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ABSTRACT

Activity Space Maps are a novel global-scale movement and mobility
data set which describes how people distribute their time through
geographic space. The maps are intended for use by researchers
for the purposes of epidemiological modeling. Activity Space Maps
are designed to complement existing digitally-collected mobility
data sets by quantifying the amount of time that people spend in
different locations. This information is important for estimating
the duration of contact with the environment and the potential risk
of exposure to disease. More concretely, the type of information
contained in Activity Space Maps will make it easier to model the
spatial transmission patterns of vector-borne diseases like malaria
and Dengue fever. We will discuss the motivation for designing
Activity Space Maps, how the maps are generated from mobile
phone user app location history data, and discuss an example use
case demonstrating how such data may be used together with
spatial epidemiological data to advance our understanding of spatial
disease patterns and the relationship between travel behaviors and
infection risk.
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1 INTRODUCTION

Data sets which describe human movement patterns are impor-
tant for understanding epidemiologically relevant interactions and
contact patterns. Most disease-causing pathogens are not able to
move great distances on their own. Instead, the pathogens can be
transported between places by human and animal hosts. Infected
people may travel from their home territory to another location
and infect others there, causing a new outbreak; or, travelers may
contract an illness while away and unintentionally spread it to their
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households and neighbors after returning home. Knowing where it
is that people go and how they move around in geographical space
is key for mapping out spatial patterns of contact and exposure
[16, 17, 27].

Until recently, it was very difficult to obtain accurate data on
human movement patterns at scale. Medical surveys of patients
are subject to selection bias (they only survey people who end up
at a healthcare facility) and patient recall bias (may not accurately
report their travel history) [13]. Distributing surveys to the general
population is expensive to accomplish at scale [4] and similarly
affected by recall biases. More recently, it has become possible for
researchers to distribute GPS location history trackers to people as
a way of recording their movements, but these studies are hard to
sustain at a large scale [19]. With the widespread adoption of mo-
bile phones, digitally-collected mobile-phone user location history
data offers an unprecedented opportunity to quantify patterns of
movement behavior at a broad scale [1, 11, 14, 25]. Effectively, this
becomes an observational study similar to the GPS location history
tracker studies, but without the need to distribute and maintain
devices.

The formatting of digitally-collected location history data mat-
ters for its applicability for research. Many early movement data sets
have been aggregated and formatted as origin-destination matrices,
which count the number of users who travel from one location
to another during an observation period [12]. This formatting is
useful both for parsimony as well as for disguising individual user
trajectories for the sake of preserving privacy. While valuable for un-
derstanding population flows, data formatted as origin-destination
matrices do not contain information on how much time a traveler
spends in any location. For example, the matrix might count one
user passing from location A to location B on a particular day, but
not know whether the user spent the entire day in location B or
whether they immediately traveled from location B to location
C. For epidemiological purposes, the duration of time that a user
spends in any given location is key for understanding epidemiolog-
ically relevant contact and exposure patterns [2, 6, 23]. After all, a
person who spends only a day in a setting where they are at risk of
contracting malaria is less likely to become sick than if they spend
two weeks in that setting.
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2 DATASET DESCRIPTION

Activity Space Maps are a novel data set developed through Face-
book’s Data for Good initiative. They are built using de-identified
Facebook mobile-app user location history data of users who con-
sented to share their precise location and opted into Facebook’s
location history collection. The maps aggregate movement trajec-
tories across space and time such that they represent a probability
distribution, describing the average amount of time that a user from
one location spends visiting other locations. That is to say, what is
the probability that an average individual spends in one location,
given that their home residence is found in another location. The
maps are formatted similarly to the space utilization functions that
are found in ecology which are constructed using GPS trackers and
aggregated as a way of summarizing how it is that animals move
around and use space [9].

Activity Space Maps are generated by collecting and aggregating
individual users’ location histories. All users included in the pipeline
have consented to collection of their precise location and have
opted into Facebook’s location history collection. The raw source
data are location history traces, initially recorded as a series of
tuples of the form user, time, location. Initially, locations are binned
using Microsoft’s Level 12 Bing tile maps, a quadkey map of square
regions approximately 9.8 kilometers to a side at the equator [18].
Each user’s trajectory is binned into a series of 24-hour periods.
Each 24-hour period is denoted by a date stamp and contains one
nighttime period, spanning from 8 p.m. on the previous date to 6
a.m. on the given date, and one daytime period, spanning from 8
a.m. to 6 p.m. on the given date. For each date, modal locations
for both the daytime and nighttime periods are extracted. At this
stage, all users who do not consistently use location history services
and all users who appear in the data set fewer than 7 out of the
past 28 nights are excluded. The next step is to aggregate the total
number of person-periods (i.e., person-days and person-nights)
spent by each individual in each location across the last 28 days. This
protects users’ privacy by removing links between specific locations
and specific visit times and instead summarizes each user’s space
utilization over the previous four weeks. Each user’s home location
is estimated using the most frequently visited nighttime modal
location during the 28-day aggregation period. The assumption
here is that, while there are some instances of people spending
their nights away from their home residences, the vast majority of
people are most likely to sleep at home on most nights.

Lastly, Activity Space Maps are generated by aggregating over
all users in each home location, producing a probability distribution
showing how the average individual who lives in a particular loca-
tion distributes their time across geographical space. The resulting
dataset quantifies, for each home-visit tile pair, the relative fraction
of person-days and person-nights spent in the visit tile location by
users who live in the home tile location. In this way, Activity Space
Maps quantify typical movement behavior and patterns of users
who live in the same location. Figure 1 shows two example plots of
Activity Space Maps data collected for a home tile in Rome, Italy.
Both the daytime and nighttime spent distributions are shown. The
temporal aggregation means that the dataset reflects daily, weekly,
or monthly movement patterns such as commuting or short-term
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trips. The data set is not intended to capture or reflect longer-term
patterns such as seasonal migration or permanent relocation.

Preserving individual user privacy is a key feature of Activity
Space Maps and all Facebook Data for Good products. No individual
trajectories or records which pinpoint any individual’s visit to a
location at a particular time are exposed through this data set.
All locations which don’t meet a population density threshold are
excluded from the data set for the sake of concealing any individual
trajectories. Following guidance from humanitarian organizations
who have partnered with Facebook Data for Good, cross-border
movements are excluded from the dataset for the sake of protecting
at-risk populations who move in times of crisis.

Activity Space Maps collect data in 151 countries and territories
worldwide. In terms of the number of users sampled, Activity Space
Maps has the most coverage for countries in Europe, North America,
South America, South Asia, and Southeast Asia, but less coverage
in other parts of Asia, Africa, and Oceania. Activity Space Maps
are recorded on an ongoing weekly basis, beginning in mid-April
of 2021. Facebook Data for Good plans to release Activity Space
Maps to vetted Data for Good external partners in the second half
of 2021.

We must highlight a few properties of how Activity Space Maps
are constructed which have the potential to skew or bias the move-
ment patterns which they represent. Primarily, it is likely that the
sampled population does not represent an unbiased sample of the
overall population [25, 26]. The data only reflect those who have
opted into location history services through the Facebook mobile
app - it is plausible to think that such individuals may have different
movement patterns than those who do not access these features.
Furthermore, the data set is only able to represent the movements
of people who own mobile phones while they are traveling in areas
with access to phone service. For these reasons, we caution users
that the data sets are likely to over-represent the movements of
people who live in higher-income, urban areas and under-represent
the movements of people who live in lower-income, rural areas.
Secondly, there is also the potential problem of under-sampling in
low population density areas, combined with the privacy-related
exclusion of low density areas. For this reason, Activity Space Maps
currently are able to reveal the connectivity patterns originating in
high-density, urban areas but are less likely to portray connectivity
patterns originating in low-density, rural areas. Finding methods
to account for and correct potential sources of bias in the data is an
ongoing line of research, both within the Facebook Data for Good
team as well as within the broader research community [10, 28].

3 APPLICATIONS

There are a variety of potential epidemiological applications for Ac-
tivity Space Maps. Generally speaking, Activity Space Maps have a
potential for improving understanding of epidemiological patterns
where movement and travel expose people to hazards in the envi-
ronment. To give one example, we outline research which combines
Activity Space Maps with malaria prevalence maps from the Malaria
Atlas Project (MAP) [5, 24] using a mechanistic transmission model
to show how travel drives the incidence of malaria among people
living in urban areas in sub-Saharan Africa. This line of research
draws on earlier analysis performed for Bioko Island in Equatorial
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Figure 1: Activity Space Maps example: The data plotted in the two maps were collected for a home tile in Rome, Italy during
the 28-day period ending on June 15th, 2021. The map on the left shows the daytime spent distribution and the map on the
right shows the nighttime spent distribution. The red dot indicates the home location. The other colors denote the logarithm
of the relative probability of spending a day or night in each other location.

Guinea [3, 7, 8], which estimated the fraction of malaria prevalence
which may be attributable to exposure to infectious mosquitoes
while traveling.

Malaria is a vector-borne parasitic disease which primarily af-
fects people living in tropical climates in sub-Saharan Africa, Asia,
and Central and Southern America. The WHO estimates that over
220 million malaria cases and 400,000 deaths due to malaria oc-
curred in 2019 alone, making it one of the most dangerous causes
of death and disease [15]. Malaria cases primarily affect children
and people living in rural settings. Malaria is spread by Anopheles
mosquitoes, who pass parasites to human hosts when they blood
feed. Because malaria is transmitted by an insect vector, the risk
experienced by people depends strongly on whether or not those
people spend time in areas where infectious vector mosquitoes live:
one will be at risk of becoming infected if one spends time in areas
where the local environment supports a viable vector population.
It is for this reason that knowing where people spend their time is
so important for understanding who is at risk and the patterns of
transmission.

The Malaria Atlas Project (MAP) produces raster maps of malaria
prevalence, or parasite rate (PR) [5, 24], showing the proportion
of infected people in a given location. The maps reveal the geo-
graphical heterogeneity of malaria prevalence, which reflects the
geographical heterogeneity in the local disease-producing ecology
as experienced by human hosts. The PR maps show where it is that
infected people are located, but the maps do not show where it is
that the people became infected. In many cases, most likely people
are becoming infected in their own homes. However, some of those
cases are likely due to exposure that occurred during travel. Malaria
vector mosquitoes typically do not thrive in urban areas. It is likely
that cases of malaria reported in urban areas are attributable to
travel.

Bioko Island represents one setting where this is likely to be the
case. Since 2004, the Bioko Island Malaria Elimination Program has

implemented an extensive program of interventions against malaria
[4]. Despite this, malaria persists among island residents, most of
whom live in the urbanized capital city of Malabo. Using travel data
collected through surveys in 2015-2018, it was estimated that much
of the malaria occurring in Malabo could be attributable to travel to
mainland Equatorial Guinea, where there is a high risk of malaria
[3, 7, 8]. This is an example of how travel data may be used to
discover source-sink disease dynamics, where the high incidence of
disease in one location drives the occurrence of disease in another
location because of people traveling from one location to another
[16, 17].

Activity Space Maps may be used to perform similar analysis,
this time using digitally-collected data to infer travel patterns. The
leftmost plot in Figure 2 shows the Activity Space Map for individ-
uals living in the highlighted location in Lagos, Nigeria (marked
with a red dot). The distribution plotted shows that most time is
spent in the area of Lagos, but that some trips are taken to Abuja
and the Niger river delta region. The center plot in Figure 2 shows
the Malaria Atlas Project’s estimated prevalence levels of malaria
(PR) in 2015 among children aged 2-10, plotted only in the same
areas for which Activity Space Maps also provides data. The maps
show how dense urban areas like Lagos and Abuja tend to have
lower prevalence, but that there still are some infected people living
in these areas.

By combining together the epidemiological prevalence data and
the movement data, it is possible to infer where it is likely that
people are becoming exposed and infected. The next step of the
analysis utilizes on a mechanistic model of malaria transmission [3,
16, 17, 20]. The model relates the prevalence to the force of infection
(FOI) experienced by individuals in different locations. The FOI is
a way of quantifying risk to individuals, an infection rate which
reflects exposure to infectious vectors in the local environment.
Within the model, the average individual’s overall FOI is expressed
as a weighted average of the amount of time spent in each location
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Figure 2: Example analysis: Left plot illustrates the distribution of nighttime periods spent by residents in part of Lagos,
Nigeria (red dot indicates home location), with the color scale showing the logarithm of the relative probability of spending a
night in each visit location. Center plot shows Malaria Atlas Project Plasmodium falciparum Parasite Rate (PR) estimates for
children aged 2-10 in Nigeria in 2015. Right plot shows the local residual fraction of prevalence which is attributable to local
transmission. This last plot is the result of analysis which uses Activity Space Maps to estimate the influence which travel
has on local transmission. The areas marked in red are locations where malaria exposure occurs when people travel to other
areas, and the areas marked in purple are locations where malaria exposure mostly occurs locally.

visited, multiplied by the FOI in each location. Beginning with the
prevalence map, inverting the model results in an estimate of local
FOI in each location on the map.

Knowing the true FOI in each location makes it possible to es-
timate the exposure rate experienced by each individual in each
place they travel to. Activity Space Maps describe how an aver-
age individual distributes their time through geographical space,
making it possible to derive estimates of where it is that people
are exposed to malaria. The rightmost plot in Figure 2 plots Local
Residual Fraction, or the fraction of prevalence that is attributable
to local transmission at one’s home location [3]. The areas marked
in red, such as in Lagos, are areas where exposure that occurs while
traveling has a significant impact on local malaria prevalence. That
is to say, people with malaria may have been exposed elsewhere.
The areas marked in purple, such as in the region to the north
of Lagos, are areas where local transmission is strong and travel
does not have much influence on overall prevalence. This simple
preliminary analysis can provide some insights into where risk of
infection occurs, and can assist with strategic planning for interven-
tion programs. The results suggest that there are some areas where
interventions to decrease local exposure should be prioritized, but
also that there are other areas where additional protections for
travelers could be helpful.

Replicating the analysis of travel and malaria seen in the Bioko
Island study in a large country using traditional survey data would
be very costly, but Activity Space Maps has made it possible to per-
form a spatial analysis of transmission patterns for Nigeria using
digitally-collected data. This analysis represents one example of
how the movement maps may be applied to improve understand-
ing of spatial patterns of disease transmission. Generally speaking,
Activity Space Maps are designed to understand how movement
patterns bring people into contact with hazards in the environment.
Activity Space Maps may be able to support research on other
vector-borne diseases, such as Dengue fever [21, 22]. For water-
borne diseases such as cholera, exposure occurs through a different
mechanism, but Activity Space Maps may provide insights into
identifying which populations spend time in places where they are

at risk. Lastly, there is potential for applications related to directly
transmitted pathogens such as SARS-CoV-2 [1, 14], where Activity
Space Maps may support existing movement data sources to under-
stand which populations travel to high-transmission locations.
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