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Abstract 

Elucidating crucial driver genes is paramount for understanding the cancer origins and 

mechanisms of progression, as well as selecting targets for molecular therapy. Cancer genes are 

usually ranked by the frequency of mutation, which, however, does not necessarily reflect their 

driver strength. Here we hypothesize that driver strength is higher for genes that are 

preferentially mutated in patients with few driver mutations overall, because these few 

mutations should be strong enough to initiate cancer. We propose a formula to calculate the 

corresponding Driver Strength Index (DSI), as well as the Normalized Driver Strength Index 

(NDSI), the latter completely independent of the overall gene mutation frequency. We validate 

these indices using the largest database of human cancer mutations – TCGA PanCanAtlas, 

multiple established algorithms for cancer driver prediction (2020plus, CHASMplus, 

CompositeDriver, dNdScv, HotMAPS, OncodriveCLUSTL, OncodriveFML) and four custom 

computational pipelines that integrate driver contributions from SNA, CNA and aneuploidy at 

the patient-level resolution. We demonstrate that DSI and especially NDSI provide substantially 

different rankings of genes as compared to frequency approach. For example, NDSI prioritized 

members of specific protein families, including G proteins GNAQ, GNA11 and GNAS, isocitrate 

dehydrogenases IDH1 and IDH2, and fibroblast growth factor receptors FGFR2 and FGFR3. 

KEGG analysis shows that top NDSI-ranked genes comprise EGFR/FGFR2/GNAQ/GNA11 – 

NRAS/HRAS/KRAS – BRAF pathway, AKT1 – MTOR pathway, and TCEB1 – VHL – HIF1A pathway. 

NDSI does not seem to correlate with the number of protein-protein interactions. We share our 

software to enable calculation of DSI and NDSI for outputs of any third-party driver prediction 

algorithms or their combinations.  
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Introduction 

 

Most cancer driver prediction algorithms answer one question – what is a probability of a given 

gene being a driver. This is definitely a crucial question and the answers are very valuable. 

However, high confidence that a gene is a driver does not translate to the statement that this 

gene is a strong driver. We can imagine a gene that is mutated in the majority of cancer 

patients (e.g. because it has multiple suitable sites for a driver mutation) but has a very weak 

contribution to cancer progression in each of these patients (e.g. because this gene is 

redundant). We can also imagine a gene that is mutated rarely (e.g. because it has only one 

suitable site for a driver mutation) but if the mutation does occur it immediately leads to cancer 

(e.g. because this gene is in a key position to control cell growth). The former would be an 

example of high confidence but weak driver, whereas the latter would be low confidence but 

strong driver. Overall, algorithms based on mutation recurrence cannot determine driver 

strength.  

 

Some algorithms try to predict driver strength based on data from protein interaction networks 

(1)(2)(3). The idea is that a gene having multiple connections with other genes, i.e. playing the 

role of a network hub, will have more dramatic influence on the cell in case of mutation (4). 

This seems like a great idea at first sight, but a more detailed look shows that this is not the 

case. Yes, mutations in network hubs are likely to cause more disturbance in the cell, but what 

are the reasons to believe that all (or any of) these perturbations would be beneficial for cancer 

progression? In fact, mutations in network hubs are more likely to lead to cell death than to 

oncogenic transformation.  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.01.21261447doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.01.21261447
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 4

Here, we propose another approach. We reason that a few strong drivers are sufficient to 

initiate cancer, and there would be no need to accumulate additional drivers. On the other 

hand, weak drivers would need to accumulate in much higher quantity, until their combined 

strength would become sufficient to initiate cancer. Therefore, it should be statistically more 

likely to find strong drivers in patients that have only few driver mutations in their tumors, and 

less likely to find them in patients with multiple drivers per tumor. Likewise, it should be 

statistically less likely to find weak drivers in patients that have only few driver mutations in 

their tumors, and more likely to find them in patients with multiple drivers per tumor. Hence, 

we propose the Driver Strength Index (DSI) that takes into account the frequencies of mutation 

of a given driver gene in groups of patients with different total number of driver mutations, and 

gives priority weights to groups with fewer mutations. We also propose a modification of this 

index that is completely independent of the overall frequency of mutation of a given driver 

gene – the Normalized Driver Strength Index (NDSI). 

 

Calculating these indices requires data on the number of driver mutations in each individual 

patient. The majority of existing driver prediction algorithms work at the cohort level, i.e. they 

predict driver genes for large groups of patients, usually having a particular cancer type. This 

does not allow to look at the composition of driver mutations in individual patients. We wrote 

specific scripts to convert cohort-level predictions into patient-level events, which also allowed 

seamless integration of the results from various third-party algorithms, including 2020plus (5), 

CHASMplus (6), CompositeDriver (7), dNdScv (8), DriverNet (9), HotMAPS (10), 

OncodriveCLUSTL (11), and OncodriveFML (12). This is useful, as each individual driver 

prediction algorithm has its own strengths and shortcomings, and combining results from 

multiple algorithms allows to obtain more complete and balanced picture, ensuring that less 

driver mutations have been missed.  
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In addition to these existing driver prediction algorithms, we decided to create our own, using 

clear and simple rules to have an internal reference standard. We called this algorithm SNADRIF 

– Single Nucleotide Alteration DRIver Finder. It predicts cancer driver genes from the TCGA 

PanCanAtlas SNA data and classifies them into oncogenes and tumor suppressors. Driver 

prediction is based on calculating the ratio of nonsynonymous SNAs to silent SNAs (8), whereas 

driver classification is based on calculating the ratio of hyperactivating SNAs to inactivating 

SNAs (13). Bootstrapping is used to calculate statistical significance and Benjamini–Hochberg 

procedure is used to keep false discovery rate under 5%. 

 

Copy-number alterations (CNA) usually involve large chunks of DNA containing tens or 

hundreds of genes, which makes CNA data not very useful for uncovering individual driver 

genes. Nevertheless, it is an important source of information about amplifications and 

deletions of driver genes predicted from SNA data. However, due to CNA data coarseness, we 

wanted to clarify the actual copy number status of individual genes using mRNA and miRNA 

expression data available at TCGA PanCanAtlas. For this purpose, we created another pipeline 

called GECNAV - Gene Expression-based CNA Validator. CNA validation is based on comparing 

the CNA status of a given gene in a given patient to expression of this gene in this patient 

relative to the median expression of this gene across all patients. 

 

Aneuploidy – chromosome arm and full chromosome gains and losses – makes a substantial 

contribution to the number of driver alterations per tumor, and thus we needed to take it into 

account when calculating our indices. However, there are no existing algorithms to differentiate 

driver aneuploidies from passenger ones. Therefore, we built our own pipeline called ANDRIF -   

ANeuploidy DRIver Finder. Driver prediction is based on calculating the average alteration 
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status for each arm or chromosome in each cancer type. Bootstrapping is then used to obtain 

the realistic distribution of the average alteration statuses under the null hypothesis and 

Benjamini–Hochberg procedure is performed to keep the false discovery rate under 5%.  

 

Finally, we needed an algorithm to integrate all data on driver mutations from different 

algorithms - our own and third-party. We called this algorithm PALDRIC - PAtient-Level DRIver 

Classifier. It translates cohort-level lists of driver genes or mutations to the patient level, 

classifies driver events according to the molecular causes and functional consequences, and 

presents comprehensive statistics on various kinds of driver events in various demographic and 

clinical groups of patients. Moreover, we developed a modification of PALDRIC that allows 

analysis and ranking of individual genes, chromosome arms and full chromosomes according to 

their frequency of occurrence, DSI, and NDSI.  

 

Our overall workflow can be seen in Fig 1. 
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Results 

 

To get two different perspectives on the number and composition of driver events, we 

performed two different analyses. In the first one we used the combination of results from 

SNADRIF, several third-party algorithms - 2020plus, CHASMplus, CompositeDriver, HotMAPS, 

OncodriveFML, and a consensus driver gene list from 26 algorithms (7), each of them applied to 

the whole TCGA PanCanAtlas dataset. We also used a list of COSMIC Cancer Gene Census Tier 1 

genes affected by somatic SNAs and CNAs, as it represents the current gold standard of verified 

cancer drivers (14). To minimize false positives, we used only genes that were predicted as 

drivers by at least two of our sources, including CGC and a list from (7). Unfortunately, 

application of driver gene lists discovered through pancan analysis equally to every cancer type 

results in unrealistically high numbers of driver events per patient, which is to be expected as 

this approach ignores tissue specificity of driver genes. Therefore, we present this analysis only 

as Additional file 1.  

 

In the second analysis we used the combination of results from 2020plus, CHASMplus, 

CompositeDriver, dNdScv, DriverNet, HotMAPS, OncodriveCLUSTL, OncodriveFML, the 

consensus list from (7) and a list of Cancer Gene Census Tier 1 genes affected by somatic SNAs 

and CNAs, applied separately to each cancer cohort of TCGA PanCanAtlas. Applying algorithms 

to individual cohorts allows to discover cancer type-specific drivers and avoid contamination by 

false positives, i.e. driver genes discovered during Pancan analysis that do not in reality play any 

role in a given cancer type. On the other hand, much fewer patients are available for cohort-

specific analysis, and this decreases statistical power to discover new driver genes. Of note, our 

SNADRIF algorithm works best for pancan analysis and struggles with small cohorts, due to 

scarcity of point mutations. However, when a combination of driver prediction algorithms is 
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used, there are lower chances of missing an important driver gene even in a cohort-specific 

analysis, as algorithms based on differing principles complement each other. Similar to the first 

approach, to minimize false positives we used only driver gene-cohort pairs that were 

predicted by at least two of our sources, including CGC and a list from (7). The results of this 

analysis would be presented in the following paragraphs. 

 

We calculated the number of various types of driver events in individual genes, chromosome 

arms or full chromosomes for each cancer type, tumor stage, age group, as well as for patients 

with each total number of driver events from 1 to 100. We performed the analyses for total 

population and for males and females separately, and, for each group, plotted the histograms 

of top 10 driver events in each class and overall (for data and graphs see Additional file 2). In 

Fig 2 we present the overall ranking of genes for all TCGA PanCanAtlas cohorts combined. It can 

be seen that PIK3CA is the oncogene with the highest number of SNAs, as well as the highest 

number of simultaneous occurrences of SNAs and gene amplifications. MYC is the oncogene 

with the highest number of amplifications. TP53 is the tumor suppressor with the highest 

number of SNAs, as well as the highest number of instances of simultaneous occurrences of an 

SNA in one allele and a deletion of the other allele. It is also the top mutated gene when driver 

events of all classes are counted. CDKN2A and PTEN are tumor suppressors with the highest 

number of deletions. Losses of chromosomes 13 and 22 are the most frequent cancer-

promoting chromosome losses, whereas gains of chromosomes 7 and 20 are the most frequent 

cancer-promoting chromosome gains. Losses of 8p and 17p arms are the most frequent cancer-

promoting chromosome arm losses, whereas gains of 1q and 8q arms are the most frequent 

cancer-promoting chromosome arm gains. Overall, these results are expected and indicate that 

our analytic pipelines work as they should. 
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Next, we calculated the Driver Strength Index (DSI) 

��� � � � � �  �

� � �  
���

���

 

where � �  � is a number of patients with a driver event in the gene/chromosome A amongst 

patients with i driver events in total; � � is a number of patients with i driver events in total. 

Surprisingly, we do not see much change compared to the simple frequency-of-mutation 

approach (Fig 3). The only dramatic difference is that BRAF became the top SNA-based 

oncogene according to DSI, whereas PIK3CA dropped to the second place, lagging behind by a 

wide margin. Also, PIK3CA overtook MYC as the top CNA-based oncogene, and PTEN displaced 

CDKN2A from the top CNA-based tumor suppressor spot. Moreover, members of several gene 

families appeared in the top 10 lists, such as KRAS, NRAS and HRAS in the SNA-based oncogenic 

events list, histones HIST2H2BE and HIST1H3B in the CNA-based oncogenic events list, or lysine 

methyltransferases KMT2C and KMT2D in the SNA-based tumor suppressor events list. This 

indicates that our approach is indeed meaningfully selecting for some biological attributes, 

which are not selected by simple frequency sorting. Finally, multiple small changes of ranking 

positions happened, nevertheless not affecting the overall picture. We think the reason for the 

limited effect of changes is that DSI is still very much affected by the overall frequency of gene 

mutation, due to 
� �  �

� �

 component. Hence, to uncover the true driver strength unrelated to the 

mutation frequency, further normalization is required.  

Therefore, we propose Normalized Driver Strength Index (NDSI) 

	��� � �
∑ � �  �� � � 

���
���

∑ � �  � � �  ���
���

 

that corrects for the effects of mutation frequencies. As can be seen in Fig 4, this time the 

rankings are completely different from both DSI and frequency-based approaches. GTF2I 

conquers the top spot amongst SNA-based oncogenes and overall, SPOP becomes number one 
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CNA-based oncogene, and MET occupies the first line of mixed oncogene rating. ATRX, CSDE1 

and NF2 become the top SNA-based, CNA-based and mixed tumor suppressors, respectively. 

NDSI reveals the losses of chromosomes 12 and 3 as the strongest cancer-promoting 

chromosome losses, whereas the gain of chromosome 17 as the strongest cancer-promoting 

chromosome gain. NDSI shows that the losses of 19q and 12p arms are the strongest cancer-

promoting chromosome arm losses, whereas the gain of 5q arm is the strongest cancer-

promoting chromosome arm gain.  

 

Like DSI, NDSI is able to select for specific gene families. Two members of the guanine 

nucleotide-binding protein family, GNAQ and GNA11, appeared on the top 10 SNA-based 

oncogenic events and top 10 driver events of all classes lists (Fig 4). Additionally, one more G 

protein, GNAS, appeared on the top 50 NDSI-ranked driver list (Table 1). Of note, no members 

of this family are present on the top 50 DSI-ranked driver list (Table 1). Two members of 

isocitrate dehydrogenase family, IDH1 and IDH2, appeared on the top 10 SNA-based oncogenic 

events list, whereas fibroblast growth factor receptors FGFR2 and FGFR3 appeared on the top 

10 mixed oncogenic events list (Fig 4). The ability of NDSI to prioritize members of specific 

protein families suggests that this index has actual biological meaning. 

 

Next, we wanted to analyze top DSI- and NDSI-ranked genes using several common gene list 

analysis tools. To this aim, we combined the lists of drivers from various classes. If the same 

gene was affected by more than one kind of alteration, we chose the alteration type with the 

highest DSI or NDSI, depending on the analysis. Also, we removed the data on chromosome 

arms and full chromosomes, as external pathway and network analysis tools can work only with 

genes. Then, we selected top 50 DSI- and NDSI-ranked genes. The resulting lists can be seen in 

Table 1.  
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Table 1. Top 50 DSI- and NDSI-ranked genes. 

Rank Entrez 

ID 

Symbol DSI Rank Entrez ID Symbol NDSI 

1 7157 TP53 1.44664 1 100093631 GTF2I 0.6389 

2 673 BRAF 1.00268 2 673 BRAF 0.58335 

3 5728 PTEN 0.93317 3 1964 EIF1AX 0.46362 

4 5290 PIK3CA 0.9215 4 9203 ZMYM3 0.31661 

5 1029 CDKN2A 0.60404 5 2776 GNAQ 0.27502 

6 5925 RB1 0.57932 6 7812 CSDE1 0.26198 

7 3845 KRAS 0.54447 7 2767 GNA11 0.22382 

8 8289 ARID1A 0.54286 8 8731 MET 0.21464 

9 4609 MYC 0.46527 9 546 ATRX 0.20772 

10 2064 ERBB2 0.41563 10 3417 IDH1 0.20172 

11 2033 EP300 0.39411 11 3169 FOXA1 0.18161 

12 2195 FAT1 0.39042 12 8450 CUL4B 0.18057 

13 55294 FBXW7 0.37252 13 51343 CDH1 0.158 

14 472 ATM 0.35055 14 7428 VHL 0.15612 

15 3417 IDH1 0.29994 15 3418 IDH2 0.15364 

16 4780 NFE2L2 0.2974 16 2475 MTOR 0.15247 

17 1499 CTNNB1 0.29 17 4771 NF2 0.15232 

18 4893 NRAS 0.27847 18 29072 SETD2 0.1507 

19 1387 CREBBP 0.2738 19 8880 FUBP1 0.15022 

20 5295 PIK3R1 0.27316 20 4893 NRAS 0.14785 

21 4089 SMAD4 0.26931 21 207 AKT1 0.1468 

22 196 AHR 0.26508 22 4615 MYD88 0.14625 

23 9611 NCOR1 0.25715 23 23152 CIC 0.14165 

24 1956 EGFR 0.25138 24 51585 PCF11 0.14083 

25 7403 KDM6A 0.24971 25 8242 KDM5C 0.13977 

26 9223 BAP1 0.24578 26 1031 CDKN2C 0.13712 

27 8085 KMT2D 0.24363 27 6597 SMARCA4 0.13643 

28 4297 MLL 0.23565 28 25836 NIPBL 0.13291 

29 5624 APC 0.22422 29 7114 TMSB4X 0.12846 

30 546 ATRX 0.21608 30 2778 GNAS 0.12708 

31 2068 ERCC2 0.21513 31 26137 ZBTB20 0.1269 

32 9757 MLL2 0.20883 32 84433 CARD11 0.12676 

33 196528 ARID2 0.20073 33 3265 HRAS 0.12612 

34 58508 MLL3 0.1921 34 55193 PBRM1 0.12463 

35 58508 KMT2C 0.18892 35 8405 SPOP 0.12197 

36 3265 HRAS 0.17947 36 6921 TCEB1 0.1115 

37 1105 CHD1 0.17591 37 4089 SMAD4 0.10913 

38 2065 ERBB3 0.17366 38 5781 PTPN11 0.10708 

39 11168 PSIP1 0.17344 39 92 ACVR2A 0.10109 

40 8349 HIST2H2BE 0.16951 40 3091 HIF1A 0.10082 
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41 5934 RBL2 0.16701 41 9223 BAP1 0.10069 

42 8358 HIST1H3B 0.16666 42 4221 MEN1 0.10049 

43 23019 CNOT1 0.1655 43 3845 KRAS 0.09984 

44 8454 CUL1 0.16319 44 2625 GATA3 0.09885 

45 55193 PBRM1 0.15965 45 841 CASP8 0.09882 

46 677 ZFP36L1 0.15549 46 9361 PIM1 0.09702 

47 10735 STAG2 0.15149 47 2263 FGFR2 0.09696 

48 285382 C3orf70 0.14784 48 2559 GABRA6 0.09553 

49 2261 FGFR3 0.14772 49 1956 EGFR 0.09175 

50 4763 NF1 0.14239 50 54894 RNF43 0.09159 

 

First, we uploaded the resulting lists to “Reactome v77 Analyse gene list” tool and studied 

affected Reactome pathways on Voronoi visualizations (Reacfoam). It can be seen in Fig 5 that 

top 50 DSI-ranked genes are significantly overrepresented in such categories as signaling by 

NOTCH, signaling by PTK6, ESR-mediated signaling, PIP3 activates AKT signaling, signaling by 

receptor tyrosine kinases, signaling by WNT, signaling by erythropoietin, RAF/MAP kinase 

cascade, signaling by TGF-beta receptor complex, mitotic cell cycle, meiosis, cell cycle 

checkpoints, DNA double-stand break repair, generic transcription pathway, epigenetic 

regulation of gene expression, RNA polymerase I transcription, circadian clock, chromatin 

modifying enzymes, diseases of signal transduction by growth factor receptors and second 

messengers, diseases of cellular senescence, diseases of programmed cell death, cellular 

responses to stress, activation of HOX genes during differentiation, and transcriptional 

regulation of granulopoiesis. Top 50 NDSI-ranked genes are significantly overrepresented in 

even fewer categories (Fig 6) – signaling by PTK6, extra-nuclear estrogen signaling, negative 

regulation of PI3K/AKT signaling, signaling by receptor tyrosine kinases, GPCR downstream 

signaling, erythropoietin activates RAS, RAF/MAP kinase cascade, cytokine signaling in immune 

system, adaptive immune system, hemostasis, generic transcription pathway, chromatin 

modifying enzymes, and diseases of signal transduction by growth factor receptors and second 

messengers. Surprisingly, several large categories often deemed important for cancer – cell 
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cycle, DNA replication, DNA repair, autophagy, cellular responses to stress, programmed cell 

death, cell-cell communication and metabolism – are not affected. 

 

Next, we uploaded the resulting lists to “KEGG Mapper –Color” tool and mapped them to 

“Pathways in cancer - Homo sapiens (human)” (hsa05200) KEGG pathway map. Fig 7 and Table 

1 together suggest that top DSI-ranked genes comprise EGFR/ERBB2/FGFR3-KRAS/NRAS/HRAS-

BRAF-MYC pathway, PIK3CA-PTEN pathway, CTNNB1-MYC pathway, TP53-CDKN2A-RB1 

pathway and MYC-CUL1-RB1 pathway. Fig 8 and Table 1 together suggest that top NDSI-ranked 

genes comprise EGFR/FGFR2/GNAQ/GNA11-NRAS/HRAS/KRAS-BRAF pathway, AKT1-MTOR 

pathway, and TCEB1-VHL-HIF1A pathway. 

 

Finally, we analyzed the data in Cytoscape 3.8.2. We imported BioGRID: Protein-Protein 

Interactions (H. sapiens) network, appended (N)DSI values from the top 50 (N)DSI-ranked driver 

list, and mapped node color to (N)DSI values, whereas node size to the degree of 

connectedness. Fig 9 shows that although CTNNB1 and EGFR are the biggest hubs of the top-

DSI-ranked gene network, their DSI values are much lower than those of BRAF and PTEN, which 

have fewer connections. Notably, TP53 exhibited the highest DSI value and second-highest 

connectedness. Similarly, Fig 10 shows that although EGFR, AKT1 and HRAS are the biggest, 

centrally located hubs of the top-NDSI-ranked gene network, their NDSI values are much lower 

than those of GTF2I, BRAF and ZMYM3, located on the periphery of the network. Moreover, the 

top-NDSI-ranked gene network has much fewer edges than the top-DSI-ranked gene network, 

despite containing presumably stronger drivers. All of this supports our initially proposed 

notion that network centrality does not equal driver strength.  
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Discussion 

 

DSI places BRAF on the top spot amongst SNA-based oncogenes and on the second place 

amongst drivers of all classes. BRAF encodes a protein belonging to the RAF family of 

serine/threonine protein kinases. BRAF plays a role in regulating the MAP kinase/ERK signaling 

pathway, which affects cell division and differentiation. Mutations in BRAF, most commonly the 

V600E mutation, are the most frequently identified cancer-causing mutations in melanoma, 

and have been identified in various other cancers as well, including non-Hodgkin lymphoma, 

colorectal cancer, thyroid carcinoma, non-small cell lung carcinoma, hairy cell leukemia and 

adenocarcinoma of lung (15). Our analysis shows frequent mutations and amplifications of 

BRAF in TCGA COAD, GBM, LGG, LUAD, LUSC, PRAD, SKCM and THCA cohorts. From recent 

studies, a new classification system is emerging for BRAF mutations based on biochemical and 

signaling mechanisms associated with these mutants. Class I BRAF mutations affect amino acid 

V600 and lead to BRAF protein signaling as RAS-independent active monomer, class II 

mutations make BRAF proteins function as RAS-independent activated dimers, and class III 

mutations impair BRAF kinase activity but increase signaling through the MAPK pathway due to 

enhanced RAS binding and subsequent CRAF activation (16). It would be interesting to rate the 

strength of these BRAF mutation classes using NDSI. 

 

DSI prioritizes KRAS, NRAS and HRAS amongst SNA-based oncogenes. These genes belong to 

the RAS oncogene family, whose members are related to the transforming genes of mammalian 

sarcoma retroviruses. The products encoded by these genes function in signal transduction 

pathways. These proteins can bind GTP and GDP, and they have intrinsic GTPase activity. 

Mutations in the RAS family of proteins have frequently been observed across cancer types, 

including lung adenocarcinoma, ductal carcinoma of the pancreas, colorectal carcinoma, 
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follicular thyroid cancer, juvenile myelomonocytic leukemia, bladder cancer, and oral squamous 

cell carcinoma (17). Our analysis shows frequent mutations and amplifications of KRAS, NRAS 

and HRAS in TCGA BLCA, BRCA, CESC, COAD, ESCA, HNSC, KIRP, LGG, LIHC, LUAD, LUSC, OV, 

PAAD, PRAD, READ, SKCM, STAD, TGCT, THCA, THYM, UCEC and UCS cohorts. Gain-of-function 

missense mutations, mostly located at codons 12, 13, and 61, constitutively activate RAS 

proteins, however, each isoform exhibits distinctive mutation frequency at each codon, 

supporting the hypothesis that different RAS mutants may lead to distinct biologic 

manifestations (18).  

 

DSI prioritizes HIST2H2BE and HIST1H3B amongst CNA-based oncogenes. These genes encode 

replication-dependent histones that are members of the histone H2B and H3.1 families. 

HIST2H2BE is a direct target of the tumor suppressor IRX1 in gastric cancer (19). HIST2H2BE is 

one of the few surface proteins of exosomes from pancreatic ductal adenocarcinoma (20).  

Elevated HIST2H2BE has recently been shown to promote progression of breast invasive ductal 

carcinoma (21). p.Lys27Met mutation in HIST1H3B is found in the majority of pediatric diffuse 

intrinsic pontine gliomas and many non-brainstem pediatric glioblastomas (22). HIST1H3B 

K27M-mutated tumors exhibit a mesenchymal/astrocytic phenotype and a pro-

angiogenic/hypoxic signature (23). HIST1H3B mutations are also identified in cell-free 

circulating tumor DNA in the cerebrospinal fluid of patients with diffuse gliomas (24). HIST1H3B 

is amplified and overexpressed in 19% of liver cancer patients (25). Autoantibodies to HIST1H3B 

have been recently found in high quantities in both early and advanced stage lung cancer 

patients (26). Cancer-associated mutations of histones H2B and H3.1 affect the structure and 

stability of the nucleosome (27). Our analysis shows frequent amplifications of HIST2H2BE and 

HIST1H3B in TCGA BLCA (bladder urothelial carcinoma) cohort.   
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DSI prioritizes KMT2C and KMT2D amongst SNA-based tumor suppressors. The proteins 

encoded by these genes are histone methyltransferases that methylate the Lys-4 position of 

histone H3 (H3K4me). H3K4me represents a specific tag for epigenetic transcriptional 

activation. The encoded proteins are part of a large protein complex called ASCOM, which is a 

transcriptional regulator of the beta-globin and estrogen receptor genes. Whereas KMT2C loss 

disrupts estrogen-driven proliferation, it conversely promotes tumor outgrowth under 

hormone-depleted conditions (28). In accordance, KMT2C is one of the most frequently 

mutated genes in estrogen receptor-positive breast cancer with KMT2C deletion correlating 

with significantly shorter progression-free survival on anti-estrogen therapy (28). KMT2D is 

among the most highly inactivated epigenetic modifiers in lung cancer (29). Recently, it has 

been shown that KMT2D loss widely impairs epigenomic signals for super-

enhancers/enhancers, including the super-enhancer for the circadian rhythm repressor PER2 

(29). Loss of KMT2D decreases expression of PER2, leading to increase in glycolytic gene 

expression (29). The role of KMT2C and KMT2D in cancer has been recently reviewed (30). Our 

analysis shows frequent mutations and deletions of KMT2C and KMT2D in TCGA BLCA, BRCA, 

CESC, DLBC, ESCA, HNSC, LIHC, LUSC, PRAD, STAD and UCEC cohorts. 

 

NDSI places GTF2I on the top spot both amongst the strongest SNA-based oncogenes and 

amongst the strongest drivers averaged across all classes. GTF2I encoded protein binds to the 

initiator element (Inr) and E-box element in promoters and functions as a regulator of 

transcription. GTF2I c.74146970 T>A mutation was detected in 82% of type A and 74% of type 

AB thymomas (31). GTF2I β and δ isoforms are expressed in thymomas, and both mutant 

isoforms are able to stimulate cell proliferation in vitro (31). Recently, it has been shown that 

expression of mutant GTF2I alters the transcriptome of normal thymic epithelial cells and 

upregulates several oncogenic genes (32). GTF2I L424H knockin cells exhibit cell 
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transformation, aneuploidy, and increased tumor growth and survival under glucose 

deprivation or DNA damage (32). Our analysis also shows frequent mutations of GTF2I in TCGA 

THYM (thymoma) cohort. GTF2I has been recently named gene of the month and its role in 

cancer reviewed (33). 

 

SPOP is categorized by NDSI as the strongest CNA-based oncogene. SPOP encodes a protein 

that is a component of a cullin-RING-based E3 ubiquitin-protein ligase complex that mediates 

the ubiquitination of target proteins, leading most often to their proteasomal degradation. 

SPOP is the most commonly mutated gene in primary prostate cancer (34). SPOP mutations in 

prostate cancer result in impaired homology-directed repair of double strand breaks and are 

associated with genomic instability (35). As most cancer-associated mutations in SPOP are 

missense and almost none are frameshift or nonsense, PALDRIC classifies it as an oncogene. 

However, SPOP is usually viewed as a tumor suppressor (36). Recently it has been discussed 

that SPOP actually has a dual role, and while being a tumor suppressor in prostate cancer it 

performs as an oncogene in kidney cancer (37). Indeed, cytoplasmic accumulation of SPOP 

leads to the ubiquitination and degradation of multiple regulators of cellular proliferation and 

apoptosis, including the tumor suppressor PTEN, ERK phosphatases, the proapoptotic molecule 

DAXX, and the Hedgehog pathway transcription factor GLI2 and is sufficient to induce 

tumorigenesis in clear cell renal cell carcinoma (38). Our analysis shows frequent mutations and 

amplifications of SPOP in TCGA PRAD (prostate adenocarcinoma) and UCEC (uterine corpus 

endometrial carcinoma) cohorts. 

 

MET is the strongest mixed (SNA+CNA) oncogene and the second-strongest CNA-based 

oncogene, according to NDSI rating. MET encodes a receptor tyrosine kinase that transduces 

signals from the extracellular space into the cytoplasm by binding to hepatocyte growth factor 
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ligand. MET regulates many physiological processes including proliferation, morphogenesis and 

survival. Ligand binding at the cell surface induces dimerization and autophosphorylation of 

MET on its intracellular domain that provides docking sites for downstream signaling molecules. 

Following activation by its ligand, MET interacts with the PI3-kinase subunit PIK3R1, PLCG1, 

SRC, GRB2, STAT3 or the adapter GAB1. Recruitment of these downstream effectors by MET 

leads to the activation of several signaling cascades including the RAS-ERK, PI3K-AKT, or PLCG-

PKC. Mutations in MET are associated with papillary renal cell carcinoma, hepatocellular 

carcinoma, and various head and neck cancers. Amplification and overexpression of this gene 

are also associated with multiple human cancers (39,40). Our analysis shows frequent 

mutations and amplifications of MET in TCGA KIRP (kidney renal papillary cell carcinoma) and 

LUAD (lung adenocarcinoma) cohorts. 

 

ATRX is ranked by NDSI as the strongest SNA-based tumor suppressor, 9
th

 strongest CNA-based 

tumor suppressor, 5
th

 strongest mixed (SNA+CNA) tumor suppressor and 9
th

 strongest driver 

averaged across all classes. ATRX (Alpha-Thalassemia/Mental Retardation Syndrome, X-Linked) 

encodes a protein that contains an ATPase/helicase domain, and thus it belongs to the SWI/SNF 

family of chromatin remodeling proteins. ATRX together with DAXX encode a complex that 

deposits histone variant H3.3 into repetitive heterochromatin, including retrotransposons, 

pericentric heterochromatin, and telomeres, the latter of which show deregulation in 

ATRX/DAXX-mutant tumors (41,42). ATRX loss induces extensive changes in chromatin 

accessibility in both repetitive DNA regions and non-repetitive regulatory regions (43). These 

changes are highly correlated with changes in transcription, which lead to alterations in cancer-

related signaling pathways, such as upregulation of the TGF-β pathway and downregulation of 

the cadherin family of proteins (43). Our analysis shows frequent mutations and deletions of 

ATRX in TCGA ACC, GBM, LGG and SARC cohorts. 
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CSDE1 is ranked by NDSI as the strongest CNA-based tumor suppressor and 5
th

 strongest driver 

averaged across all classes. CSDE1 encodes for an RNA-binding protein involved in 

translationally coupled mRNA turnover. CSDE1 not only promotes and represses the translation 

of RNAs but also increases and decreases the abundance of RNAs (44). CSDE1 loss-of-function 

mutations and deletions define a Wnt-altered subtype of pheochromocytomas and 

paragangliomas (45). Our analysis also shows frequent deletions of CSDE1 in TCGA PCPG 

(pheochromocytoma and paraganglioma) cohort. 

 

NF2 is ranked by NDSI as the strongest mixed tumor suppressor and 3
rd

 strongest CNA-based 

tumor suppressor. NF2 encodes Merlin (Moesin-ezrin-radixin-like protein), also known as 

Neurofibromin 2 and Schwannomin. Merlin is a tumor suppressor classically known for its 

ability to induce contact-dependent growth inhibition (46). Loss-of-function mutations or 

deletions in NF2 cause neurofibromatosis type 2, a multiple tumor forming disease of the 

nervous system, characterized by the development of bilateral schwannomas, as well as 

meningiomas and ependymomas (47). NF2 is also mutated and deleted in mesotheliomas (48), 

clear cell renal cell carcinomas (49), collecting duct carcinomas of the kidney (50), and renal cell 

carcinomas with sarcomatoid dedifferentiation (51).  Our analysis shows frequent mutations 

and deletions of NF2 in TCGA KIRC (kidney renal clear cell carcinoma), KIRP (kidney renal 

papillary cell carcinoma) and MESO (mesothelioma) cohorts. 

 

Interestingly, NDSI prioritized three members of guanine nucleotide-binding protein (G protein) 

family: GNAQ, GNA11, and GNAS. Guanine nucleotide-binding proteins function as transducers 

downstream of G protein-coupled receptors (GPCRs) in numerous signaling cascades. The alpha 

chain contains the guanine nucleotide binding site and alternates between an active, GTP-
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bound state and an inactive, GDP-bound state. Signaling by an activated GPCR promotes GDP 

release and GTP binding. The alpha subunit has a low GTPase activity that converts bound GTP 

to GDP, thereby terminating the signal. GNAQ-encoded protein, an α subunit in the Gq class, 

couples a seven-transmembrane-domain receptor to activation of PLCβ. Some GNAQ cancer 

mutants display normal basal activity and GPCR-mediated activation, but deactivate slowly due 

to GTPase activating protein (GAP) insensitivity (52). GNAQ mutations occur in about half of 

uveal melanomas, representing the most common known oncogenic mutation in this cancer 

(53). The presence of this mutation in tumors at all stages of malignant progression suggests 

that it is an early event in uveal melanoma (53). Mutations affecting Q209 in GNAQ were 

present in 45% of primary uveal melanomas and 22% of uveal melanoma metastases (54). Our 

analysis also shows frequent mutations of GNAQ in TCGA UVM (uveal melanoma) cohort. 

Recently, of the 11111 patients screened, 117 patients have been found to harbor 

GNAQ/GNA11 mutations, in melanoma, colorectal, liver, glioma, lung, bile duct and gastric 

cancers (55). GNA11 encodes subunit α-11 in the Gq class and acts as an activator of PLC. 

Mutations affecting Q209 in GNA11 were present in 32% of primary uveal melanomas and 57% 

of uveal melanoma metastases (54). Our analysis also shows frequent mutations of GNA11 in 

TCGA UVM (uveal melanoma) cohort. GNAS encodes subunit α in the Gs class and participates 

in the activation of adenylyl cyclases, resulting in increased levels of the signaling molecule 

cAMP. GNAS functions downstream of several GPCRs, including beta-adrenergic receptors. 

GNAS mutations are found in 67% of intraductal papillary mucinous neoplasms and many 

associated pancreatic ductal adenocarcinomas (56). High GNAS expression in breast tumor 

tissue showed a close correlation with a reduced overall survival, frequent distal metastasis, 

advanced clinical stage, stronger cell proliferation and enhanced cancer cell migration (57). 

Recently, it has been shown that GNAS promotes the development of small cell lung cancer via 

PKA (58). Our analysis shows frequent mutations and amplifications of GNAS in TCGA COAD 
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(colon adenocarcinoma), LIHC (liver hepatocellular carcinoma) and READ (rectum 

adenocarcinoma) cohorts. The current knowledge on cancer-associated alterations of GPCRs 

and G proteins has been recently reviewed (59). Strikingly, approximately 36% of all drugs 

approved by the US Food and Drug Administration during the past three decades target GPCRs 

(60).  

 

Two members of isocitrate dehydrogenase family, IDH1 and IDH2, appeared on the top 10 SNA-

based oncogenic events list as ranked by NDSI. The protein encoded by IDH1 is the NADP
+
-

dependent isocitrate dehydrogenase found in the cytoplasm and peroxisomes. The cytoplasmic 

enzyme serves a significant role in cytoplasmic NADPH production. The protein encoded by 

IDH2 is the NADP
+
-dependent isocitrate dehydrogenase found in the mitochondria. It plays a 

role in intermediary metabolism and energy production. The most frequent mutations R132 

(IDH1) and R172 (IDH2) involve the active site and result in simultaneous loss of normal 

catalytic activity, the production of α-ketoglutarate, and gain of a new function, the production 

of 2-hydroxyglutarate (61–64). 2-hydroxyglutarate is structurally similar to α-ketoglutarate, and 

acts as an α-ketoglutarate antagonist to competitively inhibit multiple α-ketoglutarate–

dependent dioxygenases, including both lysine histone demethylases and the ten-eleven 

translocation family of DNA hydroxylases (64). Abnormal histone and DNA methylation are 

emerging as a common feature of tumors with IDH1 and IDH2 mutations and may cause altered 

stem cell differentiation and eventual tumorigenesis (64). In acute myeloid leukemia, IDH1 and 

IDH2 mutations have been associated with worse outcome, shorter overall survival, and normal 

karyotype (65). All the 1p19q co-deleted gliomas are mutated on IDH1 or IDH2 (66). Our 

analysis shows frequent mutations of IDH1 and IDH2 in TCGA LGG (lower grade glioma) cohort 

and frequent amplifications of IDH1 in LIHC (liver hepatocellular carcinoma), as well as less 

frequent mutations and amplifications of IDH1 in CHOL, GBM, PRAD and SKCM. 
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Two fibroblast growth factor receptors FGFR2 and FGFR3 appeared on the top 10 mixed 

oncogenic events list as ranked by NDSI. The extracellular region of these proteins, composed 

of three immunoglobulin-like domains, interacts with fibroblast growth factors, leading to the 

activation of a cytoplasmic tyrosine kinase domain that phosphorylates PLCG1, FRS2 and other 

proteins. This sets in motion a cascade of downstream signals, including RAS-MAPK and PI3K-

AKT pathways, ultimately influencing cell proliferation, differentiation, migration and apoptosis. 

FGFR aberrations were found in 7.1% of cancers, with the majority being gene amplification 

(66% of the aberrations), followed by mutations (26%) and rearrangements (8%) (67). FGFR1 

was affected in 3.5% of 4,853 patients; FGFR2 in 1.5%; FGFR3 in 2.0%; and FGFR4 in 0.5% (67). 

The cancers most commonly affected were urothelial (32% FGFR-aberrant); breast (18%); 

endometrial (∼13%), squamous lung cancers (∼13%), and ovarian cancer (∼9%) (67). Our 

analysis also shows frequent mutations and amplifications of FGFR2 in TCGA LUSC (lung 

squamous cell carcinoma) and UCEC (uterine corpus endometrial carcinoma) cohorts, as well as 

frequent mutations and amplifications of FGFR3 in BLCA (bladder urothelial carcinoma), HNSC 

(head and neck squamous cell carcinoma) and LUSC (lung squamous cell carcinoma) cohorts. 

 

While both DSI- and NDSI-ranked top 50 genes are significantly overrepresented in such 

Reactome categories as signaling by PTK6, ESR-mediated signaling, PIP3 activates AKT signaling, 

signaling by receptor tyrosine kinases, signaling by erythropoietin, RAF/MAP kinase cascade, 

generic transcription pathway, chromatin modifying enzymes, and diseases of signal 

transduction by growth factor receptors and second messengers, there are also multiple 

differences. Top 50 DSI-ranked genes are additionally overrepresented in signaling by NOTCH, 

signaling by WNT, signaling by TGF-beta receptor complex, mitotic cell cycle, meiosis, cell cycle 

checkpoints, DNA double-stand break repair, epigenetic regulation of gene expression, RNA 
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polymerase I transcription, circadian clock, diseases of cellular senescence, diseases of 

programmed cell death, and cellular responses to stress. This suggests that although these 

pathways are frequently mutated in cancer, none of them possesses strong tumor-promoting 

activity on its own. On the other hand, top 50 NDSI-ranked genes are additionally 

overrepresented in GPCR downstream signaling, which suggests that although this pathway is 

mutated more rarely in cancer, it nevertheless has very strong tumor-promoting activity. It is 

also peculiar why neither DSI- nor NDSI-ranked top 50 genes are significantly overrepresented 

in DNA replication, autophagy, and metabolism categories. This may indicate that the role of 

these processes in oncogenesis is overestimated. 

 

The major signaling pathway activated by mutations in both top DSI- and top NDSI-ranked 

driver genes is the RAS-RAF pathway. Although the pathway can be triggered via mutations in 

EGFR, FGFR, NRAS, HRAS, KRAS and BRAF genes, all of which are in top 50 of both DSI and NDSI 

rankings, it can be additionally engaged through mutations in top DSI-ranked driver ERBB2 and 

top NDSI-ranked drivers GNAQ and GNA11. This suggests that ERBB2 driver mutations occur 

more frequently but are weaker than GNAQ and GNA11 driver mutations. Also, top DSI-ranked 

driver mutations affect the upper part of the PI3K-AKT-MTOR pathway via constitutive PIK3CA 

activation or PTEN inactivation, whereas top NDSI-ranked mutations affect the lower part of 

the pathway by activating AKT1 and MTOR. Similarly, this suggests that PIK3CA and PTEN driver 

mutations occur more frequently but are weaker than AKT1 and MTOR driver mutations. 

Moreover, CTNNB1-MYC pathway, TP53-CDKN2A-RB1 pathway and MYC-CUL1-RB1 pathway 

are engaged only by top DSI-ranked drivers, indicating their relative weakness in cancer 

promotion despite high frequency of mutation, whereas TCEB1-VHL-HIF1A pathway - only by 

top NDSI-ranked drivers, suggesting that this pathway has very strong tumor-promoting 

potential whilst being mutated more rarely.  
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Overall, we presented a comprehensive overview on the landscape of cancer driver genes and 

chromosomes in TCGA PanCanAtlas patients and highlighted particular genes, gene families and 

pathways deemed strong drivers according to our Normalized Driver Strength Index. A puzzling 

question that remains in cancer genomics is why mutations in a given driver gene are typically 

confined to one or a few cancer types, resulting in each cancer type having its own unique set 

of driver genes (68)? As mutations are supposed to happen randomly as a result of stochastic 

mutagenesis processes (69,70), it is logical to suggest that mutations in different tissues can 

affect the same genes. However, the same mutation can be selected for in some tissues and 

selected against in others (71). This selection most likely depends on the tissue-specific 

epigenetic profiles and microenvironments of the cancer-initiating stem or progenitor cells 

(72,73). Thus, investigating the interplay between stem cell mutations, epigenetic profiles and 

microenvironments in various tissues appears to be a promising and exciting avenue for future 

research. 
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Methods 

 

Source files and initial filtering 

TCGA PanCanAtlas data were used. Files “Analyte level annotations -

 merged_sample_quality_annotations.tsv”, “ABSOLUTE purity/ploidy file -

 TCGA_mastercalls.abs_tables_JSedit.fixed.txt“, “Aneuploidy scores and arm calls file -

 PANCAN_ArmCallsAndAneuploidyScore_092817.txt”, “Public mutation annotation file -

 mc3.v0.2.8.PUBLIC.maf.gz”, “gzipped ISAR-corrected GISTIC2.0 all_thresholded.by_genes file -

 ISAR_GISTIC.all_thresholded.by_genes.txt”, “RNA batch corrected matrix -

 EBPlusPlusAdjustPANCAN_IlluminaHiSeq_RNASeqV2.geneExp.tsv”, “miRNA batch corrected 

matrix - pancanMiRs_EBadjOnProtocolPlatformWithoutRepsWithUnCorrectMiRs_08_04_16.csv”, 

were downloaded from https://gdc.cancer.gov/about-data/publications/PanCan-CellOfOrigin.  

 

Using TCGA barcodes (see https://docs.gdc.cancer.gov/Encyclopedia/pages/TCGA_Barcode/ 

and https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/sample-type-codes), all 

samples except primary tumors (barcoded 01, 03, 09) were removed from all files. Based on the 

information in the column “Do_not_use” in the file “Analyte level annotations -

 merged_sample_quality_annotations.tsv”, all samples with “True” value were removed from 

all files. All samples with “Cancer DNA fraction” <0.5 or unknown or with “Subclonal genome 

fraction” >0.5 or unknown in the file “TCGA_mastercalls.abs_tables_JSedit.fixed.txt“ were 

removed from the file “PANCAN_ArmCallsAndAneuploidyScore_092817.txt”. Moreover, all 

samples without “PASS” value in the column “FILTER” were removed from the file 

“mc3.v0.2.8.PUBLIC.maf.gz” and zeros in the column “Entrez_Gene_Id” were replaced with 

actual Entrez gene IDs, determined from the corresponding ENSEMBL gene IDs in the column 

“Gene” and external database 
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ftp://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz. Filtered 

files were saved as “Primary_whitelisted_arms.tsv”, 

“mc3.v0.2.8.PUBLIC_primary_whitelisted_Entrez.tsv”, 

“ISAR_GISTIC.all_thresholded.by_genes_primary_whitelisted.tsv”, 

”EBPlusPlusAdjustPANCAN_IlluminaHiSeq_RNASeqV2-v2.geneExp_primary_whitelisted.tsv”, 

“pancanMiRs_EBadjOnProtocolPlatformWithoutRepsWithUnCorrectMiRs_08_04_16_primary_whit

elisted.tsv”. 

 

RNA filtering of CNAs 

Using the file “EBPlusPlusAdjustPANCAN_IlluminaHiSeq_RNASeqV2-

v2.geneExp_primary_whitelisted.tsv”, the median expression level for each gene across 

patients was determined. If the expression for a given gene in a given patient was below 0.05x 

median value, it was encoded as “-2”, if between 0.05x and 0.75x median value, it was encoded 

as “-1”, if between 1.25x and 1.75x median value, it was encoded as “1”, if above 1.75x median 

value, it was encoded as “2”, otherwise it was encoded as “0”. The file was saved as 

“EBPlusPlusAdjustPANCAN_IlluminaHiSeq_RNASeqV2-

v2.geneExp_primary_whitelisted_median.tsv.” The same operations were performed with the 

file 

“pancanMiRs_EBadjOnProtocolPlatformWithoutRepsWithUnCorrectMiRs_08_04_16_primary_

whitelisted.tsv”, which was saved as 

“pancanMiRs_EBadjOnProtocolPlatformWithoutRepsWithUnCorrectMiRs_08_04_16_primary_

whitelisted_median.tsv” 

Next, the file “ISAR_GISTIC.all_thresholded.by_genes_primary_whitelisted.tsv” was processed 

according to the following rules: if the gene CNA status in a given patient was not zero and had 

the same sign as the gene expression status in the same patient (file 
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“EBPlusPlusAdjustPANCAN_IlluminaHiSeq_RNASeqV2-

v2.geneExp_primary_whitelisted_median.tsv” or 

“pancanMiRs_EBadjOnProtocolPlatformWithoutRepsWithUnCorrectMiRs_08_04_16_primary_

whitelisted_median.tsv” for miRNA genes), then the CNA status value was replaced with the 

gene expression status value, otherwise it was replaced by zero. If the corresponding 

expression status for a given gene was not found then its CNA status was not changed. The 

resulting file was saved as 

“ISAR_GISTIC.all_thresholded.by_genes_primary_whitelisted_RNAfiltered.tsv” 

 

We named this algorithm GECNAV (Gene Expression-based CNA Validator) and created a 

Github repository: https://github.com/belikov-av/GECNAV. The package used to generate data 

in this article is available as Additional file 3. 

 

Aneuploidy driver prediction 

Using the file “Primary_whitelisted_arms.tsv”, the average alteration status of each 

chromosomal arm was calculated for each cancer type and saved as a matrix file 

“Arm_averages.tsv”. By drawing statuses randomly with replacement (bootstrapping) from any 

cell of “Primary_whitelisted_arms.tsv”, for each cancer type the number of statuses 

corresponding to the number of patients in that cancer type were generated and their average 

was calculated. The procedure was repeated 10000 times, the median for each cancer type was 

calculated and the results were saved as a matrix file “Bootstrapped_arm_averages.tsv”.  

 

P-value for each arm alteration status was calculated for each cancer type. To do this, first the 

alteration status for a given cancer type and a given arm in “Arm_averages.tsv” was compared 

to the median bootstrapped arm alteration status for this cancer type in 
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“Bootstrapped_arm_averages.tsv”. If the status in “Arm_averages.tsv” was higher than zero 

and the median in “Bootstrapped_arm_averages.tsv”, the number of statuses for this cancer 

type in “Bootstrapped_arm_averages.tsv” that are higher than the status in 

“Arm_averages.tsv” was counted and divided by 5000. If the status in “Arm_averages.tsv” was 

lower than zero and the median in “Bootstrapped_arm_averages.tsv”, the number of statuses 

for this cancer type in “Bootstrapped_arm_averages.tsv” that are lower than the status in 

“Arm_averages.tsv” was counted and divided by 5000, and marked with minus to indicate arm 

loss. Other values were ignored (cells left empty). The results were saved as a matrix file 

“Arm_Pvalues_cohorts.tsv”.  

 

For each cancer type, Benjamini–Hochberg procedure with FDR=5% was applied to P-values in 

“Arm_Pvalues_cohorts.tsv” and passing P-values were encoded as “DAG” (Driver arm gain) or 

“DAL” (Driver arm loss) if marked with minus. The other cells were made empty and the results 

were saved as a matrix file “Arm_drivers_FDR5_cohorts.tsv”. 

 

Alterations were classified according to the following rules: if the arm status in a given patient 

(file “Primary_whitelisted_arms.tsv”) was “-1” and the average alteration status of a given arm 

in the same cancer type (file “Arm_drivers_FDR5_cohorts.tsv”) was “DAL”, then the alteration 

in the patient was classified as “DAL”. If the arm status in a given patient was “1” and the 

average alteration status of a given arm in the same cancer type was “DAG”, then the alteration 

in the patient was classified as “DAG”. In all other cases an empty cell was written. The total 

number of DALs and DAGs was calculated, patients with zero drivers were removed, and the 

results were saved as a matrix file “Arm_drivers_FDR5.tsv”. 
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Using the file “Primary_whitelisted_arms.tsv”, the values for the whole chromosomes were 

calculated using the following rules: if both p- and q-arm statuses were “1” then the 

chromosome status was written as “1”; if both p- and q-arm statuses were “-1” then the 

chromosome status was written as “-1”; if at least one arm status was not known (empty cell) 

then the chromosome status was written as empty cell; in all other cases the chromosome 

status was written as “0”. For one-arm chromosomes (13, 14, 15, 21, 22), their status equals 

the status of the arm. The resulting file was saved as “Primary_whitelisted_chromosomes.tsv”.  

 

The same procedures as described above for chromosomal arms were repeated for the whole 

chromosomes, with the resulting file “Chromosome_drivers_FDR5.tsv”. Chromosome drivers 

were considered to override arm drivers, so if a chromosome had “DCL” (Driver chromosome 

loss) or “DCG” (Driver chromosome gain), no alterations were counted on the arm level, to 

prevent triple counting of the same event. 

 

We named this algorithm ANDRIF (ANeuploidy DRIver Finder) and created a Github repository: 

https://github.com/belikov-av/ANDRIF. The package used to generate data in this article is 

available as Additional file 4. 

 

SNA driver prediction 

Using the file “mc3.v0.2.8.PUBLIC_primary_whitelisted_Entrez.tsv” all SNAs were classified 

according to the column “Variant_Classification”.  “Frame_Shift_Del”, “Frame_Shift_Ins”, 

“Nonsense_Mutation”, “Nonstop_Mutation” and “Translation_Start_Site” were considered 

potentially inactivating; “De_novo_Start_InFrame”, “In_Frame_Del”, “In_Frame_Ins” and 

“Missense_Mutation” were considered potentially hyperactivating; 

“De_novo_Start_OutOfFrame” and “Silent” were considered passengers; the rest were 
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considered unclear. The classification results were saved as the file 

“SNA_classification_patients.tsv”, with columns “Tumor_Sample_Barcode”, “Hugo_Symbol”, 

“Entrez_Gene_Id”, “Gene”, “Number of hyperactivating SNAs”, “Number of inactivating SNAs”, 

“Number of SNAs with unclear role”, “Number of passenger SNAs”.  

 

Using this file, the sum of all alterations in all patients was calculated for each gene. Genes 

containing only SNAs with unclear role (likely, noncoding genes) were removed, also from 

“SNA_classification_patients.tsv”. Next, the Nonsynonymous SNA Enrichment Index (NSEI) was 

calculated for each gene as  

���� �
���	
� � ���
����������� ���� �  ���	
� � ������������ ���� � �

���	
� � ����
��
� ���� � �
 

and the Hyperactivating to Inactivating SNA Ratio (HISR) was calculated for each gene as 

��� � ������ �� ��������������  !�"# $ %
������ �� �����������  !�"# $ %  

Genes for which the sum of hyperactivating, inactivating and passenger SNAs was less than 10 

were removed to ensure sufficient precision of NSEI and HISR calculation, and the results were 

saved as “SNA_classification_genes_NSEI_HISR.tsv”.  

 

Using the file “SNA_classification_patients.tsv”, the gene-patient matrix “SNA_matrix.tsv” was 

constructed, encoding the “Number of hyperactivating SNAs”, “Number of inactivating SNAs”, 

“Number of SNAs with unclear role” and “Number of passenger SNAs” as one number 

separated by dots (e.g. “2.0.1.1”). If data for a given gene were absent in a given patient, it was 

encoded as “0.0.0.0”. By drawing statuses randomly with replacement (bootstrapping) from 

any cell of “SNA_matrix.tsv” 10000 times for each patient, the matrix file 

“SNA_matrix_bootstrapped.tsv” was created. The sums of statuses in 

“SNA_matrix_bootstrapped.tsv” were calculated for each iteration separately, and then the 
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corresponding NSEI and HISR indices were calculated and the results were saved as 

“SNA_bootstrapped_NSEI_HISR.tsv”. Null hypothesis P-values were calculated for each 

iteration as the number of NSEI values higher than a given iteration’s NSEI value and divided by 

10000. The histogram of bootstrapped p-values was plotted to check for the uniformity of null 

hypothesis p-value distribution. 

 

P-value for each gene was calculated as the number of NSEI values in 

“SNA_bootstrapped_NSEI_HISR.tsv” higher than its NSEI value in 

“SNA_classification_genes_NSEI_HISR.tsv” and divided by 10000. The results were saved as 

“SNA_classification_genes_NSEI_HISR_Pvalues.tsv”. Benjamini–Hochberg procedure with 

FDR(Q)=5% was applied to P-values in “SNA_classification_genes_NSEI_HISR_Pvalues.tsv”, and 

genes that pass were saved as “SNA_driver_gene_list_FDR5.tsv”. 

 

We named this algorithm SNADRIF (SNA DRIver Finder) and created a Github repository: 

https://github.com/belikov-av/SNADRIF. The package used to generate data in this article is 

available as Additional file 5. 

 

Driver prediction algorithms sources and benchmarking 

Lists of driver genes and mutations predicted by various algorithms (Table 2) applied to 

PanCanAtlas data were downloaded from https://gdc.cancer.gov/about-

data/publications/pancan-driver (2020plus, CompositeDriver, DriverNet, HotMAPS, 

OncodriveFML), https://karchinlab.github.io/CHASMplus (CHASMplus), as well as received by 

personal communication from Francisco Martínez-Jiménez, 

Institute for Research in Biomedicine, Barcelona, francisco.martinez@irbbarcelona.org  

(dNdScv, OncodriveCLUSTL, OncodriveFML). All genes and mutations with q-value > 0.05 were 
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removed. Additionally, a consensus driver gene list from 26 algorithms applied to PanCanAtlas 

data (7) was downloaded from https://www.cell.com/cell/fulltext/S0092-8674(18)30237-X and 

a COSMIC Cancer Gene Census (CGC) Tier 1 gene list (14) was downloaded from 

https://cancer.sanger.ac.uk/cosmic/census?tier=1. Only genes affected by somatic SNAs and 

CNAs present in the TCGA cancer types were used for further analyses from the CGC list. Cancer 

type names in the CGC list were manually converted to the closest possible TCGA cancer type 

abbreviation. Entrez Gene IDs were identified for each gene using HUGO Symbol and external 

database 

ftp://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz.  

 

Table 2. Driver prediction algorithms. 

Name Ref. Repository Level Principles 

20/20plus (5) https://github.com/KarchinLab

/2020plus   
gene Machine learning, trained on 

Cancer Genome Landscapes 

(20/20 rule); 

Nonsynonymous/Synonymous, 

clustering, conservation (uses 

UCSC's 46-way vertebrate 

alignment and SNVBox), impact 

(uses VEST), network (uses 

BioGrid), expression, chromatin, 

replication (uses MutSigCV) 

ANDRIF This 

paper 

https://github.com/belikov-

av/ANDRIF 
Chromosomal 

arm,  

chromosome 

Recurrence 

CHASMplus (6) https://github.com/KarchinLab

/CHASMplus   

 

 

mutation Machine learning, trained on 

TCGA; clustering (uses HotMAPS 

1D), conservation (uses UCSC 

Multiz-100-way and SNV box), 

network (uses Interactome 

Insider) 

CompositeDriver (7) https://github.com/mil2041/C

ompositeDriver 
gene Recurrence, impact (uses 

FunSeq2) 

dNdScv (8) https://github.com/im3sanger/

dndscv 
gene Nonsynonymous/Synonymous 

DriverNet (9) https://github.com/shahcomp

bio/drivernet  

 

https://bioconductor.org/pack

ages/release/bioc/html/Driver

Net.html 

gene Network (uses MGSA and a 

human functional protein 

interaction network), impact 

(uses gene expression outliers) 

HotMAPS (10) https://github.com/karchinlab/

HotMAPS  
mutation 3D clustering (uses Protein Data 

Bank and ModPipe) 

OncodriveCLUSTL (11) http://bbglab.irbbarcelona.org

/oncodriveclustl/analysis  

 

gene Clustering 
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https://bitbucket.org/bbglab/o

ncodriveclustl/src/master/  

OncodriveFML (12) http://bbglab.irbbarcelona.org

/oncodrivefml/analysis 

 

https://bitbucket.org/bbglab/o

ncodrivefml/src/master/ 

gene Recurrence, Impact (uses CADD 

and RNAsnp) 

SNADRIF This 

paper 

https://github.com/belikov-

av/SNADRIF 
gene Nonsynonymous/Synonymous 

Bailey et al, 2018 (7) https://www.cell.com/cell/fullt

ext/S0092-8674(18)30237-X   
gene Consensus driver gene list from 

26 algorithms applied to 

PanCanAtlas data 

COSMIC Cancer 

Gene Census 

(CGC) 

(14) https://cancer.sanger.ac.uk/co

smic/census?tier=1 
gene Manually curated list of cancer 

driver genes, current “gold 

standard” 

 

The sensitivity of algorithms was assessed as the percentage of genes in a positive control list 

that were predicted as drivers by an algorithm, because Sensitivity=True positives/(True 

positives + False negatives). Three positive control lists were used – CGC Tier 1 genes affected 

by somatic SNAs or CNAs in TCGA cancer types, a list of genes identified by at least two of all 

our sources (including CGC and Bailey), and a list of genes identified by at least three of all our 

sources (including CGC and Bailey). Sensitivity was assessed separately for algorithms applied to 

individual cancer types as the percentage of gene-cohort pairs in a positive control list that 

were matched by gene-cohort pairs predicted by an algorithm. 

 

Conversion of population-level data to patient-level data 

For lists of driver genes, all entries from the file 

“mc3.v0.2.8.PUBLIC_primary_whitelisted_Entrez.tsv” were removed except those that satisfied 

the following conditions simultaneously:  “Entrez Gene ID” matches the one in the driver list; 

cancer type (identified by matching “Tumor_Sample_Barcode” with “bcr_patient_barcode” and 

“acronym” in “clinical_PANCAN_patient_with_followup.tsv”) matches “cohort” in the driver list 

or the driver list is for pancancer analysis; “Variant_Classification” column contains one of the 

following values: “De_novo_Start_InFrame”, “Frame_Shift_Del”, “Frame_Shift_Ins”, 
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“In_Frame_Del”, “In_Frame_Ins”, “Missense_Mutation”, “Nonsense_Mutation”, 

“Nonstop_Mutation”, “Translation_Start_Site”.  

 

For lists of driver mutations, the procedures were the same, except that Ensembl Transcript ID 

and nucleotide/amino acid substitution were used for matching instead of Entrez Gene ID. 

These data (only columns “TCGA Barcode”, “HUGO Symbol”, “Entrez Gene ID”) were saved as 

“AlgorithmName_output_SNA.tsv“.  

 

Additionally, all entries from the file 

“ISAR_GISTIC.all_thresholded.by_genes_primary_whitelisted.tsv” were removed except those 

that satisfied the following conditions simultaneously:  “Locus ID” matches “Entrez Gene ID” in 

the driver list; cancer type (identified by matching Tumor Sample Barcode with 

“bcr_patient_barcode” and “acronym” in “clinical_PANCAN_patient_with_followup.tsv”) 

matches “cohort” in the driver list or the driver list is for pancancer analysis; CNA values are 

“2”, “1”, “-1” or “-2”. These data were converted from the matrix to a list format (with columns 

“TCGA Barcode”, “HUGO Symbol”, “Entrez Gene ID”) and saved as 

“AlgorithmName_output_CNA.tsv“.  

 

Finally, the files “AlgorithmName_output_SNA.tsv” and “AlgorithmName_output_CNA.tsv” 

were combined, duplicate TCGA Barcode-Entrez Gene ID pairs were removed, and the results 

saved as “AlgorithmName_output.tsv”. 

 

Driver event classification and analysis 

The file “Clinical with Follow-up - clinical_PANCAN_patient_with_followup.tsv” was 

downloaded from https://gdc.cancer.gov/node/905/. All patients with “icd_o_3_histology” 
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different from XXXX/3 (primary malignant neoplasm) were removed, as well as all patients not 

simultaneously present in the following three files: 

“mc3.v0.2.8.PUBLIC_primary_whitelisted_Entrez.tsv”, 

“ISAR_GISTIC.all_thresholded.by_genes_primary_whitelisted.tsv” and 

“Primary_whitelisted_arms.tsv”. The resulting file was saved as 

“clinical_PANCAN_patient_with_followup_primary_whitelisted.tsv”. 

 

Several chosen “AlgorithmName_output.tsv” files were combined and all TCGA Barcode-Entrez 

Gene ID pairs not present in at least two output files were removed. Entries with TCGA 

Barcodes not present in “clinical_PANCAN_patient_with_followup_primary_whitelisted.tsv” 

were removed as well. Matching “Number of hyperactivating SNAs” and “Number of 

inactivating SNAs” for each TCGA Barcode-Entrez Gene ID pair were taken from the 

“SNA_classification_patients.tsv” file, in case of no match zeros were written. Matching HISR 

value was taken from “SNA_classification_genes_NSEI_HISR.tsv” for each Entrez Gene ID, in 

case of no match empty cell was left. Matching CNA status was taken from 

“ISAR_GISTIC.all_thresholded.by_genes_primary_whitelisted_RNAfiltered.tsv” for each TCGA 

Barcode-Entrez Gene ID pair, in case of no match zero was written.  

 

Each TCGA Barcode-Entrez Gene ID pair was classified according to the Table 3: 

 

Table 3. Driver event classification rules. 

Driver type Number of 

nonsynonymous 

SNAs 

Number of 

inactivating 

SNAs 

HISR CNA 

status 

Count as … 

driver 

event(s) 

SNA-based oncogene ≥1 0 >5 0 1 

CNA-based oncogene 0 0 >5 1 or 2 1 

Mixed oncogene ≥1 0 >5 1 or 2 1 
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SNA-based tumor 

suppressor  

≥1 ≥0 ≤5 0 1 

CNA-based tumor 

suppressor 

0 0 ≤5 -1 or -2 1 

Mixed tumor suppressor ≥1 ≥0 ≤5 -1 or -2 1 

Passenger 0 0  0 0 

Low-probability driver All the rest 0 

 

Results of this classification were saved as “AnalysisName_genes_level2.tsv”. 

 

Using this file, the number of driver events of each type was counted for each patient. 

Information on the number of driver chromosome and arm losses and gains for each patient 

was taken from the files “Chromosome_drivers_FDR5.tsv” and “Arm_drivers_FDR5.tsv”. All 

patients not present in the files “AnalysisName_genes_level2.tsv”, 

“Chromosome_drivers_FDR5.tsv” and “Arm_drivers_FDR5.tsv”, but present in the file 

“clinical_PANCAN_patient_with_followup_primary_whitelisted.tsv”, were added with zero 

values for the numbers of driver events. Information on the cancer type (“acronym”), gender 

(“gender”), age (“age_at_initial_pathologic_diagnosis”) and tumor stage (“pathologic_stage”, if 

no data then “clinical_stage”, if no data then “pathologic_T”, if no data then “clinical_T”) was 

taken from the file “clinical_PANCAN_patient_with_followup_primary_whitelisted.tsv”. The 

results were saved as “AnalysisName_patients.tsv”. 

 

Using the file “AnalysisName_patients.tsv”, the number of patients with each integer total 

number of driver events from 0 to 100 was counted for each cancer type, also for males and 

females separately, and cumulative histograms were plotted. Using the same file 

“AnalysisName_patients.tsv”, the average number of various types of driver events was 

calculated for each cancer type, tumor stage, age group, as well as for patients with each total 
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number of driver events from 1 to 100. Analyses were performed for total population and for 

males and females separately, and cumulative histograms were plotted for each file. 

 

We named this algorithm PALDRIC (PAtient-Level DRIver Classifier) and created a Github 

repository: https://github.com/belikov-av/PALDRIC 

 

We later developed a modification of PALDRIC that allows analysis and ranking of individual 

genes, chromosome arms and full chromosomes – PALDRIC GENE - and created a Github 

repository: https://github.com/belikov-av/PALDRIC_GENE. The package used to generate data 

in this article is available as Additional file 6. 

 

Using the files “AnalysisName_genes_level2.tsv”, “Chromosome_drivers_FDR5.tsv” and 

“Arm_drivers_FDR5.tsv”, the names of individual genes, chromosome arms or full 

chromosomes affected by driver events of each type were catalogued for each patient. 

Information on the cancer type, gender, age and tumor stage was taken from the file 

“clinical_PANCAN_patient_with_followup_primary_whitelisted.tsv”. The results were saved as 

“AnalysisName_patients_genes.tsv”. 

 

Using the file “AnalysisName_patients_genes.tsv”, the number of various types of driver events 

in individual genes, chromosome arms or full chromosomes was calculated for each cancer 

type, tumor stage, age group, as well as for patients with each total number of driver events 

from 1 to 100. Analyses were performed for total population and for males and females 

separately, and histograms of top 10 driver events in each class and overall were plotted for 

each group. 
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Driver Strength Index (DSI) 

��� � � � � �  �

� � �  
���

���

 

and Normalized Driver Strength Index (NDSI) 

	��� � �
∑ � �  �� � � 

���
���

∑ � �  � � �  ���
���

 

were calculated, where � �  � is a number of patients with a driver event in the 

gene/chromosome A amongst patients with i driver events in total; � � is a number of patients 

with i driver events in total. To avoid contamination of NDSI-ranked driver event lists with very 

rare driver events and to increase precision of the index calculation, all events that were 

present in less than 10 patients in each driver event class were removed. To compose the top-

(N)DSI-ranked driver list, the lists of drivers from various classes were combined, and drivers 

with lower (N)DSI in case of duplicates and all drivers with NDSI<0.05 were removed. 

 

Pathway and network analysis of top-(N)DSI-ranked driver genes 

First, the chromosome arms and full chromosomes were removed from the top-(N)DSI-ranked 

driver lists, as external pathway and network analysis services can work only with genes. 

Next, top 50 DSI-ranked genes and top 50 NDSI-ranked genes were selected, to facilitate proper 

comparison. 

 

The resulting lists were uploaded as Entrez Gene IDs to “Reactome v77 Analyse gene list” tool 

(https://reactome.org/PathwayBrowser/#TOOL=AT). Voronoi visualizations (Reacfoam) were 

exported as jpg files. 
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The resulting lists were also uploaded as Entrez Gene IDs to “KEGG Mapper –Color” tool 

(https://www.genome.jp/kegg/mapper/color.html), “hsa” Search mode was selected, default 

bgcolor assigned to “yellow”, search executed and the top result - “Pathways in cancer - Homo 

sapiens (human)” (hsa05200) was selected for mapping. The resulting images were exported as 

png files. 

 

The data were also analyzed in Cytoscape 3.8.2 (https://cytoscape.org). BioGRID: Protein-

Protein Interactions (H. sapiens) network was imported and then (N)DSI values appended from 

the top 50 (N)DSI-ranked driver list. First, Degree Sorted Circle Layout was selected and genes 

not within the circle were removed. Node Fill Color was mapped to (N)DSI values with 

Continuous Mapping and Node Height and Width were mapped to degree.layout parameter 

(number of connections) with Continuous Mapping. Then, yFiles Organic Layout was selected 

and legend appended. The resulting images were exported as pdf files. 
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