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Abstract 

Elucidating crucial driver genes is paramount for understanding the cancer origins and 

mechanisms of progression, as well as selecting targets for molecular therapy. Cancer genes are 

usually ranked by the frequency of mutation, which, however, does not necessarily reflect their 

driver strength. Here we hypothesize that driver strength is higher for genes that are 

preferentially mutated in patients with few driver mutations overall, because these few 

mutations should be strong enough to initiate cancer. We propose a formula to calculate the 

corresponding Driver Strength Index (DSI), as well as the Normalized Driver Strength Index 

(NDSI), the latter completely independent of the overall gene mutation frequency. We validate 

these indices using the largest database of human cancer mutations – TCGA PanCanAtlas, 

multiple established algorithms for cancer driver prediction (2020plus, CHASMplus, 

CompositeDriver, dNdScv, DriverNet, HotMAPS, IntOGen Plus, OncodriveCLUSTL, 

OncodriveFML) and four custom computational pipelines that integrate driver contributions 

from SNA, CNA and aneuploidy at the patient-level resolution. We demonstrate that NDSI 

provides substantially different rankings of genes as compared to DSI and frequency approach.  

For example, NDSI highlighted the importance of guanine nucleotide-binding protein subunits 

GNAQ, GNA11, GNAI1, GNAZ and GNB3, General Transcription Factor II family members GTF2I 

and GTF2F2, as well as fibroblast growth factor receptors FGFR2 and FGFR3. Intriguingly, NDSI 

prioritized CIC, FUBP1, IDH1 and IDH2 mutations, as well as 19q and 1p chromosome arm 

losses, that comprise characteristic molecular alterations of gliomas. KEGG analysis shows that 

top NDSI-ranked genes comprise PDGFRA-GRB2-SOS2-HRAS/NRAS-BRAF pathway, 

GNAQ/GNA11-HRAS/NRAS-BRAF pathway, GNB3-AKT1-IKBKG/GSK3B/CDKN1B pathway and 

TCEB1-VHL pathway. NDSI does not seem to correlate with the number of protein-protein 

interactions. We share our software to enable calculation of DSI and NDSI for outputs of any 

third-party driver prediction algorithms or their combinations.  
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Introduction 

 

Most cancer driver prediction algorithms answer one question – what is a probability of a given 

gene being a driver. This is definitely a crucial question and the answers are very valuable. 

However, high confidence that a gene is a driver does not translate to the statement that this 

gene is a strong driver. We can imagine a gene that is mutated in the majority of cancer 

patients (e.g. because it has multiple suitable sites for a driver mutation) but has a very weak 

contribution to cancer progression in each of these patients (e.g. because this gene is 

redundant). We can also imagine a gene that is mutated rarely (e.g. because it has only one 

suitable site for a driver mutation) but if the mutation does occur it immediately leads to cancer 

(e.g. because this gene is in a key position to control cell growth). The former would be an 

example of high confidence but weak driver, whereas the latter would be low confidence but 

strong driver. Overall, algorithms based on mutation recurrence cannot determine driver 

strength.  

 

Some algorithms try to predict driver strength based on data from protein interaction networks 

(1)(2)(3). The idea is that a gene having multiple connections with other genes, i.e. playing the 

role of a network hub, will have more dramatic influence on the cell in case of mutation (4). 

This seems like a great idea at first sight, but a more detailed look shows that this is not the 

case. Yes, mutations in network hubs are likely to cause more disturbance in the cell, but what 

are the reasons to believe that all (or any of) these perturbations would be beneficial for cancer 

progression? In fact, mutations in network hubs are more likely to lead to cell death than to 

oncogenic transformation.  
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Here, we propose another approach. We reason that a few strong drivers are sufficient to 

initiate cancer, and there would be no need to accumulate additional drivers. On the other 

hand, weak drivers would need to accumulate in much higher quantity, until their combined 

strength would become sufficient to initiate cancer. Therefore, it should be statistically more 

likely to find strong drivers in patients that have only few driver mutations in their tumors, and 

less likely to find them in patients with multiple drivers per tumor. Likewise, it should be 

statistically less likely to find weak drivers in patients that have only few driver mutations in 

their tumors, and more likely to find them in patients with multiple drivers per tumor. Hence, 

we propose the Driver Strength Index (DSI) that takes into account the frequencies of mutation 

of a given driver gene in groups of patients with different total number of driver mutations, and 

gives priority weights to groups with fewer mutations. We also propose a modification of this 

index that is completely independent of the overall frequency of mutation of a given driver 

gene – the Normalized Driver Strength Index (NDSI). 

 

Calculating these indices requires data on the number of driver mutations in each individual 

patient. The majority of existing driver prediction algorithms work at the cohort level, i.e. they 

predict driver genes for large groups of patients, usually having a particular cancer type. This 

does not allow to look at the composition of driver mutations in individual patients. We wrote 

specific scripts to convert cohort-level predictions into patient-level events, which also allowed 

seamless integration of the results from various third-party algorithms, including 2020plus (5), 

CHASMplus (6), CompositeDriver (7), dNdScv (8), DriverNet (9), HotMAPS (10), IntOGen Plus 

(11), OncodriveCLUSTL (12), and OncodriveFML (13). This is useful, as each individual driver 

prediction algorithm has its own strengths and shortcomings, and combining results from 

multiple algorithms allows to obtain more complete and balanced picture, ensuring that less 

driver mutations have been missed.  
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In addition to these existing driver prediction algorithms, we decided to create our own, using 

clear and simple rules to have an internal reference standard. We called this algorithm SNADRIF 

– Single Nucleotide Alteration DRIver Finder. It predicts cancer driver genes from the TCGA 

PanCanAtlas SNA data and classifies them into oncogenes and tumor suppressors. Driver 

prediction is based on calculating the ratio of nonsynonymous SNAs to silent SNAs (8), whereas 

driver classification is based on calculating the ratio of hyperactivating SNAs to inactivating 

SNAs (14). Bootstrapping is used to calculate statistical significance and Benjamini–Hochberg 

procedure is used to keep false discovery rate under 5%. 

 

Copy-number alterations (CNA) usually involve large chunks of DNA containing tens or 

hundreds of genes, which makes CNA data not very useful for uncovering individual driver 

genes. Nevertheless, it is an important source of information about amplifications and 

deletions of driver genes predicted from SNA data. However, due to CNA data coarseness, we 

wanted to clarify the actual copy number status of individual genes using mRNA and miRNA 

expression data available at TCGA PanCanAtlas. For this purpose, we created another pipeline 

called GECNAV - Gene Expression-based CNA Validator. CNA validation is based on comparing 

the CNA status of a given gene in a given patient to expression of this gene in this patient 

relative to the median expression of this gene across all patients. 

 

Aneuploidy – chromosome arm and full chromosome gains and losses – makes a substantial 

contribution to the number of driver alterations per tumor, and thus we needed to take it into 

account when calculating our indices. However, there are no existing algorithms to differentiate 

driver aneuploidies from passenger ones. Therefore, we built our own pipeline called ANDRIF -   

ANeuploidy DRIver Finder. Driver prediction is based on calculating the average alteration 
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status for each arm or chromosome in each cancer type. Bootstrapping is then used to obtain 

the realistic distribution of the average alteration statuses under the null hypothesis and 

Benjamini–Hochberg procedure is performed to keep the false discovery rate under 5%.  

 

Finally, we needed an algorithm to integrate all data on driver mutations from different 

algorithms - our own and third-party. We called this algorithm PALDRIC - PAtient-Level DRIver 

Classifier. It translates cohort-level lists of driver genes or mutations to the patient level, 

classifies driver events according to the molecular causes and functional consequences, and 

presents comprehensive statistics on various kinds of driver events in various demographic and 

clinical groups of patients. Moreover, we developed a modification of PALDRIC that allows 

analysis and ranking of individual genes, chromosome arms and full chromosomes according to 

their frequency of occurrence, DSI, and NDSI.  

 

Our overall workflow can be seen in Fig 1. 
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Results 

 

To get three different perspectives on the number and composition of driver events, we 

performed three different analyses. In the first one we used results of our own SNADRIF 

algorithm applied to the whole TCGA PanCanAtlas dataset. We will refer to this analysis as 

“Pancan SNADRIF” (for data and graphs see Supplementary Data 1).  In the second analysis we 

used the combination of results from several third-party algorithms - 2020plus, CHASMplus, 

CompositeDriver, OncodriveFML and consensus results from (7) – also applied to the whole 

TCGA PanCanAtlas dataset. We will refer to this analysis as “Pancan combined” (for data and 

graphs see Supplementary Data 2). In the third analysis we used the combination of results 

from 2020plus, CHASMplus, CompositeDriver, dNdScv, DriverNet, HotMAPS, IntOGen, 

OncodriveCLUSTL, OncodriveFML and consensus results from (7), applied separately to each 

cancer cohort of TCGA PanCanAtlas. We will refer to this analysis as “Cohorts combined”. 

Applying algorithms to individual cohorts allows to discover cancer type-specific drivers and 

avoid “contamination” by false positives, i.e. driver genes discovered during Pancan analysis 

that do not in reality play any role in a given cancer type. On the other hand, much fewer 

patients are available for cohort-specific analysis, and this decreases statistical power to 

discover new driver genes. Of note, our SNADRIF algorithm works best for Pancan analysis and 

struggles with small cohorts, due to scarcity of point mutations. However, when a combination 

of driver prediction algorithms is used, there are lower chances of missing an important driver 

gene even in a cohort-specific analysis, as algorithms based on differing principles complement 

each other. The results of “Cohorts combined” analysis would be presented in the following 

paragraphs. 
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We calculated the number of various types of driver events in individual genes, chromosome 

arms or full chromosomes for each cancer type, tumor stage, age group, as well as for patients 

with each total number of driver events from 1 to 50. We performed the analyses for total 

population and for males and females separately, and, for each group, plotted the histograms 

of top 10 driver events in each class and overall (for data and graphs see Supplementary Data 

3). In Fig 2 we present the overall ranking of genes for all TCGA PanCanAtlas cohorts combined. 

It can be seen that PIK3CA is the oncogene with the highest number of SNAs, as well as the 

highest number of simultaneous occurrences of SNAs and gene amplifications. MYC is the 

oncogene with the highest number of amplifications. TP53 is the tumor suppressor with the 

highest number of SNAs, as well as the highest number of instances of simultaneous 

occurrences of an SNA in one allele and a deletion in the other allele. It is also the top mutated 

gene when driver events of all classes are counted. CDKN2A is the tumor suppressor with the 

highest number of deletions. Losses of chromosomes 13 and 22 are the most frequent cancer-

promoting chromosome losses, whereas gains of chromosomes 7 and 20 are the most frequent 

cancer-promoting chromosome gains. Losses of 8p and 17p arms are the most frequent cancer-

promoting chromosome arm losses, whereas gains of 1q and 8q arms are the most frequent 

cancer-promoting chromosome arm gains. Overall, these results are expected and confirm that 

our analytic pipelines work as they should. 

 

Next, we calculated the Driver Strength Index (DSI) 

��� � � � � �  �

� � �  
���

���

 

where � �  � is a number of patients with a driver event in the gene/chromosome A amongst 

patients with i driver events in total; � � is a number of patients with i driver events in total. 

Surprisingly, we do not see much change compared to the simple frequency-of-mutation 
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approach (Fig 3). The only dramatic difference is that BRAF became the top SNA-based (and 

overall) oncogene according to DSI, whereas PIK3CA dropped to the second place, lagging 

behind by a wide margin. Also, PIK3CA overtook MYC as the top CNA-based oncogene, and 

PTEN displaced CDKN2A from the top CNA-based tumor suppressor spot. Moreover, members 

of several gene families appeared in the top 10 lists, such as KRAS, NRAS and HRAS in the SNA-

based oncogenic events list, or lysine methyltransferases KMT2C and KMT2D in the SNA-based 

tumor suppressor events list. This indicates that our approach is indeed meaningfully selecting 

for some biological attributes, which are not selected by simple frequency sorting. Finally, 

multiple small changes of ranking positions happened, nevertheless not affecting the overall 

picture. We think the reason for the limited effect of changes is that DSI is still very much 

affected by the overall frequency of gene mutation, due to 
� �  �

� �

 component. Hence, to uncover 

the true driver strength unrelated to the mutation frequency, further normalization is required.  

Therefore, we propose Normalized Driver Strength Index (NDSI) 

	��� � �
∑ � �  �� � � 

���
���

∑ � �  � � �  ���
���

 

that corrects for the effects of mutation frequencies. As can be seen in Fig 4, this time the 

rankings are completely different from both DSI and frequency-based approaches. GTF2I 

conquers the top spot amongst SNA-based oncogenes and overall, EPRS becomes number one 

CNA-based oncogene, and PDGFRA occupies the first line of mixed oncogene rating. NUP214 

and CHEK2 become the top SNA- and CNA-based tumor suppressors, respectively. FUBP1 and 

CIC occupy the first and the second places in the mixed tumor suppressors list, with minimal 

difference from each other but big difference from the third place. NDSI reveals the loss of 

chromosome 1 as the strongest cancer-promoting chromosome loss, whereas gains of 

chromosomes 17 and 11 as the strongest cancer-promoting chromosome gains. NDSI shows 
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that the loss of 19q arm is the strongest cancer-promoting chromosome arm loss, whereas 

gains of 19p and 17p arms are the strongest cancer-promoting chromosome arm gains.  

 

Like DSI, NDSI is able to select for specific gene families. Three members of the guanine 

nucleotide-binding protein family, GNAQ, GNB3 and GNAI1, appeared on the top 10 SNA- and 

CNA-based oncogenic events lists (Fig 4). Additionally, two more G proteins, GNA11 and GNAZ, 

appeared on the top 100 NDSI-ranked driver list (Table 1). Of note, only GNAS member of this 

family is present on the top 100 DSI-ranked driver list (Table 1). Two members of isocitrate 

dehydrogenase family, IDH1 and IDH2, appeared on the top 10 SNA-based oncogenic events 

list, whereas fibroblast growth factor receptors FGFR2 and FGFR3 appeared on the top 10 

mixed oncogenic events list (Fig 4). Moreover, the strongest SNA-based oncogene, GTF2I, and 

the second strongest CNA-based tumor suppressor, GTF2F2, belong to the General 

Transcription Factor II family. The ability of NDSI to prioritize members of specific protein 

families suggests that this index has actual biological meaning. 

 

Next, we wanted to analyze top DSI- and NDSI-ranked genes using several common gene list 

analysis tools. To this aim, we combined the lists of drivers from various classes. If the same 

gene was affected by more than one kind of alteration, we chose the alteration type with the 

highest (N)DSI. Also, we removed the data on chromosome arms and full chromosomes, as 

external pathway and network analysis tools can work only with genes. Then, we selected top 

100 DSI- and NDSI-ranked genes. The resulting lists can be seen in Table 1. 
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Table 1. Top 100 DSI- and NDSI-ranked genes. 

Rank Entrez ID Symbol DSI Entrez ID Symbol NDSI 

1 7157 TP53 1.4145 100093631 GTF2I 0.52439 

2 673 BRAF 1.34253 673 BRAF 0.30477 

3 5290 PIK3CA 0.96597 11200 CHEK2 0.27057 

4 5728 PTEN 0.91662 2776 GNAQ 0.2188 

5 1029 CDKN2A 0.63645 80142 GBF1 0.181 

6 8289 ARID1A 0.63555 2963 GTF2F2 0.16995 

7 3845 KRAS 0.6198 7812 CSDE1 0.16207 

8 5925 RB1 0.54114 10010 TRAF2 0.15917 

9 1956 EGFR 0.51318 2058 EPRS 0.15088 

10 4609 MYC 0.51083 8021 NUP214 0.14232 

11 5747 PTK2 0.48049 3417 IDH1 0.13883 

12 546 ATRX 0.42089 84376 HK3 0.13671 

13 55294 FBXW7 0.40372 8880 FUBP1 0.13633 

14 4089 SMAD4 0.39892 3265 HRAS 0.13632 

15 5624 APC 0.38758 7249 TSC2 0.13619 

16 3417 IDH1 0.38126 3707 ITPKB 0.1345 

17 5437 POLR2H 0.37672 3066 HDAC2 0.13328 

18 6389 SDHA 0.3739 23152 CIC 0.13091 

19 23236 PLCB1 0.35215 9203 ZMYM3 0.13029 

20 7037 TFRC 0.33698 1788 DNMT3A 0.12791 

21 1387 CREBBP 0.33558 10905 MAN1A2 0.12728 

22 472 ATM 0.33481 9997 TYMP 0.12528 

23 22916 NCBP2 0.33332 1031 CDKN2C 0.12014 

24 7276 TTN 0.33319 3418 IDH2 0.11748 

25 108 ADCY2 0.33029 2588 GALNS 0.11309 

26 595 CCND1 0.32945 6938 TCF12 0.11206 

27 1962 EHHADH 0.32557 10983 CYC1 0.1117 

28 2064 ERBB2 0.31659 2770 GNAI1 0.1113 

29 6464 SHC1 0.31471 8803 SUCLA2 0.1085 

30 5589 PLD1 0.30528 4048 LTA4H 0.10636 

31 8972 MGAM 0.29863 715 C1R 0.10503 

32 51606 ATP6V1H 0.29832 862 RUNX1T1 0.10456 

33 6262 RYR2 0.29226 2534 FYN 0.10427 

34 6035 RAC1 0.29067 2784 GNB3 0.1024 

35 5295 PIK3R1 0.29043 2194 FAS 0.10225 

36 2195 FAT1 0.28314 2885 GRB2 0.09907 

37 2033 EP300 0.27801 25836 NIPBL 0.09905 

38 4780 NFE2L2 0.27606 6610 SMPD2 0.09835 

39 4893 NRAS 0.26471 2182 ACSL4 0.09583 

40 777 CACNA1E 0.25906 8517 IKBKG 0.0942 

41 10401 PIAS3 0.25776 114788 CSMD3 0.09379 
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42 8831 RASA1 0.24882 55626 AMBRA1 0.09318 

43 3310 HSPA6 0.24837 23533 PIK3R5 0.09061 

44 58508 KMT2C 0.24833 7124 TNF 0.09041 

45 1499 CTNNB1 0.24444 3312 HSPA8 0.0902 

46 4763 NF1 0.24206 3158 HMGCS2 0.08886 

47 5105 PCK1 0.23991 51366 UBR5 0.08767 

48 55193 PBRM1 0.23983 26137 ZBTB20 0.08748 

49 2065 ERBB3 0.23766 25913 POT1 0.0871 

50 9631 NUP155 0.22488 29072 SETD2 0.0854 

51 5586 PAK2 0.20337 9869 SETDB1 0.08479 

52 1894 ECT2 0.20199 8731 MET 0.08452 

53 8731 MET 0.20067 7428 VHL 0.08432 

54 2157 F8 0.19857 1027 CDKN1B 0.08373 

55 3265 HRAS 0.19731 91851 CHRDL1 0.08354 

56 9997 TYMP 0.19479 9968 MED12 0.08243 

57 1857 DVL3 0.19285 170261 ZCCHC12 0.08231 

58 114 ADCY8 0.19272 4893 NRAS 0.08131 

59 1131 CHRM3 0.18925 6655 SOS2 0.08067 

60 5287 PIK3C2B 0.18911 5580 PRKCD 0.08014 

61 1213 CLTC 0.18867 4771 NF2 0.0797 

62 9223 BAP1 0.1883 2767 GNA11 0.07937 

63 8085 KMT2D 0.18468 55958 KLHL9 0.07922 

64 58508 MLL3 0.18319 8242 KDM5C 0.07729 

65 196528 ARID2 0.18285 8662 EIF3B 0.07701 

66 2778 GNAS 0.17942 8731 RNMT 0.07683 

67 6490 SI 0.17815 7410 VAV2 0.07666 

68 54965 PIGX 0.17814 567 B2M 0.07487 

69 11059 WWP1 0.17722 5093 PCBP1 0.07432 

70 197257 DLD 0.17325 4629 MYH11 0.07414 

71 1978 EIF4EBP1 0.1725 154 ADRB2 0.07413 

72 2963 GTF2F2 0.17073 5156 PDGFRA 0.074 

73 6000 RGS7 0.16933 1964 EIF1AX 0.07252 

74 8733 GPAA1 0.16928 5050 PAFAH1B3 0.0723 

75 6326 SCN2A 0.16847 290 ANPEP 0.07069 

76 31 ACACA 0.16824 3683 ITGAL 0.06978 

77 29072 SETD2 0.16764 4615 MYD88 0.06945 

78 9817 KEAP1 0.16709 6173 RPL36A 0.06936 

79 5294 PIK3CG 0.16659 537 ATP6AP1 0.06874 

80 8394 PIP5K1A 0.16633 51187 RPL24 0.06844 

81 5594 MAPK1 0.1628 2781 GNAZ 0.06793 

82 1589 CPS1 0.16218 5430 POLR2A 0.0675 

83 9091 PIGQ 0.16007 3792 KEL 0.06746 

84 5624 PROC 0.15766 6092 ROBO2 0.06695 

85 11200 CHEK2 0.15505 8309 ACOX2 0.0669 
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86 54880 BCOR 0.15462 6598 SMARCB1 0.06668 

87 2194 FASN 0.15432 286530 P2RY8 0.06656 

88 7095 SEC62 0.15428 8818 DPM2 0.06628 

89 2909 ARHGAP35 0.15427 207 AKT1 0.06578 

90 9757 MLL2 0.15194 2932 GSK3B 0.06497 

91 57492 ARID1B 0.15193 7114 TMSB4X 0.06444 

92 5335 PLCG1 0.1504 7248 TSC1 0.06421 

93 9939 RBM8A 0.15019 1594 CYP27B1 0.06415 

94 3320 HSP90AA1 0.14937 5727 PTCH1 0.06408 

95 5332 PLCB4 0.14864 6921 TCEB1 0.06384 

96 3551 IKBKB 0.14798 26047 CNTNAP2 0.0638 

97 5313 PKLR 0.14727 23291 FBXW11 0.06362 

98 5885 RAD21 0.14565 51755 CDK12 0.06356 

99 730249 CAD 0.14039 6778 STAT6 0.06351 

100 6531 SLC6A3 0.14035 9223 BAP1 0.06346 

 

First, we uploaded the resulting lists to “Reactome v76 Analyse gene list” tool and studied 

affected Reactome pathways on Voronoi visualizations (Reacfoam). It can be seen in Fig 5 that 

top 100 DSI-ranked genes are significantly overrepresented in such categories as Signal 

transduction, Diseases of signal transduction by growth factor receptors and second 

messengers, Chromatin organization, RNA polymerase II transcription, Cell Cycle, Diseases of 

mitotic cell cycle, Cellular responses to stress, Diseases of cellular response to stress, 

Programmed cell death, Developmental biology, and even Immune system and Hemostasis. 

Interestingly, several large categories often deemed important for cancer – such as 

Metabolism, Autophagy, DNA replication and DNA repair – are not affected. Top 100 NDSI-

ranked genes are significantly overrepresented in even fewer categories (Fig 6) – Signal 

transduction, Diseases of signal transduction by growth factor receptors and second 

messengers, Chromatin organization, RNA polymerase II transcription, Cell Cycle, Metabolism 

of proteins and Metabolism of RNA, as well as Immune system, Infectious disease, Hemostasis, 

and Axon guidance.  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.01.21261447doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.01.21261447
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 14

Next, we uploaded the resulting lists to “KEGG Mapper –Color” tool and mapped them to 

“Pathways in cancer - Homo sapiens (human)” (hsa05200) KEGG pathway map. Fig 7 and Table 

1 together suggest that top DSI-ranked genes comprise EGFR/ERBB2/PLCB1/PLCB4/PLCG1-

KRAS/NRAS/HRAS-BRAF-MAPK1-MYC-CCND1 pathway, PTK2-PIK3CA/PIK3C2B/PIK3CG-PTEN-

IKBKB-CCND1 pathway, GNAS-ADCY2/ADCY8-DVL3-CTNNB1-MYC-CCND1 pathway, KEAP1- 

NFE2L2 pathway, as well as CDKN2A-TP53-CCND1-RB1 pathway. Fig 8 and Table 1 together 

suggest that top NDSI-ranked genes comprise PDGFRA-GRB2-SOS2-HRAS/NRAS-BRAF pathway, 

GNAQ/GNA11-HRAS/NRAS-BRAF pathway, GNB3-AKT1-IKBKG/GSK3B/CDKN1B pathway, and 

TCEB1-VHL pathway. 

 

Finally, we analyzed the data in Cytoscape 3.8.2. We imported BioGRID: Protein-Protein 

Interactions (H. sapiens) network, appended (N)DSI values from the top 100 (N)DSI-ranked 

driver list, and mapped node color to (N)DSI values, whereas node size to the degree of 

connectedness. Fig 9 shows that although MYC and EGFR are the biggest hubs of top-DSI-

ranked gene network, their DSI values are much lower than those of BRAF and PIK3CA, which 

have much less connections. Notably, TP53 exhibited both high DSI value and high 

connectedness. Similarly, Fig 10 shows that although VHL, AKT1 and HSPA8 are the biggest, 

centrally located hubs of top-NDSI-ranked gene network, their NDSI values are much lower 

than those of GTF2I, BRAF and CHEK2, located on the periphery of the network. This supports 

our initially proposed idea that network centrality does not equal driver strength. Of note, top-

NDSI-ranked gene network appears to have much less edges than top-DSI-ranked gene 

network. 
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Discussion 

 

DSI places BRAF on the top spot amongst SNA-based oncogenes and drivers of all classes. BRAF 

encodes a protein belonging to the RAF family of serine/threonine protein kinases. BRAF plays a 

role in regulating the MAP kinase/ERK signaling pathway, which affects cell division and 

differentiation. Mutations in BRAF, most commonly the V600E mutation, are the most 

frequently identified cancer-causing mutations in melanoma, and have been identified in 

various other cancers as well, including non-Hodgkin lymphoma, colorectal cancer, thyroid 

carcinoma, non-small cell lung carcinoma, hairy cell leukemia and adenocarcinoma of lung (15). 

Our analysis shows frequent mutations and amplifications of BRAF in TCGA COAD, GBM, KIRP, 

LGG, LUAD, LUSC, PRAD, SKCM, THCA and UCEC cohorts. From recent studies, a new 

classification system is emerging for BRAF mutations based on biochemical and signaling 

mechanisms associated with these mutants. Class I BRAF mutations affect amino acid V600 and 

lead to BRAF protein signaling as RAS-independent active monomer, class II mutations make 

BRAF proteins function as RAS-independent activated dimers, and class III mutations impair 

BRAF kinase activity but increase signaling through the MAPK pathway due to enhanced RAS 

binding and subsequent CRAF activation (16). It would be interesting to rate the strength of 

these BRAF mutation classes using NDSI. 

 

DSI prioritizes KRAS, NRAS and HRAS amongst SNA-based oncogenes. These genes belong to 

the RAS oncogene family, whose members are related to the transforming genes of mammalian 

sarcoma retroviruses. The products encoded by these genes function in signal transduction 

pathways. These proteins can bind GTP and GDP, and they have intrinsic GTPase activity. 

Mutations in the RAS family of proteins have frequently been observed across cancer types, 

including lung adenocarcinoma, ductal carcinoma of the pancreas, colorectal carcinoma, 
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follicular thyroid cancer, juvenile myelomonocytic leukemia, bladder cancer, and oral squamous 

cell carcinoma (17). Our analysis shows frequent mutations and amplifications of KRAS, NRAS 

and HRAS in TCGA BLCA, BRCA, CESC, CHOL, COAD, ESCA, HNSC, KIRP, LGG, LIHC, LUAD, LUSC, 

OV, PAAD, PRAD, READ, SKCM, STAD, TGCT, THCA, THYM, UCEC and UCS cohorts. Gain-of-

function missense mutations, mostly located at codons 12, 13, and 61, constitutively activate 

RAS proteins, however, each isoform exhibits distinctive mutation frequency at each codon, 

supporting the hypothesis that different RAS mutants may lead to distinct biologic 

manifestations (18).  

 

DSI prioritizes KMT2C and KMT2D amongst SNA-based tumor suppressors. The proteins 

encoded by these genes are histone methyltransferases that methylate the Lys-4 position of 

histone H3 (H3K4me). H3K4me represents a specific tag for epigenetic transcriptional 

activation. The encoded proteins are part of a large protein complex called ASCOM, which is a 

transcriptional regulator of the beta-globin and estrogen receptor genes. Whereas KMT2C loss 

disrupts estrogen-driven proliferation, it conversely promotes tumor outgrowth under 

hormone-depleted conditions (19). In accordance, KMT2C is one of the most frequently 

mutated genes in estrogen receptor-positive breast cancer with KMT2C deletion correlating 

with significantly shorter progression-free survival on anti-estrogen therapy (19). KMT2D is 

among the most highly inactivated epigenetic modifiers in lung cancer (20). Recently, it has 

been shown that KMT2D loss widely impairs epigenomic signals for super-

enhancers/enhancers, including the super-enhancer for the circadian rhythm repressor PER2 

(20). Loss of KMT2D decreases expression of PER2, leading to increase in glycolytic gene 

expression (20). The role of KMT2C and KMT2D in cancer has been recently reviewed (21). Our 

analysis shows frequent mutations and deletions of KMT2C and KMT2D in TCGA BLCA, BRCA, 

CESC, COAD, DLBC, ESCA, HNSC, KIRC, KIRP, LIHC, LUSC, PRAD, STAD and UCEC cohorts. 
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NDSI places GTF2I on the top spot both amongst the strongest SNA-based oncogenes and 

amongst the strongest drivers averaged across all classes. The encoded protein binds to the 

initiator element (Inr) and E-box element in promoters and functions as a regulator of 

transcription. GTF2I c.74146970 T>A mutation was detected in 82% of type A and 74% of type 

AB thymomas (22). GTF2I β and δ isoforms are expressed in thymomas, and both mutant 

isoforms are able to stimulate cell proliferation in vitro (22). Recently, it has been shown that 

expression of mutant GTF2I alters the transcriptome of normal thymic epithelial cells and 

upregulates several oncogenic genes (23). GTF2I L424H knockin cells exhibit cell 

transformation, aneuploidy, and increased tumor growth and survival under glucose 

deprivation or DNA damage (23). Our analysis also shows frequent mutations of GTF2I in TCGA 

THYM (thymoma) cohort. GTF2I has been recently named gene of the month and its role in 

cancer reviewed (24). 

 

Interestingly, the second strongest CNA-based tumor suppressor, GTF2F2, belongs to the same 

General Transcription Factor II family as GTF2I. GTF2F2 is a general transcription initiation 

factor that binds to RNA polymerase II and helps to recruit it to the initiation complex in 

collaboration with GTF2B. It promotes transcription elongation. GTF2F2 shows ATP-dependent 

DNA-helicase activity. Our analysis shows frequent deletions of GTF2F2 in TCGA PRAD (Prostate 

adenocarcinoma) cohort. Indeed, GTF2F2 has been shown to be deleted in 20% of prostate 

cancer patients (25). Interestingly, GTF2F2 deletions were significantly more frequent in 

prostate cancers that progressed to metastases than in nonprogressors (26).  

 

EPRS is revealed by NDSI as the strongest CNA-based oncogene and the 8th strongest driver 

averaged across all classes. The protein encoded by EPRS is a multifunctional aminoacyl-tRNA 
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synthetase that catalyzes the aminoacylation of glutamic acid and proline tRNA species. EPRS is 

upregulated in estrogen receptor positive (ER+) human breast tumors in the TCGA and 

METABRIC cohorts, with copy number gains in nearly 50% of samples in both datasets, and this 

overexpression is associated with reduced overall survival of patients (27). Transcriptomic 

profiling showed that EPRS regulates cell cycle and estrogen response genes (27). EPRS is 

selectively carbonylated in breast tumor tissue compared to matched adjacent healthy tissue 

(28). EPRS is a key upregulated-hypomethylated gene in breast cancer and contributes to 

significant unfavorable clinical outcome (29). Recently, it has been shown that EPRS is 

frequently overexpressed in gastric cancer tissues compared to the adjacent controls and its 

overexpression predicts poor survival (30). Mechanistically, EPRS directly binds with SCYL2 to 

enhance the activation of WNT/GSK-3β/β-catenin signaling pathway and the accumulation of β-

catenin in the nucleus, leading to gastric cancer cell proliferation and tumor growth (30). Our 

analysis shows frequent amplifications of EPRS in TCGA CHOL (cholangiocarcinoma) and THCA 

(thyroid carcinoma) cohorts. 

 

PDGFRA is the strongest mixed (SNA+CNA) oncogene according to NDSI rating. PDGFRA 

encodes a cell surface tyrosine kinase receptor for members of the platelet-derived growth 

factor family. These growth factors are mitogens for cells of mesenchymal origin. PDGFRA plays 

a role in organ development, wound healing, and tumor progression. Mutations in PDGFRA 

have been associated with somatic and familial gastrointestinal stromal tumors and a variety of 

other cancers (31) (32). Amplification of the chromosome 4 segment harboring the three 

receptor tyrosine kinases KIT, PDGFRA, and KDR (4q12amp) is frequent in glioblastomas, 

angiosarcomas, and osteosarcomas (33). Among 99 pulmonary adenocarcinoma cases 

harboring 4q12amp, 50 lacked any other known driver (33). Our analysis shows frequent 
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mutations and amplifications of PDGFRA in TCGA GBM (glioblastoma) and LGG (lower grade 

glioma) cohorts. 

 

NUP214 is ranked by NDSI as the strongest SNA-based tumor suppressor. NUP214 is a member 

of the FG-repeat-containing nucleoporins. The protein encoded by NUP214 is localized to the 

cytoplasmic face of the nuclear pore complex where it is required for proper cell cycle 

progression and nucleocytoplasmic transport. Chromosomal translocations involving the 

NUP214 locus are recurrent in acute leukemia and frequently fuse the C-terminal region of 

NUP214 with SET and DEK, two chromatin remodeling proteins with roles in transcription 

regulation (34). SET-NUP214 and DEK-NUP214 fusion proteins disrupt protein nuclear export by 

inhibition of the nuclear export receptor CRM1, which results in the aberrant accumulation of 

CRM1 protein cargoes in the nucleus (34). SET-NUP214 is primarily associated with acute 

lymphoblastic leukemia, whereas DEK-NUP214 exclusively results in acute myeloid leukemia, 

indicating different leukemogenic driver mechanisms (34). NUP214 downregulation elevates 

mitotic indices, delays degradation of mitotic marker proteins cyclinB1 and cyclinA and 

dephosphorylation of H3 and enhances chromosomal abnormalities (35). Although classically, 

majority of studies have shown oncogenic roles of nucleoporins as genetic fusion partners in 

several types of leukemia, emerging evidence suggests that nucleoporins also modulate many 

cellular signaling pathways that are associated with several major non-hematological 

malignancies, such as carcinomas of skin, breast, lung, prostate and colon (36). Our analysis 

shows frequent mutations and deletions of NUP214 in TCGA KIRP (kidney renal papillary cell 

carcinoma), LIHC (liver hepatocellular carcinoma) and THCA (thyroid carcinoma) cohorts. 

 

CHEK2 is ranked by NDSI as the strongest CNA-based tumor suppressor and the second 

strongest driver averaged across all classes. CHEK2 is a cell cycle checkpoint regulator and 
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putative tumor suppressor. CHEK2 contains a forkhead-associated protein interaction domain 

essential for activation in response to DNA damage and is rapidly phosphorylated in response 

to replication blocks and DNA damage. When activated, CHEK2 inhibits CDC25C phosphatase, 

preventing entry into mitosis, and stabilizes the tumor suppressor protein p53, leading to cell 

cycle arrest in G1. In addition, CHEK2 interacts with and phosphorylates BRCA1, allowing BRCA1 

to restore survival after DNA damage. CHEK2 mutations rank among the most frequent 

germline alterations revealed by germline genetic testing for various hereditary cancer 

predispositions (37), including breast (38), prostate (39) and thyroid cancers (40,41). Our 

analysis shows frequent deletions of CHEK2 in TCGA THCA (thyroid carcinoma) cohort. 

 

FUBP1 is ranked by NDSI as the strongest mixed tumor suppressor and the 7th strongest CNA-

based tumor suppressor. The protein encoded by FUBP1 is a single stranded DNA-binding 

protein that binds to multiple DNA elements. FUBP1 is also thought to bind RNA, and contains 

3'-5' helicase activity with in vitro activity on both DNA-DNA and RNA-RNA duplexes. FUBP1 

cooperates with other tumor suppressor genes to transform mammary epithelial cells by 

disrupting cellular differentiation and tissue architecture (42). Mechanistically, FUBP1 

participates in regulating N6-methyladenosine (m6A) RNA methylation, and its loss leads to 

global changes in RNA splicing and widespread expression of aberrant driver isoforms (42). 

Interestingly, FUBP1 mutations tend to co-occur with CIC mutations and 1p and 19q 

chromosome arm losses in oligodendrogliomas and oligoastrocytomas (43)(44). 1p is the 

location of FUBP1 and 19q is the location of CIC. Our analysis also shows frequent instances of 

simultaneous mutation and hemizygous deletion of FUBP1 in TCGA LGG (lower grade glioma) 

cohort. 
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CIC is ranked by NDSI as the second strongest mixed tumor suppressor and the 6th strongest 

SNA-based tumor suppressor. CIC is an ortholog of the Drosophila melanogaster Capicua gene, 

and is a member of the high mobility group (HMG)-box superfamily of transcriptional 

repressors. Mutations in CIC have been associated with olidogdendrogliomas (43). Our analysis 

also shows frequent mutations and hemizygous deletions of CIC in TCGA LGG (lower grade 

glioma) cohort. In addition, translocation events resulting in gene fusions of CIC with DUX4 

have been associated with round cell sarcomas (45). Inactivation of CIC relieves repression of its 

effector ETV4, driving ETV4-mediated upregulation of MMP24, which is necessary and sufficient 

for metastasis (46). Loss of CIC, or an increase in levels of its effectors ETV4 and MMP24, is a 

biomarker of tumor progression and worse outcomes in patients with lung and/or gastric 

cancer (46). Loss of CIC leads to overexpression of downstream members of the MAPK signaling 

cascade (47) via increased histone acetylation (48). Recently, it has been shown that CIC 

deficiency critically enhances cancer stem cell self-renewal without altering their growth rate or 

invasiveness (49). Loss of CIC relieves repression of ETV4 and ETV5 expression, consequently 

promoting self-renewal capability, EpCAM+/CD44+/CD24low/− expression, and ALDH activity (49). 

In xenograft models, CIC deficiency significantly increases cancer stem cell frequency and drives 

tumor initiation through derepression of ETV4 (49). Consistent with the experimental data, the 

CD44high/CD24low cancer stem cell-like feature is inversely correlated with CIC levels in breast 

cancer patients (49). SOX2 is a downstream target gene of CIC that partly promotes cancer 

stem cells properties (49). The emerging role of CIC in cancer has been recently reviewed (50) 

(51).  

 

NDSI reveals loss of chromosome 1 as the strongest cancer-promoting chromosome loss. Loss 

of chromosome 1 is associated specifically with the development of hepatic metastases in 

patients with sporadic pancreatic endocrine tumors (52). Loss of heterozygosity on 
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chromosome 1 at one or more loci was detected in 93% of cervical carcinomas (53). Allelic 

losses were observed in 46% of male germ cell tumor cases on 1p and in 23% of cases on 1q 

(54). NDSI reveals gains of chromosomes 11 and 17 as the strongest cancer-promoting 

chromosome gains. Duplication/amplification of chromosome 11 was found by cytogenetic 

methods in 10 of 119 newly diagnosed patients with acute myeloid leukemia (55). Trisomy of 

chromosome 17 is characteristic for papillary renal cell tumors (56)(57). Recently, it has been 

suggested that trisomy/polysomy of chromosome 17 could be a marker of worse prognosis of 

oral squamous cell carcinoma (58).    

 

NDSI shows that the loss of 19q arm is the strongest cancer-promoting chromosome arm loss. 

Allelic losses on 19q were found in astrocytomas,  glioblastomas, oligodendrogliomas and 

oligoastrocytomas (59). 1p/19q co-deletion is a classical marker of anaplastic oligodendroglial 

tumors (60). Interestingly, 1p/19q loss in oligodendrogliomas has been found to co-occur with 

CIC and IDH1/2 mutations (61). CIC is located on 19q. Recently, 1p/19q co-deletion and CIC 

mutation have been discovered as characteristic features of CDKN2C-null leiomyosarcoma (62). 

NDSI shows that gains of 17p and 19p arms are the strongest cancer-promoting chromosome 

arm gains. 17p gain is a distinguishing feature of type 1 papillary renal cell carcinomas (63). 19p 

gain is associated with malignant pheochromocytomas (64). 

 

Interestingly, NDSI prioritized five members of guanine nucleotide-binding protein (G protein) 

family: GNAQ, GNA11, GNAI1, GNAZ and GNB3. Guanine nucleotide-binding proteins function 

as transducers downstream of G protein-coupled receptors (GPCRs) in numerous signaling 

cascades. The alpha chain contains the guanine nucleotide binding site and alternates between 

an active, GTP-bound state and an inactive, GDP-bound state. Signaling by an activated GPCR 

promotes GDP release and GTP binding. The alpha subunit has a low GTPase activity that 
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converts bound GTP to GDP, thereby terminating the signal. GNAQ-encoded protein, an α 

subunit in the Gq class, couples a seven-transmembrane domain receptor to activation of PLCβ. 

Some GNAQ cancer mutants display normal basal activity and GPCR-mediated activation, but 

deactivate slowly due to GTPase activating protein (GAP) insensitivity (65). GNAQ mutations 

occur in about half of uveal melanomas, representing the most common known oncogenic 

mutation in this cancer (66). The presence of this mutation in tumors at all stages of malignant 

progression suggests that it is an early event in uveal melanoma (66). Mutations affecting Q209 

in GNAQ were present in 45% of primary uveal melanomas and 22% of uveal melanoma 

metastases (67). Our analysis also shows frequent mutations of GNAQ in TCGA UVM (uveal 

melanoma) cohort. Recently, of the 11111 patients screened, 117 patients have been found to 

harbor GNAQ/GNA11 mutations, in melanoma, colorectal, liver, glioma, lung, bile duct and 

gastric cancers (68). GNA11 encodes subunit α-11 and acts as an activator of PLC. Mutations 

affecting Q209 in GNA11 were present in 32% of primary uveal melanomas and 57% of uveal 

melanoma metastases (67). Our analysis also shows frequent mutations of GNA11 in TCGA 

UVM (uveal melanoma) cohort. GNAI1-encoded protein represents the α subunit of an 

inhibitory complex that responds to β-adrenergic signals by inhibiting adenylate cyclase, 

leading to decreased intracellular cAMP levels. GNAI1 is required for normal cytokinesis during 

mitosis (69). High expression and low DNA hypermethylation of GNAI1 are significantly 

associated with poor prognosis for gastric cancer patients (70). Our analysis shows frequent 

amplifications of GNAI1 in TCGA PRAD (prostate adenocarcinoma) cohort. GNAZ encodes G 

protein subunit αZ. GNAZ was mutated in 5% of melanoma patients (71). Our analysis shows 

frequent amplifications of GNAZ in TCGA SARC (sarcoma) cohort. Interestingly, GNAZ 

expression was required for proper classification of leiomyosarcoma subtypes (72). GNB3 

encodes a β subunit which belongs to the WD repeat G protein β family. β subunits are 

important regulators of α subunits, as well as of certain signal transduction receptors and 
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effectors. The β and γ chains are required for the GTPase activity, for replacement of GDP by 

GTP, and for G protein-effector interaction. Polymorphisms in GNB3 have been implicated in 

several cancer types, including extrahepatic cholangiocarcinoma (73), transitional cell 

carcinoma of the bladder (74) and prostate cancer (75). Our analysis shows frequent 

amplifications of GNB3 in TCGA LGG (lower grade glioma) cohort. The current knowledge on 

cancer-associated alterations of GPCRs and G proteins has been recently reviewed (76). 

Strikingly, approximately 36% of all drugs approved by the US Food and Drug Administration 

during the past three decades target GPCRs (77). Overall, G proteins were ranked by NDSI as 

some of the strongest oncogenes likely because they lead to unconditional activation of two 

most important oncogenic signaling pathways: RAS-ERK and PI3K-AKT. 

 

Two members of isocitrate dehydrogenase family, IDH1 and IDH2, appeared on the top 10 SNA-

based oncogenic events list as ranked by NDSI. The protein encoded by IDH1 is the NADP+-

dependent isocitrate dehydrogenase found in the cytoplasm and peroxisomes. The cytoplasmic 

enzyme serves a significant role in cytoplasmic NADPH production. The protein encoded by 

IDH2 is the NADP+-dependent isocitrate dehydrogenase found in the mitochondria. It plays a 

role in intermediary metabolism and energy production. The most frequent mutations R132 

(IDH1) and R172 (IDH2) involve the active site and result in simultaneous loss of normal 

catalytic activity, the production of α-ketoglutarate, and gain of a new function, the production 

of 2-hydroxyglutarate (78) (79) (80) (81). 2-hydroxyglutarate is structurally similar to α-

ketoglutarate, and acts as an α-ketoglutarate antagonist to competitively inhibit multiple α-

ketoglutarate–dependent dioxygenases, including both lysine histone demethylases and the 

ten-eleven translocation family of DNA hydroxylases (81). Abnormal histone and DNA 

methylation are emerging as a common feature of tumors with IDH1 and IDH2 mutations and 

may cause altered stem cell differentiation and eventual tumorigenesis (81). In acute myeloid 
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leukemia, IDH1 and IDH2 mutations have been associated with worse outcome, shorter overall 

survival, and normal karyotype (82). All the 1p19q co-deleted gliomas are mutated on IDH1 or 

IDH2 (83). Our analysis shows frequent mutations of IDH1 and IDH2 in TCGA LGG (lower grade 

glioma) cohort and frequent amplifications of IDH1 in LIHC (liver hepatocellular carcinoma), as 

well as less frequent mutations and amplifications of IDH1 in CHOL, GBM, PRAD and SKCM. 

 

Two fibroblast growth factor receptors FGFR2 and FGFR3 appeared on the top 10 mixed 

oncogenic events list as ranked by NDSI. The extracellular region of these proteins, composed 

of three immunoglobulin-like domains, interacts with fibroblast growth factors, leading to the 

activation of a cytoplasmic tyrosine kinase domain that phosphorylates PLCG1, FRS2 and other 

proteins. This sets in motion a cascade of downstream signals, including RAS-MAPK and PI3K-

AKT pathways, ultimately influencing cell proliferation, differentiation, migration and apoptosis. 

FGFR aberrations were found in 7.1% of cancers, with the majority being gene amplification 

(66% of the aberrations), followed by mutations (26%) and rearrangements (8%) (84). FGFR1 

was affected in 3.5% of 4,853 patients; FGFR2 in 1.5%; FGFR3 in 2.0%; and FGFR4 in 0.5% (84). 

The cancers most commonly affected were urothelial (32% FGFR-aberrant); breast (18%); 

endometrial (∼13%), squamous lung cancers (∼13%), and ovarian cancer (∼9%) (84). Our 

analysis also shows frequent mutations and amplifications of FGFR2 in TCGA BRCA (breast 

invasive carcinoma), LUSC (lung squamous cell carcinoma) and UCEC (uterine corpus 

endometrial carcinoma) cohorts, as well as frequent mutations and amplifications of FGFR3 in 

BLCA (bladder urothelial carcinoma) and HNSC (head and neck squamous cell carcinoma) 

cohorts. 

 

It could be noticed that NDSI prioritized CIC, FUBP1, IDH1 and IDH2 mutations, as well as 19q 

and 1p chromosome arm losses, that comprise characteristic molecular alterations of gliomas 
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(43)(44)(59)(60)(61)(83). This could be at least partially explained by our results showing that 

glioma patients typically have no more than 30 driver mutations per tumor, with the average of 

10. This is in contrast with the maximum of 75 and the average of 22 for all cancer types 

combined (see Supplementary Data 3). As NDSI prioritizes genes preferentially occurring in 

patients with few mutations per tumor, it gives high scores to typical glioma drivers. This, 

however, does not indicate any pitfall of the index. On the contrary, it validates that the index 

works as expected. Similar effect can be seen with G proteins. GNAQ and GNA11 mutations are 

characteristic of uveal melanoma (66)(67), GNAI1 is amplified in prostate cancer, GNAZ in 

sarcoma and GNB3 in glioma. All these cancer types have low average number of driver events 

per patient. The observation that mutations of G proteins are overrepresented in driver-sparse 

cancer types confirms their high ranking by NDSI. 

 

While both DSI- and NDSI-ranked top 100 genes are significantly overrepresented in such 

Reactome categories as Signal transduction, Diseases of signal transduction by growth factor 

receptors and second messengers, Chromatin organization, RNA polymerase II transcription 

and Cell Cycle, there are also differences. Top 100 DSI-ranked genes are additionally 

overrepresented in Cellular responses to stress, Diseases of cellular response to stress and 

Programmed cell death, whereas top NDSI-ranked genes are not. This suggests that although 

these pathways are frequently mutated in cancer they do not possess strong tumor-promoting 

activity. It is also peculiar why neither DSI- nor NDSI-ranked top 100 genes are significantly 

overrepresented in Metabolism, Autophagy, DNA replication and DNA repair categories. This 

may indicate that the role of these processes in oncogenesis is overestimated. 

 

The major signaling pathway activated by both top DSI- and top NDSI-ranked driver genes is the 

RAS-RAF pathway. However, these two groups of drivers activate it via different routes. Top 
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DSI-ranked drivers trigger the pathway via EGFR, ERBB2, PLCB1, PLCB4 or PLCG1, whereas top 

NDSI-ranked drivers engage it through PDGFRA-GRB2-SOS arm or via G proteins, such as GNAQ 

or GNA11. This suggests that EGFR, ERBB2, PLCB1, PLCB4 and PLCG1 driver mutations occur 

more frequently but are weaker than PDGFRA, GRB2, SOS, GNAQ and GNA11 driver mutations. 

Also, top DSI-ranked drivers appear to engage PI3K-AKT pathway via constitutive PTK2 

activation or PTEN inactivation, and lead to IKBKB phosphorylation and CCND1 expression, 

whereas top NDSI-ranked drivers trigger it via GNB3 and lead to phosphorylation of IKBKG, 

GSK3B and CDKN1B. Similarly, this suggests that PTK2, PIK3CA, PIK3C2B, PIK3CG, PTEN, IKBKB 

and CCND1 driver mutations occur more frequently but are weaker than GNB3, AKT1, IKBKG, 

GSK3B and CDKN1B driver mutations. Moreover, GNAS-ADCY2/ADCY8-DVL3-CTNNB1-MYC-

CCND1 pathway, KEAP1-NFE2L2 pathway, and CDKN2A-TP53-CCND1-RB1 pathway are engaged 

only by top DSI-ranked drivers, whereas TCEB1-VHL pathway - only by top NDSI-ranked drivers.  

 

Overall, we presented a comprehensive overview on the landscape of cancer driver genes and 

chromosomes in TCGA PanCanAtlas patients and highlighted particular genes, gene families and 

pathways deemed strong drivers according to our Normalized Driver Strength Index. A puzzling 

question that remains in cancer genomics is why mutations in a given driver gene are typically 

confined to one or a few cancer types, resulting in each cancer type having its own unique set 

of driver genes (85)? As mutations are supposed to happen randomly as a result of stochastic 

mutagenesis processes (86), it is logical to suggest that mutations in different tissues can affect 

the same genes. However, the same mutation can be selected for in some tissues and selected 

against in others (87). This selection most likely depends on the tissue-specific epigenetic 

profiles and microenvironments of the cancer-initiating stem or progenitor cells (88,89). Thus, 

investigating the interplay between stem cell mutations, epigenetic profiles and 
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microenvironments in various tissues appears to be a promising and exciting avenue for future 

research. 

 

Methods 

 

Source files and initial filtering 

TCGA PanCanAtlas data were used. Files “Analyte level annotations -

 merged_sample_quality_annotations.tsv”, “ABSOLUTE purity/ploidy file -

 TCGA_mastercalls.abs_tables_JSedit.fixed.txt“, “Aneuploidy scores and arm calls file -

 PANCAN_ArmCallsAndAneuploidyScore_092817.txt”, “Public mutation annotation file -

 mc3.v0.2.8.PUBLIC.maf.gz”, “gzipped ISAR-corrected GISTIC2.0 all_thresholded.by_genes file -

 ISAR_GISTIC.all_thresholded.by_genes.txt”, “RNA batch corrected matrix -

 EBPlusPlusAdjustPANCAN_IlluminaHiSeq_RNASeqV2.geneExp.tsv”, “miRNA batch corrected 

matrix - pancanMiRs_EBadjOnProtocolPlatformWithoutRepsWithUnCorrectMiRs_08_04_16.csv”, 

were downloaded from https://gdc.cancer.gov/about-data/publications/PanCan-CellOfOrigin.  

 

Using TCGA barcodes (see https://docs.gdc.cancer.gov/Encyclopedia/pages/TCGA_Barcode/ 

and https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/sample-type-codes), all 

samples except primary tumors (barcoded 01, 03, 09) were removed from all files. Based on the 

information in the column “Do_not_use” in the file “Analyte level annotations -

 merged_sample_quality_annotations.tsv”, all samples with “True” value were removed from 

all files. All samples with “Cancer DNA fraction” <0.5 or unknown or with “Subclonal genome 

fraction” >0.5 or unknown in the file “TCGA_mastercalls.abs_tables_JSedit.fixed.txt“ were 

removed from the file “PANCAN_ArmCallsAndAneuploidyScore_092817.txt”. Moreover, all 

samples without “PASS” value in the column “FILTER” were removed from the file 
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“mc3.v0.2.8.PUBLIC.maf.gz” and zeros in the column “Entrez_Gene_Id” were replaced with 

actual Entrez gene IDs, determined from the corresponding ENSEMBL gene IDs in the column 

“Gene” and external database 

ftp://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz. Filtered 

files were saved as “Primary_whitelisted_arms.tsv”, 

“mc3.v0.2.8.PUBLIC_primary_whitelisted_Entrez.tsv”, 

“ISAR_GISTIC.all_thresholded.by_genes_primary_whitelisted.tsv”, 

”EBPlusPlusAdjustPANCAN_IlluminaHiSeq_RNASeqV2-v2.geneExp_primary_whitelisted.tsv”, 

“pancanMiRs_EBadjOnProtocolPlatformWithoutRepsWithUnCorrectMiRs_08_04_16_primary_whit

elisted.tsv”. 

 

RNA filtering of CNAs 

Using the file “EBPlusPlusAdjustPANCAN_IlluminaHiSeq_RNASeqV2-

v2.geneExp_primary_whitelisted.tsv”, the median expression level for each gene across 

patients was determined. If the expression for a given gene in a given patient was below 0.05x 

median value, it was encoded as “-2”, if between 0.05x and 0.75x median value, it was encoded 

as “-1”, if between 1.25x and 1.75x median value, it was encoded as “1”, if above 1.75x median 

value, it was encoded as “2”, otherwise it was encoded as “0”. The file was saved as 

“EBPlusPlusAdjustPANCAN_IlluminaHiSeq_RNASeqV2-

v2.geneExp_primary_whitelisted_median.tsv.” The same operations were performed with the 

file 

“pancanMiRs_EBadjOnProtocolPlatformWithoutRepsWithUnCorrectMiRs_08_04_16_primary_

whitelisted.tsv”, which was saved as 

“pancanMiRs_EBadjOnProtocolPlatformWithoutRepsWithUnCorrectMiRs_08_04_16_primary_

whitelisted_median.tsv” 
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Next, the file “ISAR_GISTIC.all_thresholded.by_genes_primary_whitelisted.tsv” was processed 

according to the following rules: if the gene CNA status in a given patient was not zero and had 

the same sign as the gene expression status in the same patient (file 

“EBPlusPlusAdjustPANCAN_IlluminaHiSeq_RNASeqV2-

v2.geneExp_primary_whitelisted_median.tsv” or 

“pancanMiRs_EBadjOnProtocolPlatformWithoutRepsWithUnCorrectMiRs_08_04_16_primary_

whitelisted_median.tsv” for miRNA genes), then the CNA status value was replaced with the 

gene expression status value, otherwise it was replaced by zero. If the corresponding 

expression status for a given gene was not found then its CNA status was not changed. The 

resulting file was saved as 

“ISAR_GISTIC.all_thresholded.by_genes_primary_whitelisted_RNAfiltered.tsv” 

 

We named this algorithm GECNAV (Gene Expression-based CNA Validator) and created a 

Github repository: https://github.com/belikov-av/GECNAV 

 

Aneuploidy driver prediction 

Using the file “Primary_whitelisted_arms.tsv”, the average alteration status of each 

chromosomal arm was calculated for each cancer type and saved as a matrix file 

“Arm_averages.tsv”. By drawing statuses randomly with replacement (bootstrapping) from any 

cell of “Primary_whitelisted_arms.tsv”, for each cancer type the number of statuses 

corresponding to the number of patients in that cancer type were generated and their average 

was calculated. The procedure was repeated 10000 times, the median for each cancer type was 

calculated and the results were saved as a matrix file “Bootstrapped_arm_averages.tsv”.  
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P-value for each arm alteration status was calculated for each cancer type. To do this, first the 

alteration status for a given cancer type and a given arm in “Arm_averages.tsv” was compared 

to the median bootstrapped arm alteration status for this cancer type in 

“Bootstrapped_arm_averages.tsv”. If the status in “Arm_averages.tsv” was higher than zero 

and the median in “Bootstrapped_arm_averages.tsv”, the number of statuses for this cancer 

type in “Bootstrapped_arm_averages.tsv” that are higher than the status in 

“Arm_averages.tsv” was counted and divided by 5000. If the status in “Arm_averages.tsv” was 

lower than zero and the median in “Bootstrapped_arm_averages.tsv”, the number of statuses 

for this cancer type in “Bootstrapped_arm_averages.tsv” that are lower than the status in 

“Arm_averages.tsv” was counted and divided by 5000, and marked with minus to indicate arm 

loss. Other values were ignored (cells left empty). The results were saved as a matrix file 

“Arm_Pvalues_cohorts.tsv”.  

 

For each cancer type, Benjamini–Hochberg procedure with FDR=5% was applied to P-values in 

“Arm_Pvalues_cohorts.tsv” and passing P-values were encoded as “DAG” (Driver arm gain) or 

“DAL” (Driver arm loss) if marked with minus. The other cells were made empty and the results 

were saved as a matrix file “Arm_drivers_FDR5_cohorts.tsv”. 

 

Alterations were classified according to the following rules: if the arm status in a given patient 

(file “Primary_whitelisted_arms.tsv”) was “-1” and the average alteration status of a given arm 

in the same cancer type (file “Arm_drivers_FDR5_cohorts.tsv”) was “DAL”, then the alteration 

in the patient was classified as “DAL”. If the arm status in a given patient was “1” and the 

average alteration status of a given arm in the same cancer type was “DAG”, then the alteration 

in the patient was classified as “DAG”. In all other cases an empty cell was written. The total 
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number of DALs and DAGs was calculated, patients with zero drivers were removed, and the 

results were saved as a matrix file “Arm_drivers_FDR5.tsv”. 

 

Using the file “Primary_whitelisted_arms.tsv”, the values for the whole chromosomes were 

calculated using the following rules: if both p- and q-arm statuses were “1” then the 

chromosome status was written as “1”; if both p- and q-arm statuses were “-1” then the 

chromosome status was written as “-1”; if at least one arm status was not known (empty cell) 

then the chromosome status was written as empty cell; in all other cases the chromosome 

status was written as “0”. For one-arm chromosomes (13, 14, 15, 21, 22), their status equals 

the status of the arm. The resulting file was saved as “Primary_whitelisted_chromosomes.tsv”.  

 

The same procedures as described above for chromosomal arms were repeated for the whole 

chromosomes, with the resulting file “Chromosome_drivers_FDR5.tsv”. Chromosome drivers 

were considered to override arm drivers, so if a chromosome had “DCL” (Driver chromosome 

loss) or “DCG” (Driver chromosome gain), no alterations were counted on the arm level, to 

prevent triple counting of the same event. 

 

We named this algorithm ANDRIF (ANeuploidy DRIver Finder) and created a Github repository: 

https://github.com/belikov-av/ANDRIF  

 

SNA driver prediction 

Using the file “mc3.v0.2.8.PUBLIC_primary_whitelisted_Entrez.tsv” all SNAs were classified 

according to the column “Variant_Classification”.  “Frame_Shift_Del”, “Frame_Shift_Ins”, 

“Nonsense_Mutation”, “Nonstop_Mutation” and “Translation_Start_Site” were considered 

potentially inactivating; “De_novo_Start_InFrame”, “In_Frame_Del”, “In_Frame_Ins” and 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.01.21261447doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.01.21261447
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 33

“Missense_Mutation” were considered potentially hyperactivating; 

“De_novo_Start_OutOfFrame” and “Silent” were considered passengers; the rest were 

considered unclear. The classification results were saved as the file 

“SNA_classification_patients.tsv”, with columns “Tumor_Sample_Barcode”, “Hugo_Symbol”, 

“Entrez_Gene_Id”, “Gene”, “Number of hyperactivating SNAs”, “Number of inactivating SNAs”, 

“Number of SNAs with unclear role”, “Number of passenger SNAs”.  

 

Using this file, the sum of all alterations in all patients was calculated for each gene. Next, the 

Nonsynonymous SNA Enrichment Index (NSEI) was calculated for each gene as  

���� �
���	
� � ���
����������� ���� �  ���	
� � ������������ ���� � �

���	
� � ����
��
� ���� � �
 

and the Hyperactivating to Inactivating SNA Ratio (HISR) was calculated for each gene as 

��� � ������ �� ��������������  !�"# $ %
������ �� �����������  !�"# $ %  

saving the results as “SNA_classification_genes_NSEI_HISR.tsv”.  

 

Using the file “SNA_classification_patients.tsv”, the gene-patient matrix “SNA_matrix.tsv” was 

constructed, encoding the “Number of hyperactivating SNAs”, “Number of inactivating SNAs”, 

“Number of SNAs with unclear role” and “Number of passenger SNAs” as one number 

separated by dots (e.g. “2.0.1.1”). If data for a given gene were absent in a given patient, it was 

encoded as “0.0.0.0”. By drawing statuses randomly with replacement (bootstrapping) from 

any cell of “SNA_matrix.tsv” 10000 times for each patient, the matrix file 

“SNA_matrix_bootstrapped.tsv” was created. The sums of statuses in 

“SNA_matrix_bootstrapped.tsv” were calculated for each iteration separately, and then the 

corresponding NSEI and HISR indices were calculated and the results were saved as 

“SNA_bootstrapped_NSEI_HISR.tsv”.  
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P-value for each gene was calculated as the number of NSEI values in 

“SNA_bootstrapped_NSEI_HISR.tsv” more extreme than its NSEI value in 

“SNA_classification_genes_NSEI_HISR.tsv” and divided by 10000. The results were saved as 

“SNA_classification_genes_NSEI_HISR_Pvalues.tsv”. Benjamini–Hochberg procedure with 

FDR(Q)=5% was applied to P-values in “SNA_classification_genes_NSEI_HISR_Pvalues.tsv”, and 

genes that pass were saved as “SNA_driver_gene_list_FDR5.tsv”. 

 

We named this algorithm SNADRIF (SNA DRIver Finder) and created a Github repository: 

https://github.com/belikov-av/SNADRIF  

 

Driver prediction algorithms and conversion to the patient level 

Lists of driver genes and mutations predicted by various algorithms (Table 2) applied to 

PanCanAtlas data were downloaded from https://gdc.cancer.gov/about-

data/publications/pancan-driver (2020plus, CompositeDriver, DriverNet, HotMAPS, 

OncodriveFML), https://karchinlab.github.io/CHASMplus (CHASMplus), as well as received by 

personal communication from Francisco Martínez-Jiménez, 

Institute for Research in Biomedicine, Barcelona, francisco.martinez@irbbarcelona.org  

(dNdScv, IntOGen Plus, OncodriveCLUSTL, OncodriveFML). Additionally, a consensus driver 

gene list from 26 algorithms applied to PanCanAtlas data (7) was downloaded from 

https://www.cell.com/cell/fulltext/S0092-8674(18)30237-X. All genes and mutations with q-

value > 0.05 were removed. Entrez Gene IDs were identified for each gene using HUGO Symbol 

and external database 

ftp://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz.  
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Table 2. Driver prediction algorithms. 

Name Ref. Repository Level Principles 

ANDRIF This 

paper 

https://github.com/belikov-

av/ANDRIF 
Chromosomal 

arm,  

chromosome 

Recurrence 

20/20plus (5) https://github.com/KarchinLab

/2020plus   
gene Machine learning, trained on 

Cancer Genome Landscapes 

(20/20 rule); 

Nonsynonymous/Synonymous, 

clustering, conservation (uses 

UCSC's 46-way vertebrate 

alignment and SNVBox), impact 

(uses VEST), network (uses 

BioGrid), expression, chromatin, 

replication (uses MutSigCV) 

CHASMplus (6) https://github.com/KarchinLab

/CHASMplus   

 

 

mutation Machine learning, trained on 

TCGA; clustering (uses HotMAPS 

1D), conservation (uses UCSC 

Multiz-100-way and SNV box), 

network (uses Interactome 

Insider) 

CompositeDriver (7) https://github.com/mil2041/C

ompositeDriver 
gene Recurrence, impact (uses 

FunSeq2) 

dNdScv (8) https://github.com/im3sanger/

dndscv 
gene Nonsynonymous/Synonymous 

DriverNet (9) https://github.com/shahcomp

bio/drivernet  

 

https://bioconductor.org/pack

ages/release/bioc/html/Driver

Net.html 

gene Network (uses MGSA and a 

human functional protein 

interaction network), impact 

(uses gene expression outliers) 

HotMAPS (10) https://github.com/karchinlab/

HotMAPS  
mutation 3D clustering (uses Protein Data 

Bank and ModPipe) 

IntOGen Plus (11) https://www.intogen.org/searc

h  

 

https://bitbucket.org/intogen/i

ntogen-plus/src/master/  

gene Combination of dNdScv, CBaSE, 

OncodriveCLUSTL, HotMAPS, 

smRegions and OncodriveFML 

OncodriveCLUSTL (12) http://bbglab.irbbarcelona.org

/oncodriveclustl/analysis  

 

https://bitbucket.org/bbglab/o

ncodriveclustl/src/master/  

gene Clustering 

OncodriveFML (13) http://bbglab.irbbarcelona.org

/oncodrivefml/analysis 

 

https://bitbucket.org/bbglab/o

ncodrivefml/src/master/ 

gene Recurrence, Impact (uses CADD 

and RNAsnp) 

SNADRIF This 

paper 

https://github.com/belikov-

av/SNADRIF 
gene Nonsynonymous/Synonymous 

 

To convert these population-level data to patient-level data, the following procedures were 

performed.  
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For lists of driver genes, all entries from the file 

“mc3.v0.2.8.PUBLIC_primary_whitelisted_Entrez.tsv” were removed except those that satisfied 

the following conditions simultaneously:  “Entrez Gene ID” matches the one in the driver list; 

cancer type (identified by matching “Tumor_Sample_Barcode” with “bcr_patient_barcode” and 

“acronym” in “clinical_PANCAN_patient_with_followup.tsv”) matches “cohort” in the driver list 

or the driver list is for pancancer analysis; “Variant_Classification” column contains one of the 

following values: “De_novo_Start_InFrame”, “Frame_Shift_Del”, “Frame_Shift_Ins”, 

“In_Frame_Del”, “In_Frame_Ins”, “Missense_Mutation”, “Nonsense_Mutation”, 

“Nonstop_Mutation”, “Translation_Start_Site”.  

 

For lists of driver mutations, the procedures were the same, except that Ensembl Transcript ID 

and nucleotide/amino acid substitution were used for matching instead of Entrez Gene ID. 

These data (only columns “TCGA Barcode”, “HUGO Symbol”, “Entrez Gene ID”) were saved as 

“AlgorithmName_output_SNA.tsv“.  

 

Additionally, all entries from the file 

“ISAR_GISTIC.all_thresholded.by_genes_primary_whitelisted.tsv” were removed except those 

that satisfied the following conditions simultaneously:  “Locus ID” matches “Entrez Gene ID” in 

the driver list; cancer type (identified by matching Tumor Sample Barcode with 

“bcr_patient_barcode” and “acronym” in “clinical_PANCAN_patient_with_followup.tsv”) 

matches “cohort” in the driver list or the driver list is for pancancer analysis; CNA values are 

“2”, “1”, “-1” or “-2”. These data were converted from the matrix to a list format (with columns 

“TCGA Barcode”, “HUGO Symbol”, “Entrez Gene ID”) and saved as 

“AlgorithmName_output_CNA.tsv“.  
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Finally, the files “AlgorithmName_output_SNA.tsv” and “AlgorithmName_output_CNA.tsv” 

were combined, duplicate TCGA Barcode-Entrez Gene ID pairs were removed, and the results 

saved as “AlgorithmName_output.tsv”. 

 

Driver event classification and analysis 

The file “Clinical with Follow-up - clinical_PANCAN_patient_with_followup.tsv” was 

downloaded from https://gdc.cancer.gov/node/905/. All patients with “icd_o_3_histology” 

different from XXXX/3 (primary malignant neoplasm) were removed, as well as all patients not 

simultaneously present in the following three files: 

“mc3.v0.2.8.PUBLIC_primary_whitelisted_Entrez.tsv”, 

“ISAR_GISTIC.all_thresholded.by_genes_primary_whitelisted.tsv” and 

“Primary_whitelisted_arms.tsv”. The resulting file was saved as 

“clinical_PANCAN_patient_with_followup_primary_whitelisted.tsv”. 

 

Several chosen “AlgorithmName_output.tsv” files were combined and duplicate TCGA Barcode-

Entrez Gene ID pairs removed. Entries with TCGA Barcodes not present in 

“clinical_PANCAN_patient_with_followup_primary_whitelisted.tsv” were removed as well. 

Matching “Number of hyperactivating SNAs” and “Number of inactivating SNAs” for each TCGA 

Barcode-Entrez Gene ID pair were taken from the “SNA_classification_patients.tsv” file, in case 

of no match zeros were written. Matching HISR value was taken from 

“SNA_classification_genes_NSEI_HISR.tsv” for each Entrez Gene ID, in case of no match empty 

cell was left. Matching CNA status was taken from 

“ISAR_GISTIC.all_thresholded.by_genes_primary_whitelisted_RNAfiltered.tsv” for each TCGA 

Barcode-Entrez Gene ID pair, in case of no match zero was written.  
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Each TCGA Barcode-Entrez Gene ID pair was classified according to the Table 3: 

 

Table 3. Driver event classification rules. 

Driver type Number of 

nonsynonymous 

SNAs 

Number of 

inactivating 

SNAs 

HISR CNA 

status 

Count as … 

driver 

event(s) 

SNA-based oncogene ≥1 0 >5 0 1 

CNA-based oncogene 0 0 >5 1 or 2 1 

Mixed oncogene ≥1 0 >5 1 or 2 1 

SNA-based tumor 

suppressor  

≥1 ≥0 ≤5 0 1 

CNA-based tumor 

suppressor 

0 0 ≤5 -1 or -2 1 

Mixed tumor suppressor ≥1 ≥0 ≤5 -1 or -2 1 

Passenger 0 0  0 0 

Low-probability driver All the rest 0 

 

Results of this classification were saved as “AnalysisName_genes_level2.tsv”. 

 

Using this file, the number of driver events of each type was counted for each patient. 

Information on the number of driver chromosome and arm losses and gains for each patient 

was taken from the files “Chromosome_drivers_FDR5.tsv” and “Arm_drivers_FDR5.tsv”. All 

patients not present in the files “AnalysisName_genes_level2.tsv”, 

“Chromosome_drivers_FDR5.tsv” and “Arm_drivers_FDR5.tsv”, but present in the file 

“clinical_PANCAN_patient_with_followup_primary_whitelisted.tsv”, were added with zero 

values for the numbers of driver events. Information on the cancer type (“acronym”), gender 

(“gender”), age (“age_at_initial_pathologic_diagnosis”) and tumor stage (“pathologic_stage”, if 

no data then “clinical_stage”, if no data then “pathologic_T”, if no data then “clinical_T”) was 

taken from the file “clinical_PANCAN_patient_with_followup_primary_whitelisted.tsv”. The 

results were saved as “AnalysisName_patients.tsv”. 
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Using the file “AnalysisName_patients.tsv”, the number of patients with each integer total 

number of driver events from 0 to 100 was counted for each cancer type, also for males and 

females separately, and histograms were plotted for each cancer type-gender combination. 

Using the same file “AnalysisName_patients.tsv”, the average number of various types of driver 

events was calculated for each cancer type, tumor stage, age group, as well as for patients with 

each total number of driver events from 1 to 100. Analyses were performed for total 

population and for males and females separately, and cumulative histograms were plotted for 

each file. 

 

We named this algorithm PALDRIC (PAtient-Level DRIver Classifier) and created a Github 

repository: https://github.com/belikov-av/PALDRIC 

 

We later developed a modification of PALDRIC that allows analysis and ranking of individual 

genes, chromosome arms and full chromosomes – PALDRIC GENE - and created a Github 

repository: https://github.com/belikov-av/PALDRIC_GENE 

 

Using the files “AnalysisName_genes_level2.tsv”, “Chromosome_drivers_FDR5.tsv” and 

“Arm_drivers_FDR5.tsv”, the names of individual genes, chromosome arms or full 

chromosomes affected by driver events of each type were catalogued for each patient. 

Information on the cancer type, gender, age and tumor stage was taken from the file 

“clinical_PANCAN_patient_with_followup_primary_whitelisted.tsv”. The results were saved as 

“AnalysisName_patients_genes.tsv”. 
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Using the file “AnalysisName_patients_genes.tsv”, the number of various types of driver events 

in individual genes, chromosome arms or full chromosomes was calculated for each cancer 

type, tumor stage, age group, as well as for patients with each total number of driver events 

from 1 to 100. Analyses were performed for total population and for males and females 

separately, and histograms of top 10 driver events in each class and overall were plotted for 

each group. 

 

Driver Strength Index (DSI) 

��� � � � � �  �

� � �  
���

���

 

and Normalized Driver Strength Index (NDSI) 

	��� � �
∑ � �  �� � � 

���
���

∑ � �  � � �  ���
���

 

were calculated, where � �  � is a number of patients with a driver event in the 

gene/chromosome A amongst patients with i driver events in total; � � is a number of patients 

with i driver events in total. To avoid contamination of NDSI-ranked driver event lists with very 

rare driver events and to increase precision of the index calculation, all events that were 

present in less than 10 patients in each driver event class were removed. To compose the top-

(N)DSI-ranked driver list, the lists of drivers from various classes were combined, and drivers 

with lower (N)DSI in case of duplicates and all drivers with NDSI<0.05 were removed. 

 

Pathway and network analysis of top-(N)DSI-ranked driver genes 

First, the chromosome arms and full chromosomes were removed from the top-(N)DSI-ranked 

driver lists, as external pathway and network analysis services can work only with genes. 
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Next, top 100 DSI-ranked genes and top 100 NDSI-ranked genes were selected, to facilitate 

proper comparison. 

 

The resulting lists were uploaded as Entrez Gene IDs to “Reactome v76 Analyse gene list” tool 

(https://reactome.org/PathwayBrowser/#TOOL=AT). Voronoi visualizations (Reacfoam) were 

exported as jpg files. 

 

The resulting lists were also uploaded as Entrez Gene IDs to “KEGG Mapper –Color” tool 

(https://www.genome.jp/kegg/mapper/color.html), “hsa” Search mode was selected, default 

bgcolor assigned to “yellow”, search executed and the top result - “Pathways in cancer - Homo 

sapiens (human)” (hsa05200) was selected for mapping. The resulting images were exported as 

png files. 

 

The data were also analyzed in Cytoscape 3.8.2 (https://cytoscape.org). BioGRID: Protein-

Protein Interactions (H. sapiens) network was imported and then (N)DSI values appended from 

the top 100 (N)DSI-ranked driver list. First, Degree Sorted Circle Layout was selected and genes 

not within the circle were removed. Node Fill Color was mapped to (N)DSI values with 

Continuous Mapping. Then, Edge-weighted Spring Embedded Layout was selected, and Node 

Height and Width were mapped to degree.layout parameter (number of connections) with 

Continuous Mapping. The resulting images were exported as pdf files. 
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