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Abstract 

Alcohol Use Disorder (AUD) is closely linked to the brain regions forming the neurocircuitry of 

addiction. Postmortem human brain tissue enables the direct study of the molecular 

pathomechanisms of AUD. This study aims to identify these mechanisms by examining 

differential DNA-methylation between cases with severe AUD (n=53) and controls (n=58) 

using a brain region-specific approach. Samples of the anterior cingulate cortex (ACC), 

Brodmann Area 9 (BA9), caudate nucleus (CN), ventral striatum (VS), and putamen (PUT) 

were investigated. DNA-methylation levels were determined using the Illumina 

HumanMethylationEPIC Beadchip. Epigenome-wide association analyses were carried out to 

identify differentially methylated CpG-sites and regions between cases and controls in each 

brain region. Weighted Correlation Network Analysis (WGCNA), gene-set and GWAS-

enrichment analyses were performed. Two differentially methylated CpG-sites were 

associated with AUD in the CN, and 18 in VS (q < .05). No epigenome-wide significant CpG-

sites were found in BA9, ACC, or PUT. Differentially methylated regions associated with AUD 

case-/control status (q < .05) were found in the CN (n=6), VS (n=18) and ACC (n=1). These 

findings were mapped to several genes including IREB2, SLC30A8, and DDAH2. In the VS, 

the WGCNA-module showing the strongest association with AUD was enriched for immune-

related pathways. This study is the first to analyze methylation differences between AUD 

cases and controls in multiple brain regions and consists of the largest sample to date. 

Several novel CpG-sites and regions implicated in AUD were identified, providing a first basis 

to explore epigenetic correlates of AUD. 
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Introduction 1 

Every year, approximately 5.3% of all deaths worldwide are a result of the harmful use of 2 

alcohol and approximately 230 diseases are associated with alcohol use [1]. The lifetime 3 

prevalence of alcohol use disorder (AUD) varies globally, with North African/Middle Eastern 4 

countries having the lowest (0.59%) and Eastern European countries the highest (4.25%) 5 

prevalence. With a global prevalence of 1.32%, AUD is an important contributor to global 6 

disease burden [2]. AUD is a moderately heritable disease; a meta-analysis of twin studies 7 

estimated a heritability of 49% [3].  8 

It has been proposed that drug-induced alterations in gene expression in the neurocircuitry of 9 

the brain contribute to addiction [4]. Recent evidence suggests that alterations in DNA-10 

methylation, an epigenetic mechanism affecting gene expression, play an important role in 11 

addiction (for reviews see: [5,6]). Differential DNA-methylation is associated with alcohol 12 

consumption and AUD both in peripheral blood and postmortem brain tissue (for an overview 13 

see: Wedemeyer, et al. 7). Examining alterations in DNA-methylation in epigenome-wide 14 

association studies (EWAS) allows for the investigation of inter-individual differences which 15 

are attributable to a phenotype [8]. For example, a recent EWAS of AUD in peripheral blood 16 

suggests that networks in glucocorticoid signaling and inflammation-related genes are 17 

associated with AUD [9].  18 

Human postmortem brain tissue is a sparse and valuable resource and allows a more direct 19 

characterization of AUD mechanisms than possible by analyzing peripheral blood [10]. So 20 

far, a small number of postmortem brain studies have been conducted, mostly investigating 21 

the prefrontal cortex (PFC), which, due to its role in reward regulation and higher-order 22 

executive function, is thought to be disrupted in addiction [11]. An EWAS comparing 23 

individuals with AUD with age-matched controls detected a range of differentially methylated 24 

CpG-sites in Brodmann Area 9 (BA9) in 16 pairs of males, but not in seven pairs of females 25 

[12]. Another study identified AUD-associated differentially methylated CpG-sites in 26 

Brodmann Area 10, which did not remain significant after multiple testing correction [13]. 27 

However, downstream analyses implicated NR3C1, a gene coding for the glucocorticoid 28 
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receptor, which is crucial to stress regulation and found to be functionally relevant in AUD. 1 

The increased DNA-methylation in individuals with AUD was also associated with reduced 2 

NR3C1 mRNA and protein expression levels [13].  3 

Investigating DNA-methylation in the wider addiction neurocircuitry may give deeper insights 4 

into the pathophysiological mechanisms of AUD, and may reveal potential targets for 5 

treatment or prevention [14,15]. Dysfunction in the addiction neurocircuitry, which comprises 6 

areas involved in cognitive control such as the dorsolateral PFC, the anterior cingulate cortex 7 

(ACC), and regions in the basal ganglia, can have impairing consequences associated with 8 

disrupted reward-related decision-making, alcohol craving, and compulsive alcohol 9 

consumption [11,16]. Of particular interest is the striatum, which is divided into ventral and 10 

dorsal subdivisions based on function and connectivity. The ventral striatum (VS), comprises 11 

the nucleus accumbens (NAcc) and olfactory tubercle while the dorsal striatum contains the 12 

caudate nucleus (CN) and putamen (PUT) [17]. The NAcc is thought to be important in 13 

addiction due to its role in processing motivation, more precisely aversion and reward [17]. 14 

The caudate nucleus and putamen both influence motor function; in addition, the caudate is 15 

involved in goal-directed action, executive functioning and cognitive control, while the 16 

putamen is implicated in various types of learning, including reinforcement learning and habit 17 

formation [18]. In a study investigating DNA-methylation in PFC and NAcc, CpG-sites in 18 

DLGAP2 emerged as differentially methylated between 39 male AUD cases and 47 controls 19 

in both brain regions; the differences were genotype-dependent [19]. 20 

In the present study, we aimed to identify epigenetic mechanisms associated with AUD, in 21 

five brain regions previously implicated in the neurocircuitry of addiction [17]. Brain-region 22 

specific EWAS of AUD were performed in the BA9, ACC, VS, CN and PUT. 23 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 4, 2021. ; https://doi.org/10.1101/2021.08.01.21261118doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.01.21261118
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Materials and Methods 1 

Samples 2 

In total, 395 human postmortem brain samples from 111 subjects (53 AUD, 58 controls) were 3 

obtained from the New South Wales Tissue Resource Center (University of Sydney, 4 

Australia) under study reference number 2009-238N-MA by the Ethics Committee II of the 5 

Medical Faculty Mannheim. AUD and control subjects were matched by age and sex. All 6 

individuals met the following inclusion criteria, which were determined by next-of-kin 7 

interviews: age >18, no history of severe psychiatric, neurodevelopmental, or other 8 

substance use disorders (except nicotine use disorder), and Western European ancestry. 9 

Individuals with AUD were classified according to DSM-IV criteria and had consumed at least 10 

80g alcohol daily, whereas controls had consumed less than 20g. Methylation data was 11 

generated in two batches and each batch was analyzed separately. The first batch 12 

comprised 220 samples of BA9, ACC, CN, and VS from 28 cases and 27 controls. In the 13 

second batch, 175 samples from 56 additional individuals from the CN, VS, and PUT were 14 

analyzed. Material from one to five brain regions was available for each individual. Therefore, 15 

the sample composition varies between the brain region-specific analyses. A sample 16 

description can be found in Table 1. Table 2 shows the number of samples for each brain 17 

region and each batch. Additional phenotype information, such as cause of death can be 18 

found in Supplementary Table S1.  19 

Epigenome-wide methylation 20 

DNA was extracted from bulk brain tissue using the DNeasy extraction kit from Qiagen 21 

(Qiagen, Hilden, Germany). The genomic DNA samples were stored at -20°C. For the 22 

microarray analysis, the samples were randomized based on AUD case/control status and 23 

sex, and pipetted on processing plates. Due to the sample and different group sizes, 24 

samples from each brain region were processed on separate plates. Epigenome-wide 25 

methylation levels were determined using the Illumina HumanMethylationEPIC Beadchip and 26 

Illumina HiScan array scanning systems (Illumina, San Diego, CA).   27 
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Table 1. 
  

 

Descriptive statistics of demographic data. 

 

 

Characteristic Cases Controls p 

N 53 58  

Age, years 56.72 (10.81) 56.69 (10.29) 0.989 

Sex (M/F) 34/19 40/18  

pH-value 6.5 (0.28) 6.57 (0.32) 0.189 

PMI (hours) 35.46 (16.1) 28.17 (15.29) 0.038* 

Estimated Smoking 0.72 (0.26) 0.51 (0.31) > .001* 

Blood Alcohol level (N) 8 0  

Blood Alcohol Level (g/100ml) 0.211 (0.179)   

Number of Brain Regions    

5   19 (35.8%) 19 (32.8%)  

4 9 (17.0%) 8 (13.8%)  

3 18 (34.0%) 21 (36.2%)  

2 0 (0%) 3 (5.1%)  

1 7 (13.2%) 7 (12.1%)  

Data are presented as count (n/n; n (%)) or mean (±SD), PMI: post-mortem 
interval, pH: pH-value of the brain, p: p-value of t-Test comparing cases and 
controls, estimated smoking is the likelihood of smoking estimated based on the 
methylation data. 
*significant difference between cases and controls  

 

 1 

Data preprocessing, quality control, and filtering 2 

All data preprocessing and analysis steps were performed using the R statistical 3 

environment, version 3.6.1. An updated version of the CPACOR-pipeline published by 4 

Lehne, et al. 20 was used to extract methylation data from raw intensity data and perform 5 

quality control. Samples were removed if (i) DNA quality was not sufficient (missing rate > 6 

0.10) or (ii) a discrepancy between methylation-based and phenotypic sex emerged. Probes 7 

were removed when (i) the call-rate was insufficient (< 0.95), (ii) SNPs with a minor allele 8 

frequency > 0.10 were located in the probe sequence, (iii) the probes were located on the X 9 

or Y chromosome. After quality control 381 samples remained. Depending on the brain 10 

region, 657 593 – 694 791 sites were available for analysis after filtering. Detailed 11 

descriptions of sample size, the number of sites remaining after QC, and the inflation 12 

coefficient lambda for each model can be found in Table 2. 13 

 14 
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Table 2. 

Sample Overview. 

 
Total 

N 
Case Control 

# of CpG 
sites 

Genomic  
Inflation 

Brain Region   Batch I Batch II Batch I Batch II     

Anterior Cingulate 
Cortex 

54 28 
 

26 
 

657 593 0.958 

Brodmann Area 9 46 25 
 

21 
 

657 593 0.942 

Putamen 94 
 

44 
 

50 694 572 0.963 

Caudate Nucleus 94 28 17 27 22 694 790 0.919 

Ventral Striatum 93 28 18 26 21 694 790 0.962 

Number of individuals per brain region after quality control. # of CpG-sites refers to the 
number of sites remaining after quality control, for VS and CN union of the two batches. 

 1 

Statistical Analysis 2 

Methylation values were log-transformed (base 2) and included as dependent variables in 3 

the association analyses, as recommended by Du, et al. 21. Control for batch effects and 4 

technical quality was applied by extracting signals of the internal control probes of the EPIC 5 

array, performing principal component analysis (PCA), and extracting the first ten principal 6 

components. These were included as covariates in all association tests. To control for cell-7 

type heterogeneity, cell counts were estimated using the method by Houseman, et al. 22, with 8 

the dorsolateral prefrontal cortex reference data [23]. This approach results in two estimates, 9 

one for neurons and one for other cell types. These were standardized so that the sum of 10 

both counts added up to one. The estimate for neurons was included as a covariate in all 11 

analyses. 12 

Data on smoking was not available for all participants (missing for n=11, 10.81%). Smoking 13 

status was therefore estimated based on a validated set of sites [24]. Estimated smoking was 14 

included as a continuous covariate. 86% of current smokers were correctly classified; 15 

according to the regression model their likelihood of smoking was >50%.  16 

 17 
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Epigenome-wide association analysis. Tests of methylation differences between individuals 1 

with AUD and control subjects were performed with linear models, adjusting for sex, age, 2 

postmortem interval (PMI), pH-value, estimated smoking, standardized neuronal cell count, 3 

and the first ten principal components of the internal control probes. Each region and each 4 

batch was analyzed separately. The summary statistics for CN and VS were then meta-5 

analyzed based on effect estimates and standard errors using METAL [25]. P-values were 6 

corrected for multiple testing using the Benjamini-Hochberg (FDR) correction [26]; resulting 7 

values are reported as q-values. CpG-sites were annotated using the manufacturer’s 8 

manifest (http://webdata.illumina.com.s3-website-us-east-9 

1.amazonaws.com/downloads/productfiles/methylationEPIC/infinium-methylationepic-v-1-0-10 

b4-manifest-file-csv.zip; downloaded on 10th of August 2018). Regression coefficients of 11 

differential methylation for the epigenome-wide significant CpG-sites were summarized for 12 

each brain region. As each brain region was processed on a separate plate, no inferential 13 

statistical procedure was applied to compare DNA-methylation levels between brain regions 14 

(due to confounding of batch and regions). Test statistics from all epigenome-wide significant 15 

CpG-sites were reported for each brain region and also for an independent EWAS in 16 

peripheral blood, in which DNA-methylation levels of male patients with AUD, who had just 17 

entered withdrawal treatment were compared with healthy controls [27].   18 

As alcohol consumption has strong effects on DNA-methylation [28,29], we performed a 19 

sensitivity analysis excluding all subjects with blood alcohol levels at time of death (n = 8). 20 

Differentially methylated regions (DMRs). DMRs were identified using the comb-p algorithm 21 

[30], which accounts for autocorrelation between tests of adjacent methylation sites and 22 

combines these sites to regions of enrichment, in a given window. The following settings 23 

were used: Seed-p value < 0.01, minimum of 2 probes, sliding window 500 bp. The Šidák 24 

correction as implemented in comb-p was applied to correct for multiple testing. Comb-p was 25 

applied to the result statistics for all brain regions. 26 
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Gene-Ontology (GO) over-representation analysis. Functional analysis to identify gene 1 

pathways targeted by differentially methylated CpG-sites was performed for sites with a 2 

threshold of pnominal < 0.001 using missMethyl [31]. missMethyl controls for probe number 3 

bias, the increased likelihood of a gene to be differentially methylated, if more probes cover 4 

the gene and multi-gene bias, and the fact that probes can be annotated to more than one 5 

gene.  6 

GWAS-Enrichment-Analysis. Gene-sets were created consisting of the genes to which the 7 

differentially methylated CpG-sites were annotated. Two gene-sets were created for each of 8 

the CN and VS results, one for genes implicated by epigenome-wide significant CpG-sites, 9 

and one for genes implicated by nominally significant CpG-sites, giving a total of four gene-10 

sets. Multi-marker Analysis of GenoMic Annotation (MAGMA)[32] was used to test 11 

enrichment of those gene-sets in the results of a genome-wide association study (GWAS) of 12 

AUD [33].  13 

Weighted Correlation Network Analysis (WGCNA). The WGCNA R package [34] was used to 14 

generate co-methylated modules and relate those to AUD case-/control status. For each 15 

brain region the quantile-normalized beta values of CpG-sites nominally associated (p < 16 

0.05) with AUD status were used as input. Soft power thresholds were picked according to 17 

the criterion of approximate scale-free topology (Rsigned
2
 > 0.90). The number of CpG-sites 18 

and the soft power thresholds picked can be found in Supplementary Table S2. Unassigned 19 

CpG-sites were clustered in the “grey” module, which was not taken into account for further 20 

analyses. For each brain region, the module of correlated CpG-sites with the highest 21 

association with AUD was identified. A GO analysis with the CpG-sites comprising the 22 

module was performed using missMethyl [31].  23 

 24 

GWAS ATLAS. The PheWAS tool from the publicly available database GWAS ATLAS [35] 25 

[https://atlas.ctglab.nl/] was used to identify genome-wide significant associations of the 26 

genes implied by the top hits in the EWAS.  27 
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Results 1 

Epigenome-wide association Analysis. In the CN, two CpG-sites were epigenome-wide 2 

significantly hypomethylated in AUD cases compared to controls. The two sites were 3 

annotated to the genes IREB2 (cg04214706) and HMGCR (cg26685658). cg04214706 was 4 

also differentially methylated in the ACC (pnominal = 0.005).  5 

In the VS, 18 CpG-sites were epigenome-wide significantly associated with AUD. Nine CpG-6 

sites were hyper- and nine hypomethylated. The top three hits were annotated to SLC30A8, 7 

FAM20B, and PCAT29. Of the epigenome-wide significant CpG-sites, cg12049992 in 8 

PIEZO2 and cg16767842 in GLANT9 were also differentially methylated in CN (pnominal ≤ 9 

0.023). Additionally, cg1354575 in TCL1A was differentially methylated in PUT (pnominal = 10 

0.035) and cg02849689 (intergenic) in ACC (pnominal = 0.012). Three of the epigenome-wide 11 

significant CpG-sites showed nominally significant associations in an EWAS of AUD in 12 

peripheral blood, namely cg27512762 in PCAT29, cg06427508 in KLHL6 (effect in opposite 13 

direction), and cg02849689, which was not annotated to a nearby gene. In ACC, BA9 and 14 

PUT no epigenome-wide significant differentially methylated CpG-sites were identified (q ≥ 15 

0.57). All CpG-sites with q < 0.05 are summarized in Table 3, the top 100 associations for 16 

each brain region can be found in supplementary tables (S3a–S3e) and Supplementary 17 

Table S4 shows effect sizes and p-values for the epigenome-wide significant sites in every 18 

brain region. Manhattan plots for EWAS in the ACC, CN and VS are depicted in Figure 1.  19 

A post-hoc power analysis using the web app EPIC Array Power Calculations 20 

(https://epigenetics.essex.ac.uk/shiny/EPICDNAmPowerCalcs/), with the settings samplesize 21 

94, 2% mean difference, significance threshold 1x10-7 resulted in 11% of CpG-sites having a 22 

power larger than 90% to detect mean methylation differences of 2% (see also 23 

Supplementary Figure S1). The sensitivity analyses did not reveal major differences between 24 

the EWAS in the complete sample and the reduced sample of subjects with no known blood 25 

alcohol at time of death. Effect estimates and p-values can be found in Supplementary Table 26 

S5 and scatterplots of the effect sizes for nominally significant CpG-sites in both analyses 27 

are depicted in Supplementary Figure S2.  28 
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Differentially methylated regions. In the CN, 10 DMRs were associated with AUD. The top 1 

three regions were annotated to the genes DDAH2, CCDC152, and CAMSAP1. Six DMRs 2 

were associated with AUD (q < 0.05) in the VS, with the three most strongly associated 3 

regions in TMEM232, FANCD2OS, and HM13. All significant DMRs for CN and VS are 4 

highlighted in figure 1 and can be found in supplementary tables S6a and S6b. In the ACC, 5 

one region in HLA9 was differentially methylated (p Šidák -corrected = 3.25*10-6). No epigenome-6 

wide significant DMRs were observed in BA9 and PUT.  7 

Gene-Ontology Analysis. The strongest overrepresentation in the CN was for the biological 8 

process “homophilic cell adhesion via plasma membrane adhesion molecules” (p = 5.37*10-6, 9 

q = 0.12) and “cell-cell adhesion via plasma-membrane adhesion molecules” (p = 1.68*10-5, 10 

q = 0.187). In the VS, the cellular “Lsm1-7-Pat1 complex” showed the strongest 11 

overrepresentation (p = 6.49*10-5, q ≈ 1). Both associations did not remain significant after 12 

correction for multiple testing. The ten GO-terms showing the strongest overrepresentation 13 

can be found in Supplementary Tables S7a and S7b. 14 

GWAS enrichment analysis. No significant enrichment was observed in any of the regions 15 

and gene-sets tested (all p ≥ 0.277).  16 

Weighted Correlation Network Analysis (WGCNA). For the caudate nucleus, 15 modules 17 

were identified consisting of 49-10,330 CpG-sites (Median = 965). The strongest association 18 

with AUD was observed for module “black”, which showed the strongest enrichment for the 19 

cellular component “PML body” (p = 0.001) and the molecular function “G-rich strand 20 

telomeric DNA binding” (p = 0.001). For CpG-sites nominally associated with AUD status in 21 

the VS 14 modules were identified, consisting of 38-12,721 CpG-sites (Median = 611). 22 

Module “purple” showed the strongest association with AUD and was enriched for a variety 23 

of immune-related GO-terms, such as the biological processes “regulation of T-cell 24 

proliferation” (p = 4.32e-6) and “regulation of leukocyte cell-cell adhesion” (p = 6.83e-6). For 25 

caudate nucleus module “black” and ventral striatum module “purple” the correlations of the 26 

gene significance (GS), which reflects the biological significance of a CpG-site with an 27 
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external trait (here AUD) and the module membership (MM), which reflects the correlation of 1 

each CpG-site with the module, were calculated and are displayed in Figure 2a and 2b. The 2 

top enriched GO-terms for these modules can be found in Supplementary Tables S8a and 3 

S8b. Results for ACC, BA9 and putamen are described in the Supplementary Information 4 

(Text S1, Figure S3). 5 

Table 3. 

Epigenome-wide significant CpG-sites associated with AUD. 

Caudate Nucleus 

Chr Position CG Gene Effect Std Err P Direction FDR 

15 78729669 cg04214706 IREB2 -0.393 0.073 7.58E-08 +- 0.03 

5 74633012 cg26685658 HMGCR -5.92 1.105 8.53E-08 -- 0.03 

 

Ventral Striatum 

Chr Position CG Gene Effect Std Err P Direction FDR 

8 117961971 cg17163967 SLC30A8 0.504 0.0882 1.09E-08 ++ 0.007 

1 178998656 cg23933289 FAM20B 0.269 0.0482 2.36E-08 ++ 0.008 

15 69908472 cg27512762 PCAT29 0.17 0.032 6.80E-08 -+ 0.016 

7 1008720 cg02028351 COX19 0.18 0.034 1.28E-07 ++ 0.017 

16 68563886 cg02941431 
 

-0.251 0.047 1.27E-07 -- 0.017 

3 183274235 cg06427508 KLHL6 0.379 0.072 1.44E-07 ++ 0.017 

12 132882652 cg16767842 GALNT9 0.239 0.046 1.74E-07 -+ 0.017 

16 4901809 cg02741291 UBN1 0.579 0.113 2.61E-07 ?+ 0.023 

16 1946176 cg10824492 

 

-0.147 0.029 3.35E-07 -- 0.026 

19 35168316 cg18564234 
SCGB1B2P; 

ZNF302 
-0.776 0.153 4.13E-07 -- 0.029 

13 73687406 cg06630619 
 

-0.43 0.085 4.76E-07 -- 0.03 

11 1215457 cg23618269 MUC5AC -0.432 0.086 5.25E-07 -- 0.03 

14 96177134 cg13545750 TCL1A -0.226 0.046 7.21E-07 -- 0.039 

5 79331052 cg04360099 THBS4 0.303 0.062 1.03E-06 ++ 0.048 

6 29400397 cg26754552 
 

0.277 0.057 9.88E-06 ++ 0.048 

11 59390857 cg02849689 
 

-0.298 0.061 1.24E-06 -- 0.048 

18 11147785 cg12049992 PIEZO2 -0.28 0.058 1.20E-06 +- 0.048 

17 18210650 cg16021181 TOP3A -0.307 0.063 1.11E-06 -- 0.048 

Chr: chromosome, Direction: (+) hypermethylated, (-) hypomethylated, (?) CpGs not  
available in one batch. FDR: false discovery rate corrected p-value. 
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 1 

Figure 1. Manhattan plots of association of methylation values with AUD in (A) anterior 2 

cingulate cortex; (B) caudate nucleus; (C) ventral striatum. Highlighted CpG-sites represent 3 

differentially methylated regions. Genes implicated by CpGs (light and dark grey) and DMRs 4 

(green) are specified in the figures. Red line indicates FDR-corrected significance.5 
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 1 

Figure 2. Association of gene significance for AUD status with module membership, for the 2 

modules A) “black” in caudate nucleus, and B) “purple” in ventral striatum. 3 

 4 

GWAS ATLAS. GWAS ATLAS results for the genes implicated by the most strongly 5 

associated site and region both in the CN and VS can be found in Supplementary Tables 6 

S9a-S9d. In brief, IREB2 has previously been associated with smoking phenotypes (e.g., 7 

number of cigarettes a day, numbers of cigarettes previously smoked daily), parental 8 

illnesses such as lung cancer and chronic bronchitis, and psychiatric disorders like 9 

schizophrenia and bipolar disorder [35-37]. Genome-wide significant associations of DDAH2 10 

with phenotypes from a variety of domains, e.g., immunological, metabolic, respiratory, and 11 

psychiatric have been found. In the psychiatric domain, DDAH2 has been associated with 12 

schizophrenia and bipolar disorder e.g. [36,38]. SLC30A8 has been implied in blood sugar 13 

levels [39] and TMEM232 in allergic rhinitis and asthma [35]. 14 

15 
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Discussion 1 

The present study examined DNA-methylation associated with AUD in regions of the 2 

addiction neurocircuitry using an epigenome-wide methylation analysis approach employed 3 

in human postmortem brain tissue. The largest of its kind to date and first to examine five 4 

brain regions, this study identified several novel differentially methylated CpG-sites as well as 5 

DMRs associated with AUD, providing potential insight into underlying mechanisms.  6 

We found significant differentially methylated CpG-sites in two striatal regions. In the caudate 7 

nucleus, two epigenome-wide significant CpG-sites in IREB2 and HMGCR, were identified. 8 

IREB2 is a gene encoding iron regulatory protein 2, which is an RNA-binding protein that is 9 

involved in the regulation of cellular iron metabolism [https://www.genecards.org/cgi-10 

bin/carddisp.pl?gene=IREB2]. Iron overload in the brain has previously been associated with 11 

cognitive decline in AUD [40]. Neurodegeneration has been reported in two subjects with bi-12 

allelic loss of function variants in IREB2 [41,42]. IREB2 has also been associated with 13 

smoking phenotypes [35]. The association with smoking, which strongly affects DNA 14 

methylation [43,44], may be linked to the relevance of the gene to addiction phenotypes. In 15 

the present study, the IREB2-CpG-site was also differentially methylated in the anterior 16 

cingulate cortex (nominal significance), which might reflect a relevance in addiction 17 

phenotypes in multiple brain regions.  18 

In the ventral striatum, 18 CpG-sites were epigenome-wide significantly associated with 19 

AUD. The strongest association was observed in a CpG-site in SLC30A8, which encodes a 20 

zinc efflux transporter that is involved in the accumulation of zinc in the intracellular vesicles. 21 

Zinc is a structure-building element in alcohol dehydrogenase (ADH) and thereby important 22 

for the proper function of ADH, which is needed to break down alcohol [45]. Differential 23 

methylation in SCL30A8 may lead to altered Zinc availability and indirectly impact ADH 24 

function, and thus alcohol metabolism. SLC30A8 has also been implicated in type 1 and type 25 

2 diabetes [46]. In both types epigenetic and transcriptomic levels of SLC30A8 have shown 26 

to be altered [47]. Heavy alcohol consumption is also an established risk factor for type 2 27 
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diabetes on the phenotypic level [48]. Three of the epigenome-wide significant CpG-sites 1 

were also differentially methylated in an independent EWAS of AUD [27]. This could point 2 

towards a cross-tissue effect of these sites but could also result from blood circulation in the 3 

brain.  4 

Significant regional methylation differences were observed in the anterior cingulate cortex, 5 

caudate nucleus, and ventral striatum. One differentially methylated region was observed in 6 

the anterior cingulate cortex and that region was annotated to HLA complex group 9, a non-7 

coding RNA in the major histocompatibility complex (MHC). HLA antigens play a role in AUD 8 

and alcohol-associated liver disease [49]. In the caudate nucleus, the DMR showing the 9 

strongest association with AUD was annotated to DDAH2, encoding for dimethylarginine 10 

dimethylaminohydrolase, which is involved in the formation of nitric oxide by indirect 11 

inhibition of nitric oxide synthase (NOS) [https://www.genecards.org/cgi-12 

bin/carddisp.pl?gene=DDAH2]. Nitric oxide has previously been associated with sleep 13 

disturbances, as part of the sleep-wake state controlling metabolites [50]. Sleep disorders 14 

and disturbances, such as decreased total sleep time and decreased sleep efficiency, are 15 

common in individuals during periods of alcohol consumption and prolonged withdrawal 16 

[51,52]. In rodent studies, alcohol exposure influenced NOS expression in the brain [53] and 17 

the knockout of neuronal NOS was associated with increased consumption of highly 18 

concentrated alcohol solutions[54]. Of the six DMRs identified in the ventral striatum, a 19 

region in TMEM232 showed the strongest association. TMEM232 has previously been 20 

associated with respiratory traits, such as seasonal allergic rhinitis [55]. Another significant 21 

CpG-site was annotated to HM13. This gene encodes for minor histocompatibility antigen 22 

H13. In general, minor histocompatibility antigens function in the immune system by 23 

recognizing T cells [56]. No studies have investigated direct associations between AUD and 24 

H13 expression changes yet, but it is known that the immune system is downregulated in 25 

patients with AUD [57].  26 
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GO-term analyses investigating molecular functions associated with differentially methylated 1 

CpG-sites did not yield significant results after multiple testing correction, which is most likely 2 

attributable to the limited statistical power. No significant enrichment was observed for each 3 

of the gene-sets in GWAS signals for AUD, which could indicate that differential methylation 4 

in the newly identified CpG-sites is more sensitive to environmental factors than genetic 5 

effects.  6 

In the WGCNA analysis in VS a module enriched for immune-processes was most strongly 7 

associated with AUD, which are known to be influenced by alcohol abuse [58].  8 

In this brain region-specific analysis, comparing individuals with AUD and controls, we 9 

focused beside prefrontal areas on striatal regions, as previous studies have indicated that 10 

AUD may be associated with a striatal shift in activation from ventral to dorsal, as drug intake 11 

changes from goal-directed to habitual [59,60]. These studies focus on changes in 12 

neurotransmitter release and functional connectivity but it is not known how epigenetic 13 

changes impact this functional striatal shift. Our epigenome-wide results provide a first basis 14 

to explore epigenetic contributions to functional striatal changes. 15 

This study has several limitations. The first is PMI, which can influence the tissue quality. The 16 

longer the individual has been deceased before the tissue was extracted from the body, the 17 

further along are degradation processes [61]. While we corrected for this in our analyses our 18 

results may have been affected by postmortem degradation processes nevertheless. 19 

Second, we cannot infer whether the observed differences in DNA-methylation are a result of 20 

addiction or long-term alcohol consumption, which affects multiple organ systems. However, 21 

as the main results remained stable in the sensitivity analyses excluding subjects with 22 

current alcohol levels >0, we consider it likely that the observed differences are at least 23 

independent of acute alcohol exposure. Third, the methylation array used in the present 24 

study combined with the bisulfite conversion does not distinguish between methylation and 25 

hydroxymethylation. Therefore, no conclusions can be drawn regarding methylation type 26 

specific effects. Also, for several CpG-sites the effect in the meta-analysis was driven by a 27 
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large effect in one, but not the other batch and in some of the cases this went hand-in-hand 1 

with a change in direction. For example, cg04214706 had a small positive effect, which was 2 

statistically not different from zero in the first batch, and a large negative effect in the second. 3 

Further samples are needed to validate these findings. Due to the sparse availability of 4 

human postmortem brain tissue, our sample size is small compared to EWAS in peripheral 5 

blood, which results in limited statistical power, especially taking into account the high 6 

multiple testing correction burden. However, EWAS analysis of peripheral blood allows to 7 

reveal only limited conclusions about differential methylation in the brain, whereas studies 8 

that examine multiple brain sites in a comparative fashion point to region-specific functional 9 

changes.  10 

Here, we identified novel associations of differential DNA-methylation between AUD cases 11 

and controls, which are prominent in alcohol-related pathways and diseases linked with AUD. 12 

To confirm these observations, larger samples are needed from the respective brain regions. 13 

Human postmortem brain tissue is difficult to obtain and very few brain banks focus on 14 

substance use disorders. Combining existing datasets, generating a larger amount of DNA-15 

methylation data, and integrating multi-omics data, could lead to more conclusive results that 16 

may help to understand the molecular changes due to substance abuse in the brain and 17 

eventually to the identification of drug targets for more effective treatment of substance use 18 

disorders. 19 
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Figure Legends 1 

 2 

Figure 1. Manhattan plots of association of methylation values with AUD in (A) anterior 3 

cingulate cortex; (B) caudate nucleus; (C) ventral striatum. Highlighted CpG-sites represent 4 

differentially methylated regions. Genes implicated by CpGs (light and dark grey) and DMRs 5 

(green) are specified in the figures. Red line indicates FDR-corrected significance. 6 

 7 

Figure 2. Association of gene significance for AUD status with module membership, for the 8 

modules A) “black” in caudate nucleus, and B) “purple” in ventral striatum. 9 

 10 

 11 

Data Availability 12 

Raw data and summary statistics for all analyses are available on request.  13 
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