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Abstract 

STUDY QUESTION 
Can the accuracy of timing of luteal phase endometrial biopsies based on urinary ovulation 

testing be improved by measuring the expression of a small number of genes and a 

continuous, non-categorical modelling approach?  

SUMMARY ANSWER 
Measuring the expression levels of six genes (IL2RB, IGFBP1, CXCL14, DPP4, GPX3, and 

SLC15A2) is sufficient to obtain substantially more accurate timing estimates and assess the 

reliability of timing estimates for each sample. 

WHAT IS KNOWN ALREADY 
Commercially available endometrial timing approaches based on gene expression require 

much larger gene sets and use a categorical approach that classifies samples as pre-

receptive, receptive, or post-receptive. 

STUDY DESIGN, SIZE, DURATION 
Gene expression was measured by RT-qPCR in 260 endometrial biopsies obtained 4 to 12 

days after a self-reported positive home ovulation test. A further 36 endometrial samples were 

profiled by RT-qPCR as well as RNA-sequencing.  

PARTICIPANTS/MATERIALS, SETTING, METHODS 
A computational procedure, named ‘EndoTime’, was established that models the temporal 

profile of each gene and estimates the timing of each sample. Iterating these steps, temporal 

profiles are gradually refined as sample timings are being updated, and confidence in timing 

estimates is increased. After convergence, the method reports updated timing estimates for 

each sample while preserving the overall distribution of time points. 

MAIN RESULTS AND THE ROLE OF CHANCE 
The Wilcoxon Rank Sum Test was used to confirm that ordering samples by EndoTime 

estimates yields sharper temporal expression profiles for held-out genes (not used when 

determining sample timings) than ordering the same expression values by patient-reported 

times (GPX3: p < 0.005; CXCL14: p < 2.7e-6; DPP4: p < 3.7e-13). Pearson correlation 

between EndoTime estimates for the same sample set but based on RT-qPCR or RNA-
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sequencing data showed high degree of congruency between the two (p = 8.6e-10, R2 = 

0.687). 

LIMITATIONS, REASONS FOR CAUTION 
Timing estimates are predominantly informed by glandular gene expression and will only 

represent the temporal state of other endometrial cell types if in synchrony with the epithelium. 

Methods that estimate the day of ovulation are still required as these data are essential inputs 

in our method. Our approach - in its current iteration – performs batch correction such that 

larger sample batches impart greater accuracy to timing estimations. In theory, our method 

requires endometrial samples obtained at different days in the luteal phase. In practice, 

however, this is not a concern as timings based on urinary ovulation testing are associated 

with a sufficient level of noise to ensure that a variety of time points will be sampled. 

WIDER IMPLICATIONS OF THE FINDINGS 
Our method is the first to assay the temporal state of luteal-phase endometrial samples on a 

continuous domain. It is freely available with fully shared data and open source software. 

EndoTime enables accurate temporal profiling of any gene in luteal endometrial samples for 

a wide range of research applications and, potentially, clinical use.  

STUDY FUNDING/COMPETING INTEREST(S) 
This study was supported by a Wellcome Trust Investigator Award (Grant/Award Number: 

212233/Z/18/Z) and the Tommy's National Miscarriage Research Centre. None of the authors 

have any competing interests. JL was funded by the Biotechnology and Biological Sciences 

Research Council (UK) through the Midlands Integrative Biology Training Partnership 
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Introduction 

Menstruation is the defining characteristic of the endometrium in humans and higher primates, 

a trait otherwise found in only a handful of non-primate species (Bellofiore et al., 2017). As a 

consequence of menstruation, the endometrium undergoes iterative cycles of tissue 

regeneration, rapid proliferation and differentiation, which cumulate in a transient window of 

implantation during the midluteal phase of the cycle. The window of implantation represents 

an inflection point in the cycle, after which the endometrium either breaks down or is 

transformed into the decidua of pregnancy, a specialized matrix that accommodates the 

placenta throughout gestation (Gellersen and Brosens, 2014). Endometrial cyclicity is driven 

by the rise and fall in ovarian estrogen and progesterone production, triggering coordinated 

spatiotemporal gene expression changes in resident epithelial, stromal and vascular cells 

(Wang et al., 2020). Further, the midluteal window of implantation heralds the start of intense 

tissue remodelling, characterised not only by abrupt and dramatic changes in epithelial gene 

expression (Wang et al., 2020), differentiation of stromal cells in pre-decidual cells (Lucas et 

al., 2020), and angiogenesis (Demir et al., 2010), but also influx of circulating innate immune 

cells (Strunz et al., 2021), most prominently uterine natural killer cells (Brighton et al., 2017), 

as well as non-hematopoietic bone marrow-derived progenitor cells (Diniz-da-Costa et al., 

2021). 

It is widely accepted that pathological cues that interfere with the sequence of endometrial 

events leading to a functional implantation window causes reproductive failure, including 

recurrent implantation failure (Koot et al., 2016) and recurrent pregnancy loss (Lucas et al., 

2020). However, it has proven challenging to parse the precise underlying mechanisms. There 

are multiple challenges intrinsic to endometrial research, including heterogeneity in the cellular 

composition of endometrial biopsies (Suhorutshenko et al., 2018), intrinsic inter-cycle 

variability in local immune cells (Brighton et al., 2017), and - most prominently - the rapid 

temporal changes in gene expression across the luteal phase (Wang et al., 2020). Accurate 

timing information is therefore critical in endometrial analysis. While the average length of 

menstrual cycles is 28 days, there is considerable intra- and inter-individual variation 

(Soumpasis et al., 2020). A pragmatic solution is to schedule biopsies relative to pre-ovulatory 

luteinising hormone (LH) surge (Tewary et al., 2020). A prospective study on a small cohort 

of healthy women (n = 40) reported that the urinary LH surge occurs mostly within one day 

prior to ovulation, although the range was 4 days (Johnson et al., 2015; Roos et al., 2015). 

Further, the rise in urinary pregnanediol-3-glucuronide, a progesterone metabolite, is more 

variable, occurring over a range of 5 days after ovulation (Johnson et al., 2015; Roos et al., 
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2015). Thus, while timing of endometrial biopsies relative to clinical markers of ovulation is 

useful and convenient, it does not ensure comparable exposures to progesterone stimulation.  

A complementary strategy is to infer timing by analysing the endometrial phenotype. 

Histological dating using the Noyes criteria was the foundational approach (Noyes et al., 

1950), but its accuracy has been brought into question (Coutifaris et al., 2004; Murray et al., 

2004). Alternative methods for timing are based largely on detection of proteins, transcripts or 

microRNAs that mark the putative implantation window (Giudice and Saleh, 1995; Lessey, 

1998; Develioglu et al., 1999; Dubowy et al., 2003; Kliman et al., 2006; Aghajanova et al., 

2009; Sha et al., 2011; Zhang et al., 2012). In addition, two computational approaches for the 

prediction of the window of implantation are currently available commercially. The ERA 

(Endometrial Receptivity Analysis) method was initially based on customised microarrays to 

measure the expression of 238 genes (Díaz-Gimeno et al., 2011; Ruiz-Alonso et al., 2013). 

The ER Map/ER Grade approach uses RT-qPCR measurements of 40 genes (Enciso et al., 

2018). However, both methods time biopsies categorically as either pre-receptive, receptive, 

or post-receptive, which not only severely limits temporal resolution but also risks 

misclassification of samples at the boundary of these time windows. At present, there are no 

cost-effective, validated methods to assess luteal phase endometrium in a continuous, time-

dependent domain. 

This study describes the development and validation of an expression-based assay that 

reflects time as a continuous measurement of days and hours, using a discrete set of 

temporally-sensitive genes. This method, termed EndoTime, is freely available as open source 

software.  
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Materials and Methods 

Ethics 

The study was approved by the NHS Research Ethics Committee, Hammersmith and Queen 

Charlotte’s & Chelsea Research Ethics Committee (1997/5065), and Tommy’s National 

Reproductive Health Biobank (REC reference: 18/WA/0356). All samples were obtained with 

written informed consent and in accordance with The Declaration of Helsinki (2000) 

guidelines. 

Endometrial sample collection  

Endometrial biopsies were obtained from women attending the Implantation Clinic, a 

dedicated research clinic at University Hospitals Coventry and Warwickshire (UHCW) National 

Health Service Trust. Surplus tissues from endometrial biopsies obtained for diagnostic 

purposes were used for this study. Participants were instructed to use over-the-counter urinary 

ovulation tests and contacted the clinic on the day of a positive test or soon after. An 

endometrial biopsy was then scheduled 4 to 12 days after a positive test. The timing of 

endometrial biopsies were designated as LH+(day), i.e. the number of days following a 

positive urinary ovulation test. Following transvaginal ultrasound assessment to exclude overt 

pelvic pathology, an endometrial biopsy was obtained using a Wallach Endocell™ endometrial 

sampler. All samples were immediately portioned with one part stored in RNALater 

Stabilization Solution (Sigma-Aldrich, Dorset, UK), one part snap frozen in liquid nitrogen, and 

one part fixed in 10 % formalin for immunohistochemistry.  

RT-qPCR 

Total RNA was extracted from endometrial biopsies immersed in RNALater Stabilization 

Solution (Merck, New Jersey, USA) within 1 min of sampling using STAT-60 (AMS 

Biotechnology, Oxford, UK), according to the manufacturer’s instructions. Reverse 

transcription was performed from 1µg RNA using the Quantitect Reverse Transcription Kit 

(QIAGEN, Manchester, UK) and cDNA was diluted to 10 ng/µl equivalent before use in qPCR. 

Amplification was performed on a Quant5 Real-Time PCR system (Applied Biosystems, 

Paisley, UK) in 10 µl reactions using 2´QuantiFast SYBR Green PCR Master Mix containing 

ROX dye (QIAGEN), with 300 nM each of forward and reverse primers. L19 was used as a 

reference gene. Primer sequences and information of marker genes are tabulated in 

Supplementary Table 1. 
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RNA-sequencing 

RNA was purified using RNA STAT-60 (AMS Bio) according to manufacturer's instructions 

and treated using Amplification Grade DNase I (Invitrogen) followed by ethanol precipitation 

and clean-up. Quality control, library preparation and sequencing were performed by the 

Wellcome Trust Centre for Human Genetics. Libraries were prepared using the Illumina 

TruSeq Stranded mRNA sample prep kit according to manufacturer's instructions. Paired-end 

75bp sequencing was performed on Illumina HiSeq4000. 

Imaging 

Endometrial biopsies were fixed overnight in 10% neutral buffered formalin at 4°C and wax 

embedded in Surgipath Formula ‘R’ paraffin using the Shandon Excelsior ES Tissue processor 
(ThermoFisher). Tissues were sliced into 3 μM sections on a microtome and adhered to coverslips 

by overnight incubation at 60°C. Deparaffinization, antigen retrieval (pH 9), antibody staining, 
hematoxylin counter stain and DAB colour development were fully automated in a Leica BondMax 

autostainer (Leica BioSystems). Tissue sections were stained for CD56 (a uNK-specific cell 
surface antigen) using a 1:200 dilution of concentrated CD56 antibody (NCL-L-CD56-504, 

Novocastra, Leica BioSystems). Stained slides were de-hydrated, cleared and cover-slipped in a 
Tissue-Tek Prisma Automated Slide Stainer, model 6134 (Sakura Flinetek Inc. CA, USA). Bright-

field images were obtained on a Mirax Midi slide scanner using a 20´ objective lens and opened 

in Panoramic Viewer v1.15.4 (3DHISTECH Ltd, Budapest, Hungary). 

Pre-processing of qPCR data 

RT-qPCR data to be used as input for EndoTime initially had the sign for all ΔCT values 

inverted in order to positively correlate with gene expression. The data was then assessed for 

outliers in expression of any of the six genes, leaving 260 endometrial samples. Expression 

values in individual samples in Data Set I were normalised to a scale of zero to one per gene 

and then adjusted by a batch-specific additive constant as a modest batch effect correction, 

making mean expression values equal in each batch. Batch correction was not necessary for 

samples in Data Set II, as RT-qPCR analysis was performed as a single batch. 

Pre-processing of rLH+ values 

EndoTime modelling required that reported sample time points be converted from an ordinal 

to a continuous domain, a process that was undertaken in two steps. First, the addition of 

random noise between -0.5 and 0.5 sampled from a uniform distribution to each reported LH+ 

(rLH+) value. Second, samples were sorted in ascending order according to these updated 
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timings, and the timings were smoothed using linear regression. This procedure allowed for 

each sample to be spaced evenly throughout the defined time course in a non-discrete 

manner, but close to its original rLH+ value, an approach that was considered robust in the 

presence of samples with unusually high or low reported timing values. 

EndoTime Method 

The approach for modelling via EndoTime relies upon an iteration of temporal gene expression 

profile refinement followed by the application of these refined profiles to estimate sample 

timings. Continuous rLH+ values generated during pre-processing were used to form initial 

expression profiles specific to each panel gene, which were then partitioned into windows of 

equal size (Supplementary Fig. S1). A normal distribution was used to model gene expression 

inside the time window with a weighted mean based on the relative distance of points from the 

mean and standard deviation inferred from samples inside the window (Supplementary Fig. 

S1 and S2). Each window represented a singular time point derived from the median of binned 

reported time points. The first iteration utilised a bin size of 80 samples, which decreased by 

10 with each successive iteration to a minimum of 20.  

Each sample within the data set was then assessed individually for its likely timing. The 

expression values for each marker gene within each window were used to generate a 

probability density curve based on the likelihood that the expression values observed in a 

sample were drawn from the distribution seen in the windowed data. This resulted in a set of 

six probability density curves being generated per sample, with each curve representing the 

results of attempting to estimate timing for the sample based on one gene alone, with 

associated curve maxima suggesting the time point with the greatest likelihood. Utilising a 

shrinking bin size allowed for the first iteration of the process to filter out the majority of noise 

introduced by the unreliable rLH+ into the data while subsequent iterations refined estimations, 

while enforcing a minimum bin size ensured that the curves were smooth and presented a 

single clear maximum. 

This process of generating six individual probability density curves also allowed for an 

assessment to be made regarding the congruency of their peak maxima and therefore the 

consistency with which each gene provided the same timing estimate. Synchronous samples 

were those wherein the six maxima all suggested a similar estimate, while asynchronous 

samples were those that presented conflicting estimations; an ‘asynchrony’ score was 

provided to each sample based on the standard deviation among all six maxima, which 

describes how coherently the aforementioned probability density curve-based approach 

provides a singular timing estimate.  
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Consolidating these six curves into a single aggregate curve allowed for the identification of a 

maximum in a single curve, which was used as the new time point estimation for the sample. 

A window-based approach was used when consolidating the six individual curves into one, 

with bin sizes equal to those used when generating the underlying reference profiles of panel 

gene expression. This process iterated until convergence, with each iteration undertaking both 

refinement of temporal profiles and time point estimation. The difference between the 

estimations provided by the preceding and current iteration was measured using the Euclidean 

distance and convergence was declared once the distance falls below 2. 

During the modelling process, the absolute values of sample timings could deviate from the 

desired range as our method was primarily geared to optimising the correct order of samples, 

rather than retaining the original unit associated with timings. To ensure that EndoTime 

outputs are in line with original units, the raw timings obtained by modelling were converted 

following the last iteration such that the overall distribution of patient-reported LH times is 

approximately matched by the EndoTime output. 

Pre-processing of RNA-seq Data  

RNA-seq libraries were mapped to the hg19 human genome assembly (2014) using Bowtie 

(version no. 2.2.3), TopHat (version no. 2.0.12) and Samtools (version no. 0.1.19) and reads 

mapped to features were counted via HTSeq (version no. 0.6.1) prior to Transcripts Per Million 

(TPM) normalisation. 

In order to apply EndoTime to RNA-seq data, an approach was developed to convert read 

counts of EndoTime panel genes to pseudo-RT-qPCR data. Transcripts Per Million for each 

of the six timing panel genes were initially log2-transformed and then transformed to match 

the mean and standard deviation for each respective gene in the RT-qPCR data of Data Set 

I, with all processing performed in R (version no. 4.0.2) using base functions. 

Statistical Analyses 

To assess the improvement in timing accuracy, we used a cross validation approach. Sample 

timings were estimated using EndoTime with a panel of only five genes, holding out the 

expression data for one gene. Expression data for the held-out gene was ordered a) by 

patient-reported times (denoting this vector as vP), b) by EndoTime timing estimates (denoted 

as vE), and c) by expression level, in ascending order if the expression level of the held-out 

gene increases over time and descending order otherwise (denoted as vG). As patient-reported 

times are integer values with a unit of days, breaking ties needed to be resolved in order to 
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compare directly against the other vectors. This was done by ordering samples of the same 

day in ascending or descending order according to the expression level of the held-out gene. 

We applied the Wilcoxon rank sum test to check whether the absolute values of the differences 

vG - vP were greater than for vG - vE in a single-sided test. A significant p-value indicates that the 

order of samples provided by EndoTime is closer to the perfect order. In this setting, breaking 

the ties for patient-reported times as described above yields the largest p-value among all 

possible resolutions of ties, meaning that statistical significance may be under-stated but not 

over-stated with this approach as the p-value computed is an upper bound for the p-value that 

could be obtained if patient-reported times were more finely resolved. This process was 

repeated six times, holding out one panel gene at a time, and p-values Bonferroni-corrected 

for multiple testing. 

RNA-seq data was examined via Principal Component Analysis in MATLAB following 

transformation of raw counts using the rlog function from the R library DESeq2 (version no. 

1.30.1).  

Data and Software Availability 

The EndoTime software and software documentation are available on GitHub at 

https://github.com/AE-Mitchell/EndoTime under the GNU General Public License Version 3 

(29 June 2007). The RT-qPCR data files are included in the GitHub repository as is the code 

used for pre-processing of RT-qPCR data. The RNA-seq data are available on GEO 

(accession GSE180485).  
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Results 

The EndoTime method was developed using two sample sets of luteal phase endometrial 

biopsies. Demographic information for both sample sets are presented in Supplementary 

Table 2. Sample set 1 consisted of 260 endometrial biopsies assayed by RT-qPCR in nine 

batches. Out of the 260 biopsies, 98 were obtained from women with a history of recurrent 

miscarriage (defined here as 3 or more consecutive pregnancy losses), 81 from women with 

repeated IVF failure (i.e. no positive pregnancy test following 3 or more transfers of day 5 

blastocysts) and the remaining 81 biopsies from control subjects. Sample set 2 consisted of 

36 endometrial biopsies assayed by RT-qPCR and RNA-seq as a single batch. The 

distribution of endometrial biopsies relative to the patient-reported positive urinary ovulation 

test in both sample sets is shown in Supplementary Table 3. 

The EndoTime Method 

Timing estimates of endometrial biopsies should ideally rely on temporal reference profiles of 

marker genes that span the entire luteal phase and are free of noise, as illustrated by synthetic 

data in Figure 1A. In reality, only a limited number of biopsies can be sampled (Fig. 1B), and 

patient-reported days since a positive urinary ovulation test (rLH+) will be subject to a degree 

of error and noise as simulated in Figure 1C, thus obscuring the true temporal expression 

patterns. We observed that the simulated data show a very similar pattern to real-world data 

(Fig. 1D), illustrating the practical relevance of this theoretical framework. EndoTime aims to 

minimise the impact of this source of noise by recovering the original expression patterns and 

thereby allowing for more accurate estimation of endometrial timing. 

Accomplishing this goal requires us to solve a Chicken and Egg problem: inferring the correct 

time point for a given biopsy requires accurate reference expression profiles, but recovery of 

these profiles relies on accurately timed biopsies. Our solution is to apply an iterative 

approach, using the initial rLH+ time points to model expression profiles while accounting for 

uncertainty (Fig. 2A), then updating biopsy timings for all samples based on the modelled 

reference profiles (Fig. 2B). These two steps are iterated, with reference profiles gradually 

becoming less noisy as timing estimates are improved in a stepwise manner (Fig. 2C). The 

process is repeated until convergence, defined as a minimal overall change of sample timings 

from one iteration to the next. 

Modelling temporal expression profiles is done using a window-based approach that considers 

samples in individual segments of the time domain and modelling their mean and variance as 

a normal distribution (Supplementary Fig. 1). The size of the windows is gradually decreased 
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from iteration to iteration as sharper temporal profiles allow for a more detailed model of the 

reference profiles. The position of samples inside a window is taken into account when 

computing the means such that samples near the centre of the window have stronger influence 

than samples near the edge (Supplementary Fig. 2). 

The modelled temporal profiles (Fig. 2A) are then used to compute probability density 

functions for each sample and each marker gene, which show how likely each time point is 

for the given sample as judged by the reference profile of a single marker gene. Joint 

probability density functions are then computed, showing likelihood of sample timing on the 

basis of the reference profiles for all marker genes (Fig. 2B). The maxima of these functions 

are then identified for each sample, which provide maximum likelihood estimates for the most 

appropriate sample timing. The iterated process of updating the reference profiles and 

updating sample timings gradually refines the reference profiles and increases the certainty in 

timing estimates (Fig. 2C, Supplementary Fig. S3).  

Validation of EndoTime Method 

We applied the EndoTime method on sample set 1, comprising of 260 luteal endometrial 

samples. We used a leave-one-out cross-validation approach for the set of marker genes 

used, inferring timings based on five genes while not using the expression data of the held-

out, sixth gene. We hypothesized that EndoTime estimates will yield sharper, less noisy 

temporal profiles for temporally regulated genes. If samples were ordered merely to fit the 

data of five genes without inferring the true order of samples, then the temporal profile for the 

held-out gene would not improve. This process was repeated six times, holding out one gene 

at a time. We found that the temporal profile of each held-out gene became tighter after 

EndoTime with expression values deviating less from the temporal trajectory when compared 

to profiles plotted using patient-reported times (Fig. 3, right and left panels, respectively). This 

effect was particularly pronounced for CXCL14, DPP4, and GPX3. The Wilcoxon Rank Sum 

Test was used to confirm that the improvement in temporal expression profiles for three held-

out genes was statistically significant (see Methods; GPX3: p < 0.005; CXCL14: p < 2.7e-6; 

DPP4: p < 3.7e-13). The other genes, though visually appearing tighter, did not test 

significantly under the conservative testing approach used here which resolves breaking ties 

for patient-reported times in a way that maximises the p-value (see Methods). These genes 

may also be less tightly regulated in the luteal phase. We concluded that EndoTime arranged 

samples on the time axis in a biologically more accurate manner than patient-reported times. 

Detecting Asynchronous Samples 
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While the order of samples computed by EndoTime reduces the variability in temporal profiles 

substantially, some individual samples appear to be outliers. We queried if it was possible to 

assess the reliability of estimates on a per-sample basis to enable the automatic detection of 

the least reliable samples. As EndoTime computes probability distributions of timing for each 

marker gene individually before aggregating these, the procedure could be compared to a 

voting scheme where each marker gene has one vote, enabling an assessment of consistency 

among marker genes. We formulated a score to measure asynchrony between timing 

estimates based on individual marker genes (Fig. 4A). Samples with a high asynchrony score 

show large discrepancies between marker genes and account for the most outlying samples 

(Fig. 4B; Fig. 4C, right panel; and Fig. 4D, bottom panel). By contrast, synchronous samples 

show consistency among marker genes (Fig. 4C, left panel; Fig. 4D, top panel), and a good 

fit to the temporal profile (Fig. 4B). We concluded that EndoTime’s asynchrony score can 

automatically inform the user about unreliable estimates, which may either be due to noise in 

experimental measurement for the affected samples or reflect asynchronous gene expression 

in the tissue. The user may decide to remove such samples from the analysis and refine further 

the temporal profiles and timing estimates for the remaining samples or, alternatively, repeat 

the cDNA conversion and RT-qPCR assay of samples deemed asynchronous. 

EndoTime Can be Applied to RNA-seq Data 

Using EndoTime analysis of the 260 biopsies in sample set 1 yielded refined gene expression 

profiles, arranged according to the estimated timings. These profiles can subsequently be 

utilised alongside new sample sets, an application that is particularly useful if these new sets 

are not large enough to obtain detailed reference profiles, or if patient-reported timings are not 

available, which are necessary to initiate the training process. 

Sample set 2 consisted of 36 endometrial biopsies for which RT-qPCR as well as RNA-seq 

data across 33,329 genes was obtained. We used this set to assess if estimates derived from 

RT-qPCR data would yield comparable results when EndoTime is applied to measurements 

of the same six marker genes by RNA-sequencing. This necessitated normalising the RNA-

seq read counts to make these comparable to the normalised RT-qPCR values in terms of 

means and variances. As reference profiles were fixed by the modelling exercise for both data 

types, EndoTime was applied only to carry out a single estimation step for sample timings 

without updating the temporal profiles. Figure 5 demonstrates that RT-qPCR and RNA-seq 

time estimates are highly correlated (p = 8.6e-10, R2 = 0.687). We concluded that meaningful 

EndoTime estimates can be obtained from RNA-seq data even if there is not enough data to 

re-train reference profiles.  
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Inaccuracy of Reported LH+ Times 

A fundamental concern towards reliance upon patient-reported timings provided with clinical 

biopsies is the potential for inaccuracy. The endometrium is intrinsically dynamic and mistimed 

samples could confound the diagnosis of underlying pathologies. Histological approaches can 

provide insights into biopsy timing but require additional processing of samples and 

appropriate expertise. 

EndoTime analysis of the 260 biopsies in sample set 1 revealed a mean difference between 

reported and estimated LH timing of 1.29 days, with 48 samples showing an estimated 

deviance of more than two days and 19 samples a deviance of more than three days. One 

biopsy was estimated 6.22 days later than the rLH+ value. The likelihood of mistiming 

appeared to be broadly independent of the temporal state of the tissue (Fig. 6A), with 

deviations occurring throughout the luteal phase. This disparity was also seen upon 

comparison of patient-reported timings with histological analysis of the tissue samples, the 

latter of which were congruent with the predictions provided by EndoTime (Fig. 6B). 

EndoTime Captures Primary Source of Transcriptomic Variability in 

Endometrium 

Appraisal of the influence of time on transcriptomic variability in comparison to other potential 

sources of variation, such as interpatient variability, was achieved by performing Principal 

Component Analysis on the RNA-seq data in sample set 2. The two principal components that 

explained the largest percentage of variance overlaid RT-qPCR-based EndoTime estimations 

(Fig. 7), implying that at least 44.1% of variance among 33,329 genes measured can be 

explained by temporal fluctuations as measured accurately using just the six genes in the 

EndoTime panel. We conclude that EndoTime captures the primary parameter underlying 

transcriptomic variability in endometrial biopsies obtained during the luteal phase of the 

menstrual cycle.   
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Discussion 

EndoTime utilises the transcriptomic profiles of an informative panel of genes in order to obtain 

temporal estimates in a continuous domain, rather than making a categorical classification. 

This avoids misclassifications that are likely when samples are near the temporal threshold 

between different categorical phases of the cycle and increases resolution of temporal 

analyses. Given the two existing, transcriptomics-based methods are using only three 

categories, a misclassification into the neighbouring category implies substantially altered 

biological interpretation. We have shown the accuracy of EndoTime by leave-one-out 

validation, which involves removing one panel gene at a time and assessing the sharpening 

of the temporal profile of the held-out gene. In all cases, the results were comparable to those 

when using the entire panel, with only minimal increased noise in the estimated timings.  

As the measurement of only six genes is required and the software is freely available, 

EndoTime minimises the obstacles for wide adoption. EndoTime enables any measurements 

obtained from endometrial biopsies to be interpreted in relation to precise sample timing, 

thereby revealing the true temporal patterns much more accurately. Importantly, the model 

training is part of the EndoTime software, enabling the application of EndoTime in other 

settings, for example with modified sets of panel genes or in different patient cohorts. In fact, 

EndoTime may be applicable to other tissues and other biological processes if the panel genes 

are chosen accordingly. We believe that EndoTime has a range of applications in research 

and may become useful for clinical application as well. 

EndoTime provides a good degree of transparency to the user, with each panel gene 

contributing its own estimate of sample timing, which are then aggregated in a single final time 

estimate. Estimates based on individual genes that appear inconsistent are reported to the 

user as asynchrony between panel genes, providing a measure of reliability and highlighting 

estimates with low confidence. Transcriptomic measurements in a biopsy sample can be 

plotted against the normal temporal profiles identified by EndoTime, providing a direct visual 

representation of the evidence for synchrony or asynchrony. Asynchrony could occur as a 

result of technical errors or biological causes. Although there was no observable correlation 

between timing errors and any of the three clinical groups that comprise the sample set 1, 

future work could further investigate correlations of asynchrony with reproductive pathologies 

in larger data sets. 

EndoTime is able to provide timing estimations of greater accuracy as the size of contributing 

batches increases due to improved batch effect correction in the underlying transcriptomic 

data used for modelling. Samples in this study were exclusively obtained between 2 and 6 
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pm, which limits the degree to which timing estimations might be influenced by fluctuations 

imposed by the circadian clock, such as those associated with PER2 (Uchikawa et al., 2011; 

Muter et al., 2015). EndoTime’s accuracy might be improved via addition of an endometrial 

circadian gene to the panel and subsequent adjustments to the model should allow for greater 

timing resolution that takes into account these daily rhythms. Of the six marker genes utilised, 

four are notably associated with the epithelium, implying that EndoTime estimates are mostly 

informed by the epithelial compartment of the endometrium.  

By transforming RNA-seq measurements to match the distribution of RT-qPCR data prior to 

modelling via EndoTime, estimates can be obtained that are highly congruent. This conclusion 

was further supported upon projecting estimated timings over the principal component 

analysis of RNA-seq data, showing that over 44% of transcriptomic variance between samples 

can be explained as temporal fluctuations in gene expression. This offers the possibility of 

applying EndoTime to the transformation and timing estimation of endometrial RNA-seq data. 

This should broaden the application of EndoTime and inform about temporally sensitive genes 

which might further improve the gene panel in the future. This may also provide a foundation 

for dissecting normal temporal changes from changes related to patient cohorts. In addition, 

it creates potential for developing methods for adjusting the timing of RNA-seq data sets 

computationally to make these more comparable across patient cohorts. 

In summary, EndoTime is a novel open access software which advances the process of timing 

luteal phase endometrial biopsies along a continuous scale, presenting opportunities for 

further improvements in terms of its generalisation across the entire endometrium. Its 

application to a wider range of transcriptomic measurements and in its timing resolution 

presents potentially far-reaching research and clinical applications.   

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.02.21261452doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.02.21261452
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

Authors’ Roles 

JL and AEM contributed to study design, carried out method development, software 

development, and data analyses. AEM wrote the manuscript and the software documentation. 

JL contributed to manuscript writing. ESL, JM, KM, KF, JO, and AH processed patient samples 

and generated experimental data. ESL, JM, and KM provided critical discussions. PV 

analysed the RNA-seq data, tested the software, and provided critical discussions. JJB 

obtained patient samples. JJB and SO contributed to study design and writing of the 

manuscript, provided critical discussions, and provided supervision. 

Acknowledgements 

We are grateful to all the women who participated in this research. We also acknowledge the 

invaluable contribution of Professor Siobhan Quenby and the staff of the Biomedical Research 

Unit and Tommy’s National Reproductive Health Biobank at University Hospitals Coventry and 

Warwickshire NHS Trust for facilitating sample collection and processing. 

Funding 

This study was supported by a Wellcome Trust Investigator Award (Grant/Award Number: 

212233/Z/18/Z) and the Tommy's National Miscarriage Research Centre. JL was funded by 

the Biotechnology and Biological Sciences Research Council (UK) through the Midlands 

Integrative Biology Training Partnership (MIBTP). 

Conflicts of Interests 

The authors declare no conflicts of interest.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.02.21261452doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.02.21261452
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

References 

Aghajanova L, Altmäe S, Bjuresten K, Hovatta O, Landgren BM, Stavreus-Evers A. 

Disturbances in the LIF pathway in the endometrium among women with unexplained 

infertility. Fertil Steril 2009;91:2602–2610. 

Bellofiore N, Ellery SJ, Mamrot J, Walker DW, Temple-Smith P, Dickinson H. First evidence 

of a menstruating rodent: the spiny mouse (Acomys cahirinus). Am J Obstet Gynecol 

[Internet] 2017;216:40.e1-40.e11. 

Brighton PJ, Maruyama Y, Fishwick K, Vrljicak P, Tewary S, Fujihara R, Muter J, Lucas ES, 

Yamada T, Woods L, et al. Clearance of senescent decidual cells by uterine natural killer 

cells in cycling human endometrium. Elife 2017;6:1–23. 

Coutifaris C, Myers ER, Guzick DS, Diamond MP, Carson SA, Legro RS, McGovern PG, 

Schlaff WD, Carr BR, Steinkampf MP, et al. Histological dating of timed endometrial 

biopsy tissue is not related to fertility status. Fertil Steril 2004;82:1264–1272. 

Demir R, Yaba A, Huppertz B. Vasculogenesis and angiogenesis in the endometrium during 

menstrual cycle and implantation. Acta Histochem [Internet] 2010;112:203–214. Elsevier. 

Develioglu OH, Hsiu J-G, Nikas G, Toner JP, Oehninger S, Jones HW. Endometrial estrogen 

and progesterone receptor and pinopode expression in stimulated cycles of oocyte donors. 

Fertil Steril 1999;71:1040–1047. 

Díaz-Gimeno P, Horcajadas JA, Martínez-Conejero JA, Esteban FJ, Alamá P, Pellicer A, 

Simón C. A genomic diagnostic tool for human endometrial receptivity based on the 

transcriptomic signature. Fertil Steril 2011;95:50–60. 

Diniz-da-Costa M, Kong C-S, Fishwick KJ, Rawlings T, Brighton PJ, Hawkes A, Odendaal J, 

Quenby S, Ott S, Lucas ES, et al. Characterization of highly proliferative decidual 

precursor cells during the window of implantation in human endometrium. Stem Cells 

2021; 

Dubowy RL, Feinberg RF, Keefe DL, Doncel GF, Williams SC, McSweet JC, Kliman HJ. 

Improved endometrial assessment using cyclin E and p27. Fertil Steril 2003;80:146–156. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.02.21261452doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.02.21261452
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

Enciso M, Carrascosa JP, Sarasa J, Martínez-Ortiz PA, Munné S, Horcajadas JA, Aizpurua J. 

Development of a new comprehensive and reliable endometrial receptivity map (ER 

Map/ER Grade) based on RT-qPCR gene expression analysis. Hum Reprod 2018;33:220–

228. 

Gellersen B, Brosens JJ. Cyclic decidualization of the human endometrium in reproductive 

health and failure. Endocr Rev 2014;35:851–905. 

Giudice LC, Saleh W. Growth factors in reproduction. Trends Endocrinol Metab 1995;6:60–

69. 

Johnson S, Weddell S, Godbert S, Freundl G, Roos J, Gnoth C. Development of the first urinary 

reproductive hormone ranges referenced to independently determined ovulation day. Clin 

Chem Lab Med 2015;53:1099–1108. 

Kliman HJ, Honig S, Walls D, Luna M, McSweet JC, Copperman AB. Optimization of 

endometrial preparation results in a normal endometrial function test® (EFT®) and good 

reproductive outcome in donor ovum recipients. J Assist Reprod Genet 2006;23:299–303. 

Koot YEM, Hooff SR Van, Boomsma CM, Leenen D Van, Koerkamp MJAG, Goddijn M, 

Eijkemans MJC, Fauser BCJM, Holstege FCP, Macklon NS. An endometrial gene 

expression signature accurately predicts recurrent implantation failure after IVF. Sci Rep 

[Internet] 2016;6:19411. Nature Publishing Group. 

Lessey BA. Endometrial integrins and the establishment of uterine receptivity. Hum Reprod 

1998;13:247–261. 

Lucas ES, Vrljicak P, Muter J, Diniz-da-Costa MM, Brighton PJ, Kong C-S, Lipecki J, 

Fishwick KJ, Odendaal J, Ewington LJ, et al. Recurrent pregnancy loss is associated with 

a pro-senescent decidual response during the peri-implantation window. Commun Biol 

[Internet] 2020;3:37. Springer US. 

Murray MJ, Meyer WR, Zaino RJ, Lessey BA, Novotny DB, Ireland K, Zeng D, Fritz MA. A 

critical analysis of the accuracy, reproducibility, and clinical utility of histologic 

endometrial dating in fertile women. Fertil Steril 2004;81:1333–1343. 

Muter J, Lucas ES, Chan YW, Brighton PJ, Moore JD, Lacey L, Quenby S, Lam EWF, Brosens 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.02.21261452doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.02.21261452
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

JJ. The clock protein period 2 synchronizes mitotic expansion and decidual transformation 

of human endometrial stromal cells. FASEB J 2015;29:1603–1614. 

Noyes RW, Hertig AT, Rock J. Dating the Endometrial Biopsy. Fertil Steril [Internet] 

1950;1:3–25. 

Roos J, Johnson S, Weddell S, Godehardt E, Schiffner J, Freundl G, Gnoth C. Monitoring the 

menstrual cycle: Comparison of urinary and serum reproductive hormones referenced to 

true ovulation. Eur J Contracept Reprod Heal Care 2015;20:438–450. 

Ruiz-Alonso M, Blesa D, Díaz-Gimeno P, Gómez E, Fernández-Sánchez M, Carranza F, 

Carrera J, Vilella F, Pellicer A, Simón C. The endometrial receptivity array for diagnosis 

and personalized embryo transfer as a treatment for patients with repeated implantation 

failure. Fertil Steril 2013;100:818–824. 

Sha A-G, Liu J-L, Jiang X-M, Ren J-Z, Ma C-H, Lei W, Su R-W, Yang Z-M. Genome-wide 

identification of micro-ribonucleic acids associated with human endometrial receptivity 

in natural and stimulated cycles by deep sequencing. Fertil Steril [Internet] 2011;96:150-

155.e5. Elsevier Ltd. 

Soumpasis I, Grace B, Johnson S. Real-life insights on menstrual cycles and ovulation using 

big data. Hum Reprod Open 2020;2020:1–9. 

Strunz B, Bister J, Jonsson H, Filipovic I, Crona-Guterstam Y, Kvedaraite E, Sleiers N, 

Dumitrescu B, Brannstrom M, Lentini A, et al. Continuous human uterine NK cell 

differentiation in response to endometrial regeneration and pregnancy. Sci Immunol 

2021;6:eabb7800. 

Suhorutshenko M, Kukushkina V, Velthut-Meikas A, Altmäe S, Peters M, Mägi R, Krjutškov 

K, Koel M, Codoñer FM, Martinez-Blanch JF, et al. Endometrial receptivity revisited: 

Endometrial transcriptome adjusted for tissue cellular heterogeneity. Hum Reprod 

2018;33:2074–2086. 

Tewary S, Lucas ES, Fujihara R, Kimani PK, Polanco A, Brighton PJ, Muter J, Fishwick KJ, 

Costa MJMD Da, Ewington LJ, et al. Impact of sitagliptin on endometrial mesenchymal 

stem-like progenitor cells: A randomised, double-blind placebo-controlled feasibility 

trial. EBioMedicine 2020;51:. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.02.21261452doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.02.21261452
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

Uchikawa M, Kawamura M, Yamauchi N, Hattori M. Down-regulation of circadian clock gene 

period 2 in uterine endometrial stromal cells of pregnant rats during decidualization. 

Chronobiol Int 2011;28:1–9. 

Wang W, Vilella F, Alama P, Moreno I, Mignardi M, Isakova A, Pan W, Simon C, Quake SR. 

Single-cell transcriptomic atlas of the human endometrium during the menstrual cycle. 

Nat Med [Internet] 2020;26:1644–1653. Springer US. 

Zhang D, Ma C, Sun X, Xia H, Zhang W. S100P Expression in response to sex steroids during 

the implantation window in human endometrium. Reprod Biol Endocrinol [Internet] 

2012;10:. Reproductive Biology and Endocrinology. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.02.21261452doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.02.21261452
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

 

Figure 1: Effect of sampling and noise on measured temporal profiles. (A) Ideal expression curves 

for three artificial genes with infinite sampling density and without noise. (B) Simulated data as in A but 

with limited uniform sampling over the time axis more reflective of real-world biopsy availability. (C) 

Data simulated as in B with random noise added to time points (noise sampled from the normal 
distribution, mean = 0, standard deviation = 2) to reflect uncertainty in reporting. (D) Expression 

measurements of three genes in clinical samples with patient-reported timings. The observed gene 
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expression patterns are a good match for anticipated patterns simulated in C in terms of noise level and 

fuzzy appearance of temporal profiles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Illustration of one iteration of the EndoTime modelling process. (A) Computing temporal 

profiles. Left: Regression curves fit to expression data for three genes of the timing marker panel. Right: 

Expression values for three samples from the training data are the basis for re-evaluating timings of 

these samples. (B) Temporal profiles learned in A are used to improve time point estimates. For each 

sample, the likelihood of each time point is computed, with suggested sample timing represented by 

peak maxima for each sample. (C) Improved time point estimates provide improved temporal profiles. 

Left: Expression data arranged according to patient-reported LH+. Values for the three samples from A 
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and B circled. Right: Expression data re-arranged according to new time estimates obtained in B. 

Expression curves are visibly tighter and more distinct after just one iteration. EndoTime repeats this 

process until convergence.  
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Figure 3: Method validation by leave-one-out approach. Left: Expression measurements for panel 

genes plotted using time points reported by patients. As original data is only resolved to full days, 

samples have been moved randomly on the time axis with an average displacement of 6 hours 

(maximum of 12 hours) to make data visualisation more comparable with EndoTime estimates on 
continuous domain. Right: temporal profile of each gene after using data of the other five genes to 

obtain timing estimates for all samples. Substantially sharper profiles show that EndoTime reveals the 

true order of samples more accurately than clinical records. 

Figure 4: Quantification of sample asynchrony based on consistency between panel genes. (A) 

Samples are ranked according to their asynchrony score. Breakpoint of segmented linear model 
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designates cut-off point for outliers. (B) Gene expression profiles for three timing panel genes following 

modelling, with outlying asynchronous samples highlighted. Each sample deemed asynchronous 

shows discrepant expression values for at least one gene. (C) Timing likelihood for all panel genes for 

two synchronous samples (left, top and bottom) and two asynchronous samples (right, top and bottom). 
Synchronous samples exhibit curves with maxima conforming towards a singular predicted time point, 

while asynchronous samples exhibit contradictory maxima. (D) Time point estimates based on maxima 

for each panel gene for samples shown in C. 

 

Figure 5: Correlation of predicted time points from qRT-PCR data vs predictions from RNA-seq 
data of six panel genes. 
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Figure 6: Identification of mistimed samples. (A) Samples shown in order identified by EndoTime 

(y-axis). EndoTime times shown as smooth curve. Deviations of reported timings from EndoTime 

timings shown as coloured horizontal lines. (B) Bright-field imaging with staining by the uNK marker 

CD56 for four samples. These images can be used to verify the progress of tissue development as 
earlier time points are associated with simple and tubular glands, while corkscrew-shaped glands are 

associated with biopsies donated during later time points. Samples 1 and 2 appear to be early samples 

while Sample 3 and 4 are late samples. EndoTime estimates are consistent with this. Reported timings 

agree for Sample 2 and 3 but are discrepant for Sample 1 and 4 by about four days. 

 

Figure 7: EndoTime estimates capture largest single source of variability in endometrial 
transcriptomes. PCA performed on 33,329-dimensional RNA-seq data. Colours indicate EndoTime 

timings inferred from just six genes which are consistent with sample positions in PC 1 and 2 which 

capture 44.1 percent of transcriptomic variation.  

−60

−40

−20

0

20

40

−40 −20 0 20 40 60 80
PC1: 31.00%

PC
2:

 1
3.

10
%

46810
pLH

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.02.21261452doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.02.21261452
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

 

Supplementary Figure 1: Moving window estimates of expression distribution. Samples are 

ordered based on current estimates of endometrial timing. Expression at each time point is modelled 

as a normal distribution. A window (red shading) is placed around a given time point, mean and variance 

are estimated using only expression levels of samples inside the window. This is repeated for all window 

positions along the time axis. 

 

Supplementary Figure 2: Weighted estimate of means. X axis represents a single window, time 
estimates for samples inside the window indicated by circles. Each sample contributes to the mean in 

dependence of proximity to the middle of the window, with closer samples contributing more. M: middle 

position of the window (weight of 1), C: right-hand-side end of window (weight of 0), B: position of one 

sample, computation of weight for this sample is illustrated (weight between 0 and 1). 
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Supplementary Figure 3: Confidence in estimates increases over multiple iterations. (A) 

Computing temporal profiles. Left: Regression curves fit to expression data for three genes of the timing 

marker panel. Right: Expression values for three samples are the basis for re-evaluating timings of 

these samples. (B) The results of the first iteration of timing estimation for these samples. Each panel 

gene is used to compute a likelihood that a sample was taken at a particular time point; these are then 
aggregated into a single likelihood curve per sample, with the peak maxima selected as the temporal 

estimation for this iteration. (C) The results of the final iteration of timing estimation for each selected 

sample. Modelling has reached a threshold whereby continued iterations are considered to be of 

negligible benefit; likelihood curve peaks have sharpened substantially over preceding iterations, 

providing greater confidence in the estimated time value per sample. 
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Supplementary Table 1: Patient demographics for Sample Set I (qPCR, 260 samples) and II 
(qPCR & RNA-seq, 36 samples). 

 Data Set I Data Set II 

Age [median years (Q1 – Q3)] 36 (33-38) 33 (30-36) 

BMI [median (Q1 – Q3)] 24 (22-27) 24 (23-27) 

LH+ day [median (Q1 – Q3)] 9 (7-10) 8 (7-8) 

First trimester loss [median (range)] 1 (0-18) 4 (0-9) 

Live births [mean (range)] 0 (0-2) 0 (0-1) 

 

Supplementary Table 2: Distribution of patient-reported timings in sample sets used in this 
study. 

 
Sample Timing (rLH+) 

4 5 6 7 8 9 10 11 12 

Sample Set I: qPCR Samples 1 13 29 42 43 44 42 41 5 

Sample Set II: qPCR & RNA-seq 
Samples 0 0 3 11 16 6 0 0 0 

rLH+, reported days since luteal hormone surge, as provided via urinary ovulation testing. 

Supplementary Table 3: Timing marker genes used for the EndoTime method. 

Marker gene Primary 
expression 

domain 

Forward primer Reverse primer 

CXCL14 C-X-C Motif 

Chemokine Ligand 14 
Glandular 5’-AAG GGA CCC 

AAG ATC CGC TA-3’ 
5’-GAC ACG CTC TTG 

GTG GTG AT-3’ 

DPP4 Dipeptidyl Peptidase 4 Glandular 5′-CCA AAG ACT 

GTA CGG GTTC C-3′ 
5′-ACA AAG AAC TTT 

ACA GTT GGA TTC 

AC-3′ 
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Marker gene Primary 
expression 

domain 

Forward primer Reverse primer 

GPX3 Glutathione 

Peroxidase 3 
Glandular 5’-GGG GAC AAG 

AGA AGT CGA AGA-

3’ 

5’-GCC AGC ATA CTG 

CTT GAA GG-3’ 

IGFBP1 Insulin-like Growth 

Factor Binding Protein 

1 

Stromal and 

Glandular  
5’-CGA AGG CTC 

TCC ATG TCA CCA-

3' 

5’-TGT CTC CTG CCT 

TGG CTA AAC-3’ 

IL2RB Interleukin 2 Receptor 

Subunit β 
Uterine Natural 

Killer (uNK) cells 
5’-GCG CCT GAC 

ATT CAC ACA-3’ 
5’-GCC TAG GAA AGA 

TAC GTG G-3' 

SLC15A2 Solute Carrier Family 
15 Member 2 

Glandular 5’-AGG AGG CAT 
CAA ACC CTG T-3’ 

5’-CTA GTC CGT TCC 
TCT GCA TGT-3’ 

L19 (Housekeeping gene) 5′-GCG GAA GGG 

TAC AGC CAA T-3′ 
5′-GCA GCC GGC GCA 

AA-3′ 

 


