bridge7

these methods by enabling investigation of the effect of the genotypes or risk loci on gene8

expression levels and how, in turn, they affect phenotypes [2]. expression eQTL analysis is9

used to determine hotspots, construct causal networks, discover stratification in clinical phe-10

notypes and select genes for clinical trials [3]. The application of these methods have revealed11

a significant number of risk loci [4–6] in complex diseases.12

Parkinson’s Disease (PD) is such a complex neurological disorder affecting approximately13

1.2% of the world’s septuagenarian population. PD has a rapid progression characterized by14

motor symptoms due to loss of dopaminergic neurons in the substantia nigra and presence of15

Lewy bodies [7], bradykinesia, rigidity and tremor [8]. PD progresses from early symptoms16

such as mild non-motor manifestations to significant degenerative effects on mobility and17

muscle control [9] in advanced stages. The progression of symptoms of PD is tracked by18

rating scales which asses different stages of the disease. The most widely accepted rating19

scale is the Hoehn and Yahr (HY) scale [10], while another comprehensive assessment scale20

is the Unified Parkinson’s Disease Rating Scale sponsored by the Movement Disorder Society21

(MDS-UPDRS) [11]. Recently, over 41 genetic susceptibility loci have been associated with22

late-onset PD in the largest GWAS meta-analysis up to date [12]. Few genes have been found23

to be causal among these risk loci, but for majority of loci, it is not yet known which genes24

are linked with PD risk. Moreover, despite concerted efforts in understanding the genomic25

processes underlying the progression of the disease, the clinical heterogeneity of PD makes it26

elusive. There is a complex interaction between motor and non-motor symptoms, with both27

impacting key issues such as sleep, constipation, depression and muscle movement [13, 14].28

It has also been hypothesized that PD actually comprises two subtypes, brain-first or body-29

first [15]. Due to this heterogeneity in clinical features and their trajectories, it is important30

to understand the biological processes underlying these groups of features and symptoms.31

To this end, we developed CuNA, namely, Cumulant-based Network Analysis. CuNA finds32

higher order genotype-phenotype interactions by integrating genes implicated in the disease33

as obtained from GWAS or eQTL studies and the associated phenotypes or clinical features.34
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Hence, we find groups of features from the similar subsets of subjects using logical relation-35

ships among features called “redescription” clusters and subsequent cumulant computations.36

CuNA performs community detection on the network constructed from the significant higher-37

order interactions between clinical features and genes related to the disease. To show that38

CuNA accurately captures the interaction between the biomarkers and phenotypes, we de-39

signed CuNAsim, a simulator for gene expression, genotypes and phenotypes. CuNAsim is a40

multi-omics simulator which simulates genomics and transcriptomics data accounting for en-41

dophenotypes. It also captures eQTLs and relationships between omics data with an array of42

clinical phenotypes. Although in framework it is similar to a prior multi-omics simulator [16],43

CuNAsim provides simulation scenarios with relative correlation of each phenotype with a44

user defined set of biomarkers (genes and genotypes).45

To disentangle the effects of heterogeneity of PD, we applied CuNA to the collection of46

data from the Parkinson’s Progression Markers Initiative (PPMI) study (https://www.ppmi-47

info.org). We found several novel genes associated with a collection of PD phenotypes. Al-48

though previous work has demonstrated success in predicting PD status from gene expression49

data (e.g. [17]), associations of genes with the phenotypic measurements underlying PD di-50

agnosis have not been reported before at this level of granularity. CuNA enables us to find51

such interactions which are often not captured by traditional GWAS, highlighting the clinical52

heterogeneity of the disease. Although, we apply CuNA to understand the biological under-53

pinnings of motor and non-motor symptoms of PD, the method can be applied to a host of54

complex diseases which are captured by an array of clinical features, symptoms, environmen-55

tal and behavioral effects such as Alzheimer’s Disease, Coronary Artery Disease ad metabolic56

syndrome, Cancer and other neurological disorders. CuNA finds biomarkers associated with57

these clinical and non-genetic features paving the path for future biomarker discovery and58

therapeutics for complex diseases.59

2 Methods60

2.1 CuNAsim61

CuNAsim is a multi-omics simulator integrating phenotypes, genotypes, and gene expres-62

sion levels. To handle the integration of different omics data we started with a multivariate63

distribution64

f(x)ddx =

√

det(A)

(2π)d
exp

(

−
1

2
(x− µ)TA(x− µ)

)

ddx (1)
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Figure 1: Overview of the study design with CuNA playing a central role. Inputs are colored in
orange and output in blue.

Components of x were identified as phenotypic (binary, which may include environmental65

conditions as well), SNP (pairs of binary alleles, one for each of the chromosome pairs), or66

gene expression (floating). Covariances A−1 were specified in terms of A = σcor(x, xT )σ where67

the σ is a diagonal matrix with values representing the spread of the variates, and cor(x, xT )68

is specified to yield correlations among phenotypes, alleles between each pair of chromosomes69

representing Hardy-Weinberg disequlibrium, and among gene expression levels reflecting co-70

regulation among pathways. Correlations between phenotypes, SNPs and expression levels71

reflect interactions including allele impacts on expression levels, relationships between SNPs,72

expression levels, and disease/phenotype processes, driven by biological pathways. Offsets µ73

set quantities such as MAF, case/control proportions, and expression level centers. Binary74

values were mapped from I(xi ≥ 0). The fraction of cases are E(I(xi ≥ 0)). Genotypes were75

mapped from I(xI ≥ 0) + I(xi+1 ≥ 0). MAF is then E(I(xi ≥ 0)). ORs may be derived76

from the joint probabilities E(I(xi ≥ 0 ∧ xj ≥ 0)) for SNP values xi. Expression levels were77

mapped to exp(xi).78

We simulated three different simulation scenarios for 1,000 samples and 11 features (379

phenotypes, 3 SNPs and 5 genes with varying expression levels). Although CuNAsim can80

generate high dimensional data we restricted our toy simulation to demonstrate the accuracy of81

CuNA in picking out the genotype-phenotype interactions with the highest Pearson correlation82
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coefficient (r2) and to demonstrate its robustness in presence of false positives and correcting83

for spurious associations. To achieve this objective we designed three scenarios with varying84

correlations. In the first scenario, we designed an extreme case where only a few features among85

the genes, SNPs and phenotypes were highly correlated with each other (inset in Figure 2).86

In the second case, we took an average case where many of the features were moderately87

correlated with each other (Supplementary Figure 5). For the third case we performed a88

sanity check with completely uncorrelated features, therefore, the resulting correlation matrix89

being equal to an identity matrix.90

2.2 Parkinson’s Disease Data91

RNA-seq expression data92

We compiled RNA-seq gene expression data from the PPMI phase 2 release containing 4,64993

blood-based samples across five visits and 34,386 genes with Transcripts per million (TPM)94

values. PPMI annotates samples with labels reflecting whether they are from de novo PD95

subjects (subjects diagnosed with PD for two years or less and are not taking PD medications;96

annotated as PD) and from control subjects without PD who are 30 years or older and do not97

have a blood relative with PD diagnosis (annotated as HC). We used PD (n=293) and HC98

(n=163) samples only from the baseline visit for our analyses as the number of overlapping99

samples with genotype and gene expression data for other visits were low.100

Genotype data101

The genotype data released in Phase 1 of PPMI contained 960 individuals and approximately102

44 million high quality Single Nucleotide Polymorphisms (SNPs) that passed GATK VQSR103

quality control. We further filtered SNPs with missing genotyping rate > 0.02 for SNPs104

and individuals, respectively and Minor Allele Frequency (MAF) > 0.05, Hardy-Weinberg105

equilibrium > 1e− 6 and removed individuals with heterozygosity rates with more than three106

standard deviations from the mean resulting in 5.6 million SNPs. We only selected PD and107

HC samples having baseline gene expression data, 456 individuals.108

2.3 CuNA109

CuNA integrates the phenotypes related to PD (or any disease) along with the genetic vari-110

ants or genes as features, and computes higher-order associations between these features to111

find subsets of features influencing groups of individuals with similar underlying biological112
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pathways. An outline of the algorithm is given in Algorithm 1. CuNA computes cumulants113

and construct networks with only statistically significant connections between any two pair of114

features i and j. It computes Ni,j as a tuple of number of cumulant groups containing both i115

and j denoted as ni,j , number of cumulant groups containing only i: ni,∗, number of cumulant116

groups containing only j: n∗,j and number of cumulant groups without either of i or j. This117

allows us to compute a Fisher’s exact test and obtain significance parameters for each pair i118

and j and whether the edge between them in a network would be at random. We form the119

network with pairs of features which has a p < 0.05 in the Fisher’s exact test.

Algorithm 1 CuNA: Cumulant-based Network Analysis

Input: Set of k features Y = y1, y2, · · · , yk containing candidate genes and phenotypes of PD.
Output: Communities, M = m1,m2, · · · ,mp of interactions between the genes and phenotypes.
1: Compute G’s (Equation 3) to identify higher-order interactions between Y.
2: Perform permutation tests and obtain F, statistically significant subsets of features.
3: Construct network and detect communities: M = NetCoDe(F)
4: Annotate M to discover biological pathways underlying candidate genes and phenotypes.

Algorithm 2 NetCoDe: Network formation and community detection

Input: F = f1, f2, · · · , fl where fi is a group of k features denoted by fi = fi1 , fi2 , · · · , fik .
Output: Communities, M = m1,m2, · · · ,mp of interactions between the genes and phenotypes.
1: FOR all l groups of features:
2: FOR all (i, j) pair of

(

k
2

)

features:
3: Compute Ni,j = ni,j , n∗,j , ni,∗,n∗,∗

4: Obtain p-value pi,j Fisher’s exact test on Ni,j

5: IF pi,j < 0.05
6: E ∪ ei,j
7: V ∪ vi, vj
8: END IF

9: END FOR

10: END FOR

11: Build a network, G = (V,E) where vertices (V) are features fi and fj and the edge (E)
between them have weights ci,j .

12: Perform community detection using Girvan-Newman method [18] and obtain M communities.

120

2.4 Study design121

CuNA is a framework to study the genetic factors influencing the clinical features of a complex122

disease, in this case, PD with its motor and non-motor symptoms. As a first step, we take123

the genotype data as well as the RNA-seq gene expression data as input and compute eQTLs.124

We extract significant cis-eGenes (above a predefined statistical significance threshold) and125

include them as features with the phenotypic measurements related to PD. Thereafter, we ap-126
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ply CuNA (Cumulant-based Network Analysis) as a meta-analysis method on these candidate127

genes and phenotypic features in order to draw higher-order associations between them. We128

construct a network as part of CuNA and perform community detection on the network to129

obtain communities or clusters of interacting features (genes and phenotypes). Further gene130

ontology analysis is performed on these interacting genes to obtain the biological pathways131

highlighted for similar symptoms or features in PD. The outline of our approach is detailed132

in Figure 1.133

Computing eQTLs134

We used Matrix eQTL [19] for fast eQTL analysis on 34,386 genes and 5.6 million SNPs across135

456 individuals. For all of our eQTL analysis we used p-value threshold of 1× 10−7 and FDR136

< 0.05 and a distance of 1× 106 base pairs in which the gene-SNP pair would be considered137

local and tagged as cis-eQTL (Supplementary Figure 1). Matrix eQTL tests for association138

between each SNP and transcript by modeling the effect of genotype as either additive linear139

or categorical. We computed the top 20 Principal Components (PCs) of the genotype data140

using TeraPCA [20] and included them along with age and gender information as covariates141

to correct for latent population structure (Supplementary Figure 2).142

Supervised classification143

We used machine learning approaches from Python’s scikit-learn 0.23.2 package to classify HC144

from PD on 456 individuals (293 PD and 163 HC), with 25% of the data used for validation. We145

applied the Synthetic Minority Oversampling Technique (SMOTE) [21] to balance the PD and146

HC classes as we have more cases than controls. We used a host of classifiers such as Random147

Forest, Linear Regression, Ridge Regression, Support Vector Machine (SVM) with linear148

and Radial Basis Function (RBF) kernels, etc. on the training data set and performed five-149

fold cross validation (CV) for finding optimal hyper-parameters. We performed permutation150

tests using scikit-learn’s model selection for classification to obtain statistical significance (p-151

value) of the performance of the chosen classifier using CV. Once these subsets of features152

are identified, we obtain statistical significance of each such group by permutation tests and153

from the significant subsets of features (p < 1e− 6, FDR< 0.05 and |Z| > 3), we construct a154

network.155

CuNA builds the networks between the features and the edge weights between any two156

feature representing the number of times these features have grouped together in all the157

subsets of features in the cumulant computation. The interaction network thus can be very158
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dense with a total of
(

k
2

)

edges with k features. We thus allow only a small percentage of159

edges until we have observed all k features due to ease of visualization and analysis. On this160

network, we perform community detection using the algorithm described in Algorithm 2 and161

analyze each such community drawing latent interactions between genes and the symptoms162

or clinical features of the disease.163

2.5 Cumulants164

We seek to identify distinct groups of individuals whose pattern memberships may give hints165

to underlying pathways involved with disease processes. Relationships between the roles of166

these features defining the patterns are revealed in how multiple patterns capture the same167

groups of subjects, called redescriptions (Details in Appendix A). Since most of the progression168

markers collected in the PPMI are strongly correlated, and we need to factor out those strong169

lower-order correlations from higher order associations marking distinct groups of individuals170

differentiating disease processes as their Parkinson’s advances.171

One approach towards such a factorization is suggested through a convergence of a number172

of fields of study. Correlation expansions emerge naturally in quantum field theory, expressed173

as a series of Feynman diagrams. These factored moments, essentially higher-dimensional174

cumulants, may be factored to represent a set of “one-particle-irreducible” (1PI) diagrams [22].175

Such emerge naturally in statistics of large deviations through Cramér’s theorem [23], which176

also connects to the notion of “effective actions” from quantum field theory. Their generating177

functions satisfy useful set partition relationships, and have been a part of traditional statistics178

for some time [24].179

This factorization is represented by a moment generating function180

E



exp





∑

j

FjJj







 = A+
∑

l

JlGl +
1

2!

∑

ll′

JlJl′Gll′+

1

3!

∑

ll′l′′

JlJl′Jl′′Gll′l′′ +
1

4!

∑

ll′l′′l′′′

JlJl′Jl′′Jl′′′Gll′l′′l′′′ + · · ·

= exp

(

∑

l

JlKl +
1

2!

∑

ll′

JlJl′Kll′ +
1

3!

∑

ll′l′′

JlJl′Jl′′Kll′l′′+

1

4!

∑

ll′l′′l′′′

JlJl′Jl′′Jl′′′Kll′l′′l′′′ + · · ·

)

(2)

where the Fj are features indexed by j (defined in Algorithm 1), the G’s represent moments,181

A is a constant offset (unity in this case) defined by J = 0, and the K’s represent higher order182

cumulants, e.g. Gij = E(xixj) and Gijκ = E(xixjx
2
κ), and the Kij and Kijκ would be the183
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corresponding cummulants. These may be extracted in terms of the power series to yield184

Gκ = Kκ

Gκκ′ = Kκκ′ +KκKκ′

Gκκ′κ′′ = Kκκ′κ′′ +KκKκ′κ′′+

Kκ′Kκ′′κ +Kκ′′Kκκ′ +KκKκ′Kκ′′ (3)

Gκκ′κ′′κ′′′ = Kκκ′κ′′κ′′′ +KκKκ′κ′′κ′′′ +Kκ′Kκ′′κ′′′κ+

Kκ′′Kκ′′′κκ′ +Kκ′′′Kκκ′κ′′ +Kκ′′′κ′Kκ′′κ+

Kκ′κ′′Kκ′′′κ +Kκ′′′κ′′Kκκ′ + 2KκKκ′Kκ′′κ′′′+

2KκKκ′′′Kκ′κ′′ + 2KκKκ′′Kκ′κ′′′ + 2Kκ′Kκ′′′Kκκ′′+

2Kκ′Kκ′′Kκκ′′′ + 2Kκ′′′Kκ′′Kκκ′ +KκKκ′Kκ′′Kκ′′′

We apply this factorization to patterns, and test significance constructing null hypotheses and185

variances by shuffling phenotypes.186

2.6 Redescription clusters187

Subjects s ∈ S are described by a list of features fi(s) indexed by feature labels i ∈ F . Each188

feature has an alphabet Ai so that fi(s) ∈ Ai which is often binary, but could be defined on189

the reals. Examples of binary features in F are diagnoses (Dx) such as PD or other motor190

and non-motor, symptoms, blood pressure, etc. which would have a continuum alphabet191

(Abmi = R).192

For a given ai ∈ Ai, the set of subjects that have that value is f−1
i (ai) ⊆ S. So the list of193

subjects with PD can be written f−1
PD(1). In the case of continuous variables, the selection of194

sets is according to a threshold, such as the mean m(fi(S)), mapped to 1 if fi(s) ≥ m(fi(S)).195

Patterns may be described in terms of conjunctions i∧j for i, j ∈ F such that f−1
i∧j(ai, aj) =196

f−1
i (ai) ∩ f−1

j (aj) for binary ai, aj . This definition is extended to include either atomic i, j,197

such as PD or T2D, or to any combinations of conjunctions subject to the logical algebra of198

∧ (e.g. (i ∧ j) ∧ (i ∧ k) = i ∧ j ∧ k for i, j, k ∈ F subject to values ai, aj , ak. So we can199

specify the PD subjects with a motor or non-motor symptom such as walking or handwriting200

as f−1
Walk∧PD(Walk = 1, PD = 1). Such combinations of conjunctions i that have more or201

less members f−1
i (a) than expected by chance are called patterns.202

Binomial and other tests of the significance of patterns can be dominated by lower-order203
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correlations among the variables in a pattern. Two distinct patterns that yield the same204

subsets of subjects, e.g. f−1
i (a) = f−1

j (a), are called “redescriptions.” If conjunctions yield a205

form such as A ∩ B = B, then it may be deduced that B ⊂ A, and the conditions yielding206

A and B satisfy b ⇒ a. In other words, redescriptions can reveal logical relationships among207

features. Such relationships may reflect underlying biological pathways reflected in these208

connected phenotype patterns. Therefore, each of these patterns i specify a phenotype, which209

may be associated with genotypes or other -omic data using standard methods.210

Given the presence of misclassifications, differential evolution of disease stages, simple211

transcription mistakes, etc, result in errors in estimates of f−1
i (a) must be accounted for in212

estimating equivalence. We can use Jaccard distances d = 1− |A∩B|
|A∪B| measures deviations. So213

d(A ∪ B,B) = 1 − |A∪|
|B| is 0 if B ⊆ A, some non-zero value with any B * A. This distance214

measures the probability that samples drawn from A and B are not shared, which gives an215

index for the possible to distinguish disruption due to errors, or whether it would be possible216

to distinguish non biological pathways vs. biological pathways with error.217

2.7 Pathway Analysis218

We performed gene ontology by doing pathway enrichment analysis of the 24 cis-genes using219

the package clusterProfiler 3.8 [25] in Rwith the KEGG database [26], with p < 0.05 and220

Benjamini-Hochberg false discovery rate adjustment.221

3 Results222

3.1 Simulation study223

We applied CuNA on the data simulated by the multi-omics simulator CuNAsim which was224

developed particularly for integrating genomics, transcriptomics and phenotypes. In the first225

scenario we allowed only a few highly correlated interactions between the features such as226

(Gene0 — SNP0 ) with r2 = 0.9 , (Gene0 — SNP2 ) with r2 = 0.8 , (Pheno0 — Pheno1 )227

with r2 = 0.6, etc. Using the simulated data from the first scenario as an input to the CuNA228

pipeline, we found the resulting embedded network from higher order interactions captures all229

the aforementioned interactions (Figure 2). Running the community detection algorithm on230

the network (Figure 2) we found the following communities:231

– Gene0, SNP2, Pheno2232

– SNP0233

10

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.02.21261457doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.02.21261457


Figure 2: Network of the simulated variables from the first scenario with highly correlated features.
The nodes are colored by degrees (darker colors have higher degree). The correlation matrix of
the variables is shown in the inset with the color gradient.

– Pheno0, Pheno1234

Thus, CuNA captures the communites accurately as reflected in the network (Figure 2) as235

well as the original correlations which was the input to Algorithm 1.236

For the average case with moderately correlated interactions between features as shown237

in Supplementary Figure 5, we see a similar behavior when we applied CuNA. It captures238

the highly correlated interactions such as (Gene0 — SNP1 ), (Gene0 — Gene1 ), (Gene2 —239

Pheno1 ), etc. The communities also reflected clusters of biomarkers and phenotypes which240

followed the input correlation matrix as shown in the inset of Supplementary Figure 5. They241

were:242

– Gene0, Gene1, Gene2, SNP1, Pheno2243

– SNP0, Pheno0244

– Pheno1245

For another extreme case of no correlation between the features we found none of the in-246

teractions crossed our user defined threshold of p < 1e − 6, |Z| > 3 and FDR< 0.05. As247

expected, CuNA failed to observe anything significant from uncorrelated features even when248

we increased the parameters for checking false positive associations. The parameters for gen-249

erating the simulated correlations with mean µ and standard deviation σ for each feature is250
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detailed in Supplementary Tables B-D for the first simulation scenario and in Supplementary251

Tables E-G for the second scenario.252

3.2 Selecting predictive cis-eGenes253

We computed eQTLs on the 456 PD and HC individuals having genotype and gene expression254

data from the baseline visit. We obtained 24 cis and 53,550 trans significant SNP-gene pairs.255

Given that trans-eQTL analyses are more prone to be affected by systematic errors between256

genomic regions than cis-eQTLs [27], we only considered cis-eGenes. Several of the associated257

cis-eGenes play a functional role in PD and are found to be significant in GTEx v8 analyses,258

expressed in brain tissues [28]. The cis-eGenes include known PD-associated genes such as the259

ubiquitin ligase NEDD4 which is protective against α−synuclein accumulation and toxicity260

in animal models of PD [29], AGO2 which co-participates with PD gene LRRK2 [30], KIF1A261

which is a key regulator of neural circuit deterioration in aging leading to intellectual disability,262

muscle weakness, etc. [31], and LRTM1 whose cells survive and differentiate into midbrain263

dopaminergic neurons in vivo resulting in significant improvement in motor behavior [32].264

In addition, several of the genes are known to be expressed in the brain but not previously265

implicated in PD. Details about the protein-coding cis-eGenes and their expression in brain266

and other tissues can be found in Supplementary Table A.267

We evaluated the performance of the 24 cis-eGenes in disease classification with machine268

learning methods on the blood-based gene expression data. The best performing method269

on the 75% training set was SVM with RBF kernel (Supplementary Figure 4). SVM (RBF270

kernel) resulted in an F1 score of 0.61 with precision and recall of 0.62 and 0.65, respectively271

on the 25% test set. This result was statistically significant (permutation test p-value 0.009).272

When we applied the SVM classification using all the genes in the RNA-seq data, we observed273

a similar F1 score of 0.62 as well as similar precision (0.63) and recall (0.66) on the test set274

(Table 1). Hence, the 24 cis-eGenes preserve the performance of the entire set of 34,386 genes275

when classifying PD cases vs. healthy subjects.276

Status Precision Recall F1 score

cis-eGenes HC 0.53 0.24 0.33

cis-eGenes PD 0.67 0.88 0.76

cis-eGenes Total 0.62 0.65 0.61

All genes Total 0.63 0.66 0.62

Table 1: Classification performance of the 24 cis-eGenes, compared to using all genes.

KEGG pathway enrichment analysis of the 24 cis-eGenes revealed one statistically signifi-277
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cant pathway, inositol phophate metabolism (Supplementary Figure 6). Phosphatidylinositol278

4,5 biphosphate enhances the presence of α-synuclein’s membrane association [33]. Inositol-279

phosphate signaling pathway may act to reduce autophagy and in turn play a vital role in280

neurodegeneratie diseases [34] such as PD (due to a decline in autophagy).281

3.3 CuNA reveals genotype-phenotype relationships282

We combined for CuNA the gene expression data on the cis-eGenes and the motor and non-283

motor phenotypes obtained from the PPMI study which included the MDS-UPDRS features,284

HY scale, age, sex, etc. We computed the cumulants to find higher-order interactions be-285

tween all the features (including cis-eGenes). The cumulants’ ability to separate higher-order286

moment contributions from possibly strong lower-order terms is highly desirable, and shows287

separability when applied to PPMI data contrasted with binomial tests of pattern significance.288

Starting from 15,275 sets of features with similar patterns we filtered for significance by289

applying a threshold for p < 1e − 6 and FDR< 0.05 and obtained 761 significant sets of290

features. We constructed the network of dense interactions among all the associated features291

from these sets. The gene SAMD1 and the MDS-UPDRS variable NP2SWAL (chewing and292

swallowing issues) play central roles in the network with the top 20% of the edges (Supplemen-293

tary Figure 3). Allowing more edges make the network denser and does not add new nodes294

(features). Hence, for visualization purposes we use the top 20% of the edges.295

To disentangle the interactions between genes and PD phenotypes we performed commu-296

nity detection on the network (Supplementary Figure 3) and obtained the following community297

clusters:298

– A cluster with variables Dx (diagnosis) and NHY (Hoehn-Yahr scale).299

– A second cluster with the variable NP2SWAL playing a central role with other non-motor300

symptoms such as NP2SALV (saliva and drooling) and NP2SPCH (speech). Other fea-301

tures such as NP1FATG (fatigue), NP1LTHD (light headedness) and NP1SLPD (day-302

time sleepiness) also interact in this cluster.303

– A third cluster with the gene SAMD1 interacting with MDS-UPDRS variables such as304

NP1PAIN (pain), NP1WALK (walking and balance), NP1CNST (constipation) and305

NP1URIN (urinary problems). Genes such as INPP5J and OR4K13 along with the306

phenotype Olfact are also present.307

For visualizing the communities in detail, we computed the Maximum Spanning Tree (MST)308

(Figure 3) of the entire network (Supplementary Figure 3).309
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Figure 3: Maximum Spanning Tree (MST) of the network generated by embedding higher-order
cumulants. Nodes representing phenotypes and genes have black and blue labels, respectively.
Edge widths are directly proportional to their weights. Color of nodes relate to their degree, red
being the highest and green being lowest.
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The first community with the variables Dx and NHY are straightforward to interpret as310

PD diagnosis and HY scale are instrumental tools to understand the disease progression. The311

second community contains MDS-UPDRS variables which are all related to the movement312

of mouth muscles with saliva, drooling, speech and swallowing. Also present are variables313

related to dizziness and fatigue such as light-headedness, daytime sleepiness, etc. which are314

all early symptoms of PD. Lastly, and most importantly, we observe the gene SAMD1 plays315

a very crucial and central role in the network. SAMD1 is expressed in blood and immune316

system including T lymphocytes as well as in brain tissues. T lymphocytes have been shown317

to recognize α−synuclein peptides in PD patient [35] and thus we present evidence for a318

previously unreported association of the gene SAMD1 in PD diagnosis and early symptoms.319

The gene INPP5J is also present in the cluster and is known to be associated in Lowe syndrome320

which causes renal failure and affects the brain. Here, likewise, it interacts with MDS-UPDRS321

variables related to constipation and urinary problems in early onset PD. Also present in the322

cluster is the gene OR4K13 (Olfactory receptor gene) which interacts with the phenotype323

Olfact capturing olfactory problems in early onset PD patients. Thus, CuNA reveals the324

relationships with genes and clinical features of PD as represented by MDS-UPDRS variables,325

HY scale, etc. decoding the heterogeneity of the clinical features of PD.326

4 Discussion327

The cumulant-based network analysis, CuNA, introduced here, can be used to detect genes328

associated with clinical features in higher-dimensional space, adding granular view in contrast329

to traditional case-control studies. There is a dearth of methods addressing the genetic associ-330

ations and underlying biological pathways of the symptoms and clinical features of idiopathic331

PD or other complex diseases. This approach provides a framework integrating genotype,332

gene expression and endophenotypes as input and finds relationships between them. eQTLs333

and genotype-phenotype interactions are often plagued by false positives due to uncorrected334

confounding effects such as population structure, environmental factors, etc. Hence, it is im-335

portant to test the robustness of CuNA to find whether it captures true biomarkers associated336

with phenotypes of interest. We designed CuNAsim, a fast and efficient multi-omics simulator337

which supports an array of phenotypes or clinical features to be tested alongside genotypes and338

gene expression data. The ”piped” algorithm structure of CuNA takes in input the simulated339

data from CuNAsim and accurately captures the correlated features in forms of communities340

in the network. Thus, CuNA is robust under different simulation scenarios and accurately341
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finds true associations.342

CuNA computes cumulants in the form of redescription groups. Cumulants are higher-343

order moments and thus expensive to compute. Higher-order cumulants play an important344

role in the analysis of non-normally distributed multivariate data and the computational com-345

plexity increases with the order by a factor of nd, where d is the order of the cumulant and n is346

the number of marginal variables. In genomics parlance, this creates a computational bottle-347

neck as the number of variables are in the order of hundreds of thousands with the decreasing348

cost of sequencing. Thus CuNA undergoes a computational bottleneck in the cumulant com-349

putation with increasing number of variables. Advances in randomized algorithms and tensor350

decomposition allows for faster computation of cumulants. A possible future direction is to351

make CuNA faster by leveraging super-symmetric tensors in block structures and efficient352

cumulant computation.353

Applying CuNA to a Parkinson’s disease data set of genotype and RNA-seq expression354

data from blood samples with associated multitude of phenotypic measurements, we found355

several novel candidate genes associated with PD phenotypes. We run CuNA on the candidate356

significant cis-eGenes obtained by computing eQTLs. These cis-eGenes captured similar case-357

control classification performance as the whole data set. They were also enriched in the inositol358

phosphate metabolism pathway which is linked with neurodegenerative diseases such as PD.359

Thus, the cis-eGenes have both biological and statistical significance in the context of PD.360

As latent population stratification can lead to spurious eQTLs and confound the study, we361

included the top twenty PCs as covariates in the analysis. CuNA reveals cliques associated362

with related biological functions such as constipation, urination and renal failure and the363

gene INPP5J which is implicated in Lowe Syndrome and is found to be significant in both364

brain and kidney cortex tissues in GTEx analysis (Supplementary Table A). MDS-UPDRS365

measures were found to be associated with genes such as SAMD1 which is expressed in blood366

and immune system as well as brain tissues. Blood-based gene expression such as analyzed367

here has shown similarity with brain-based expression and is an intriguing noninvasive option368

for capturing neurodegenerative disease progression [36].369

CuNA can disentangle the complex higher-order genotype-phenotype interactions, embed370

them in a network and analyze it. Network analysis and community detection approaches371

provide a deeper understanding of association studies involving eQTLs and phenotypes of in-372

terest with a visualization tool. The hyper-parameters and user-defined parameter thresholds373

can be varied to observe robustness and sensitivity of the method in handling false positives.374
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5 Conclusion375

Associations between genotype, gene expression and phenotype data can be complex and376

often confounded by various environmental factors. We propose a novel framework CuNA377

to identify associations with more granularity than a standard case-control association study.378

We demonstrate that CuNA captures true associations by applying it on simulated data as379

obtained from our novel multi-omics simulator CuNAsim. When applied to PD diagnostic data380

encompassing clinical features along with motor and non-motor symptoms, CuNA identifies381

novel gene-phenotype relationships while replicating already known associations with PD.382

GWAS has the potential to find loci with common genetic variants contributing to disease383

risk. It has been extensively used in PD finding genes associated with disease risk. However, in384

progressive diseases such as PD, Alzheimer’s, cancer, cardiovascular diseases, etc. with a rich385

repository of phenotypes or clinical features, it is of significance to study the genes associated386

with an ensemble of the features sharing similar biological pathway. CuNA provides an exciting387

opportunity to decode phenotypic and genotypic diversity and discover genes associated with388

various manifestations of complex diseases, paving the way for future biomarker discovery and389

personalized therapeutics.390
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Supplementary Materials517

Figure 4: QQ plot showing statistical significance of cis (Local p-values, red) and trans (Distant
p-values, blue) eQTLs.

eQTL analysis518

The goal of eQTL analysis is to identify SNPs which are significantly associated with expression519

of known genes. They reveal complex biological processes underlying diseased systems and520

help discover latent genetic factors causing certain diseases. Most eQTL studies perform521

separate association tests for each transcript-SNP pair. Association testing can be done in522

a straightforward manner by linear regression ar ANOVA models and if required, non-linear523

techniques such as generalized linear and mixed models, Bayesian regression [37], accounting524

for pedigree [38], etc. Many methods have been developed to find groups of SNPs associated525

with expression of a single gene [8, 39]. With the advancement of sequencing techniques and526

decreasing cost there has been an unprecedented growth in genotype and expression level data.527

As eQTL studies identify SNPs which are significantly associated with expression of known528

genes, they can be computationally intensive resulting in billions of associations for large scale529

data. The simple linear regression is one of the most commonly used methods for eQTLs.530

y = α+ βs+ ǫ (4)

where ǫ ∼ i.i.d N(0, σ2). The number of such tests can easily result in billions. Instead, if we531

let G is the gene expression matrix, with each row containing measurements for a single gene532

across individuals and S be the genotype matrix, with each row containing measurements for a533

single SNP across individuals. Then the matrix of all gene-SNP correlations can be calculated534
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in one large matrix multiplication. Thus we have,535

Y = GST (5)

The correlations are thus computed in Equation 5 and we report the corresponding test536

statistic, p-value, FDR, etc.537

Redescriptions538

Subjects s ∈ S are described by a list of features fi(s) indexed by feature labels i ∈ F . Each539

feature has an alphabet Ai so that fi(s) ∈ Ai. That alphabet is often binary, but could be540

defined on the reals. Examples of binary features in F are diagnoses (Dx) such as hypertension541

(HT) or type-II diabetes (T2D), or body mass index (bmi) which would have a continuum542

alphabet (Abmi = R).543

For a given ai ∈ Ai, the set of subjects that have that value is f−1
i (ai) ⊆ S. So the list544

of subjects with hypertension can be written f−1
HT (1). In the case of continuous variables,545

the selection of sets is according to a threshold, such as the mean m(fi(S)), mapped to 1 if546

fi(s) ≥ m(fi(S)).547

Patterns may be described in terms of conjunctions i∧j for i, j ∈ F such that f−1
i∧j(ai, aj) =548

f−1
i (ai) ∩ f−1

j (aj) for binary ai, aj . This definition is extended to include either atomic i, j,549

such as HT or T2D, or coronary artery disease (CAD), or to any combinations of conjunctions550

subject to the logical algebra of ∧ (e.g. (i ∧ j) ∧ (i ∧ k) = i ∧ j ∧ k for i, j, k ∈ F subject551

to values ai, aj , ak. So we can specify the diabetic hypertensive subjects as f−1
T2D∧HT (T2D =552

1, HT = 1). Such combinations of conjunctions i that have more or less members f−1
i (a) than553

expected by chance are called patterns.554

Binomial and other tests of the significance of patterns can be dominated by lower-order555

correlations among the variables in a pattern.556

Two distinct patterns that yield the same subsets of subjects, e.g. f−1
i (a) = f−1

j (a), are557

called “redescriptions.” If conjunctions yield a form such as A ∩ B = B, then it may be558

deduced that B ⊂ A, and the conditions yielding A and B satisfy b ⇒ a. In other words,559

redescriptions can reveal logical relationships among features. Such relationships may reflect560

underlying biological pathways reflected in these connected phenotype patterns. Therefore,561

each of these patterns i specify a phenotype, which may be associated with genotypes or other562

-omic data using standard methods.563

Given the presence of misclassifications, differential evolution of disease stages, simple564
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transcription mistakes, etc, result in errors in estimates of f−1
i (a) must be accounted for in565

estimating equivalence. We can use Jaccard distances d = 1− |A∩B|
|A∪B| measures deviations. So566

d(A ∪ B,B) = 1 − |A∪|
|B| is 0 if B ⊆ A, some non-zero value with any B * A. This distance567

measures the probability that samples drawn from A and B are not shared, which gives an568

index for the possible to distinguish disruption due to errors, or whether it would be possible569

to distinguish non biological pathways vs. biological pathways with error.570

Population Structure571

The PPMI data set has population structure which may confound the eQTL computation and572

therefore result in spurious associations in downstream CuNA computations. We observe a573

main cluster of “RAWHITE” which relates to the Europeans and Caucasian ethnicities present574

in the data set. Another cluster appears in the scatterplot of the top two PCs (Figure 5) related575

to the “RABLACK” or the African ethnicities in the data. These legends are defined by the576

PPMI study.

Figure 5: Scatterplot of the top two PCs computed on the genotype data reveals the population
structure in PPMI data set (456 individuals).

577
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Figure 6: Interaction networks between genes and PD phenotypes with only top 20% of the edges
present. Genes are highlighted in blue and phenotypes in black. The color of the nodes relate to
their degrees, red being the highest and green being the lowest degree.

Figure 7: Classification performance comparison on training set with 24 eGenes and 75% of the
456 individuals (293 PD, 163 HC). We compare the Recall as we are more interested in the true
positive classification and selected SVM with RBF kernel as it performed best.
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Genetic variant GTEx expression tissue Brain Regions Reported

rs60444836 Brain AM -
NEDD4 Brain ALL [29]
RNASE4 Brain ALL -
SLC25A51 Brain ALL -

LRTM1 Brain
AM, Anterior cingulate
cortex, BG, CO, Frontal
cortex, HI

[32]

CEACAM8 Brain CH, CE, CO, SN -
KIF18B Brain ALL -
GPRC5B Brain ALL [40]

AGO2
Brain, Pancreas, Liver, Whole
blood, Lung, Stomach, Kidney
cortex, etc.

ALL [30]

ROS1 Brain ALL [41]
AC097721 Brain BG, HI, HY, SCC, SN -

CTB-5506.12 Brain ALL -
KIF1A Brain ALL [31]

FAM225B
Brain, Prostate, Uterus, Ovary,
Thyroid, etc.

ALL -

SAMD1
Brain, Whole blood, Liver, Kidney
Cortex, Stomach, etc.

ALL -

INPP5J
Brain, Adipose, Uterus, Whole
blood, Ovary, Lung, Liver, Kidney
cortex, Stomach, etc.

ALL -

LRP6
Brain, Whole blood, Skin, Ovary,
Kidney cortex, etc.

ALL [42]

ENY2
Brain, Whole blood, Stomach,
Liver, Lung, Kidney cortex, etc.

ALL -

DPMI1
Brain, Whole blood, Skin, Pan-
creas, Stomach, Thyroid, Liver,
etc.

ALL -

Table 2: One cis-eSNP (other cis-eSNPs are not associated with expression in brain) and 18
protein-coding cis-eGenes highlighted by eQTL analysis (remaining 6 out of 24 cis-eGenes are
pseudogenes). The tissues they are expressed in (GTEx v8), along with the reported regions in
the brain are shown. Previously reported implications in PD are cited when available. ALL brain
regions include: Amygdala (AM), Basal ganglia (BG), Cerebellum (CE), Cortex (CO), Cere-
bellar hemisphere (CH), Hippocampus (HI), Hypothalamus (HY), Spinal cord cervical (SCC),
Substantia nigra (SN).
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Figure 8: Network of the simulated variables colored by degrees of each node (darker colors have
more degree). The correlation matrix of the variables is shown in the inset with the color gradient.

Table 3: µ for multivariate Gaussian distribution and standard variation σ for each parameter in
the first simulation scenario.

Features µ σ

Standard variation 0.5 1.34

Pheno1 0.5 1.16

Pheno2 -0.1 2

SNP0 0.3 1.81

SNP0 0.1 1.81

SNP1 0.3 1.72

SNP1 0.5 1.72

SNP2 0 0.5 1

SNP2 1 0.5 1

Gene0 1 5.16

Gene1 1 5.16

Gene2 3 5.16

Gene3 3 5.16

Gene4 3 3
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Table 4: Baseline proportions for binary variates computed from multivariate distributions cor-
responding to case-control proportions and MAFs in the first simulation scenario.

L PL

Pheno0 0.667
Pheno1 0.679
Pheno2 0.48
SNP0 0.588
SNP1 0.53
SNP2 0.59
SNP1 1 0.648
SNP2 0 0.691
SNP2 1 0.691
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Table 5: Odds ratios and proportions of binary measures given either phenotype state or allele
in the first simulation scenario.

L1 L2 OR PL1|L2
PL1|L̄2

PL2|L1
PL2|L̄1

Pheno0 Pheno1 7.093 0.807 0.371 0.821 0.393

Pheno0 Pheno2 1 0.667 0.667 0.48 0.48

Pheno0 SNP0 0 2.87 0.764 0.529 0.673 0.418

Pheno0 SNP0 1 2.875 0.775 0.545 0.615 0.358

Pheno0 SNP1 0 1 0.667 0.667 0.59 0.59

Pheno0 SNP1 1 1 0.667 0.667 0.648 0.648

Pheno0 SNP2 0 1 0.667 0.667 0.691 0.691

Pheno0 SNP2 1 1 0.667 0.667 0.691 0.691

Pheno1 Pheno2 1 0.679 0.679 0.48 0.48

Pheno1 SNP0 0 1.244 0.698 0.651 0.605 0.552

Pheno1 SNP0 1 1.243 0.701 0.654 0.547 0.493

Pheno1 SNP1 0 1 0.679 0.679 0.59 0.59

Pheno1 SNP1 1 1 0.679 0.679 0.648 0.648

Pheno1 SNP2 0 1 0.679 0.679 0.691 0.691

Pheno1 SNP2 1 1 0.679 0.679 0.691 0.691

Pheno2 SNP0 0 1 0.48 0.48 0.588 0.588

Pheno2 SNP0 1 1 0.48 0.48 0.53 0.53

Pheno2 SNP1 0 1 0.48 0.48 0.59 0.59

Pheno2 SNP1 1 1 0.48 0.48 0.648 0.648

Pheno2 SNP2 0 1 0.48 0.48 0.691 0.691

Pheno2 SNP2 1 1 0.48 0.48 0.691 0.691

SNP0 0 SNP0 1 3.407 0.724 0.435 0.652 0.355

SNP0 0 SNP1 0 1 0.588 0.588 0.59 0.59

SNP0 0 SNP1 1 1 0.588 0.588 0.648 0.648

SNP0 0 SNP2 0 1 0.588 0.588 0.691 0.691

SNP0 0 SNP2 1 1 0.588 0.588 0.691 0.691

SNP0 1 SNP1 0 1 0.53 0.53 0.59 0.59

SNP0 1 SNP1 1 1 0.53 0.53 0.648 0.648

SNP0 1 SNP2 0 1 0.53 0.53 0.691 0.691

SNP0 1 SNP2 1 1 0.53 0.53 0.691 0.691

SNP0 1 SNP1 0 3.16 0.688 0.411 0.755 0.494

SNP0 1 SNP2 0 1 0.59 0.59 0.691 0.691

SNP0 1 SNP2 1 1 0.59 0.59 0.691 0.691

SNP1 0 SNP2 0 1 0.648 0.648 0.691 0.691
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Table 6: µ for multivariate Gaussian distribution and standard variation σ for each parameter in
the second simulation scenario.

Features mu sigma

Pheno0 0.5 2.28

Pheno1 0.5 2.45

Pheno2 -0.1 2

SNP0 0 0.3 1

SNP0 1 0.1 1.81

SNP1 0 0.3 1

SNP1 1 0.5 1

SNP2 0 0.5 1.64

SNP2 1 0.5 1

Gene0 1 5.43

Gene1 1 5.43

Gene2 3 3

Gene3 3 7.86

Gene4 3 3

Table 7: Baseline proportions for binary variates computed from multivariate distributions cor-
responding to case-control proportions and MAFs in the second simulation scenario.

L PL

Pheno0 0.63
Pheno1 0.625
Pheno2 0.48
SNP0 0 0.618
SNP0 1 0.53
SNP1 0 0.618
SNP1 1 0.691
SNP2 0 0.652
SNP2 1 0.691
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Table 8: Odds ratios and proportions of binary measures given either phenotype state or allele
in the second simulation scenario.

L1 L2 OR PL1|L2
PL1|L̄2

PL2|L1
PL2|L̄1

Pheno0 Pheno1 8.055 0.804 0.338 0.799 0.33
Pheno0 Pheno2 1 0.63 0.63 0.48 0.48
Pheno0 SNP0 0 1 0.63 0.63 0.618 0.618
Pheno0 SNP0 1 1 0.63 0.63 0.53 0.53
Pheno0 SNP1 0 1 0.63 0.63 0.618 0.618
Pheno0 SNP1 1 1 0.63 0.63 0.691 0.691
Pheno0 SNP2 0 19.026 0.846 0.224 0.876 0.271
Pheno0 SNP2 1 1 0.63 0.63 0.691 0.691
Pheno1 Pheno2 1 0.625 0.625 0.48 0.48
Pheno1 SNP0 0 1 0.625 0.625 0.618 0.618
Pheno1 SNP0 1 1 0.625 0.625 0.53 0.53
Pheno1 SNP1 0 1 0.625 0.625 0.618 0.618
Pheno1 SNP1 1 1 0.625 0.625 0.691 0.691
Pheno1 SNP2 0 2.365 0.696 0.492 0.726 0.528
Pheno1 SNP2 1 1 0.625 0.625 0.691 0.691
Pheno2 SNP0 1 0.48 0.48 0.618 0.618
Pheno2 SNP1 1 0.48 0.48 0.53 0.53
Pheno2 SNP2 1 0.48 0.48 0.618 0.618
Pheno2 SNP1 1 1 0.48 0.48 0.691 0.691
Pheno2 SNP2 0 1 0.48 0.48 0.652 0.652
Pheno2 SNP2 1 1 0.48 0.48 0.691 0.691
SNP0 0 SNP1 1 0.618 0.618 0.53 0.53
SNP0 0 SNP2 1 0.618 0.618 0.618 0.618
SNP0 0 SNP1 1 1 0.618 0.618 0.691 0.691
SNP0 0 SNP2 0 1 0.618 0.618 0.652 0.652
SNP0 0 SNP2 1 1 0.618 0.618 0.691 0.691
SNP0 1 SNP2 1 0.53 0.53 0.618 0.618
SNP0 1 SNP1 1 1 0.53 0.53 0.691 0.691
SNP0 1 SNP2 0 1 0.53 0.53 0.652 0.652
SNP0 1 SNP2 1 1 0.53 0.53 0.691 0.691
SNP1 0 SNP1 1 1 0.618 0.618 0.691 0.691
SNP1 0 SNP2 0 1 0.618 0.618 0.652 0.652
SNP1 0 SNP2 1 1 0.618 0.618 0.691 0.691
SNP1 1 SNP2 0 1 0.691 0.691 0.652 0.652
SNP1 1 SNP2 1 1 0.691 0.691 0.691 0.691
SNP2 0 SNP2 1 1 0.652 0.652 0.691 0.691
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