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Abstract

Purpose: Measurements of breast arterial calcifications (BAC) can offer a personal-
ized, noninvasive approach to risk-stratify women for cardiovascular disease such as
heart attack and stroke. We aim to detect and segment breast arterial calcifications in
mammograms accurately and suggest novel measurements to quantify detected BAC
for future clinical applications.
Methods: To separate BAC in mammograms, we propose a light-weight fine vessel
segmentation method Simple Context U-Net (SCU-Net). Due to the large image size
of mammograms, we adopt a patch-based way to train SCU-Net and obtain the final
whole-image-size results by stitching patch-wise results together. To further quantify
calcifications, we test five quantitative metrics to inspect the progression of BAC for
subjects: Sum of Mask Probability Metric (PM), Sum of Mask Area Metric (AM),
Sum of Mask Intensity Metric (SIM), Sum of Mask Area with Threshold Intensity
Metric (T AMX) and Sum of Mask Intensity with Threshold X Metric (T SIMX).
Finally, we demonstrate the ability of the metrics to longitudinally measure calcifica-
tions in a group of 26 subjects and evaluate our quantification metrics compared to
calcified voxels and calcium mass on breast CT for 10 subjects.
Results: Our segmentation results are compared with state-of-the-art network ar-
chitectures based on recall, precision, accuracy, F1-score/Dice Score and Jaccard
Index evaluation metrics and achieve corresponding values of 0.789, 0.708, 0.997,
0.729, and 0.581 for whole-image-size results. The quantification results all show
>95% correlation between quantification measures on predicted masks of SCU-Net
as compared to the groundtruth and measurement of calcification on breast CT.
For the calcifications quantification measurement, our calcification volume (voxels)
results yield R2-correlation values of 0.834, 0.843, 0.832, 0.798, and 0.800 for the
PM,AM,SIM, T AM100, T SIM100 metrics, respectively; our calcium mass results
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yield comparable R2-correlation values of 0.866, 0.873, 0.840, 0.774, and 0.798 for the
same metrics.
Conclusions: SCU-Net is a simple method to accurately segment arterial calcification
retrospectively on routine mammograms. Quantification of the calcifications based on
this segmentation in the retrospective cohort study has sufficient sensitivity to detect
the normal progression over time and should be useful for future research and clinical
applications.

ii

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 5, 2021. ; https://doi.org/10.1101/2021.07.30.21261406doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.30.21261406
http://creativecommons.org/licenses/by-nc/4.0/


Contents

I. Introduction 1

II. METHODS 3

II.A. Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

II.B. Network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

II.C. Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

III. Results 9

IV. DISCUSSION 14

V. DATA AVAILABILITY 16

VI. ACKNOWLEDGEMENTS 16

References 16

iii

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 5, 2021. ; https://doi.org/10.1101/2021.07.30.21261406doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.30.21261406
http://creativecommons.org/licenses/by-nc/4.0/


Running title here: Printed July 30, 2021 page 1

I. Introduction

Cardiovascular disease is a source of high morbidity and mortality in women1. One of the

barriers to improving diagnosis outcomes is the lack of a simple, inexpensive, and reliable

method for screening and for assessing efficacy of therapies. Vascular disease commonly man-

ifests as arterial calcifications, which are typically assessed by computed tomography (CT)

or CT angiography of the coronary arteries and aorta2. However, these tests are expensive,

usually performed only in symptomatic patients, and associated with additional radiation

exposure. Calcification also occurs in breast arteries and can be readily observed on screening

mammograms. The prevalence of breast arterial calcifications (BAC) correlates with calci-

fications in other arteries and is associated with an increased risk of cardiovascular disease

events3,4,5,6. We recently showed that quantification of BAC through manual measurements

can more accurately stratify risk factors and provide a means to follow progression7,8,9.

Each year, more than 40M women over age 40 undergo screening mammography for

breast cancer screening6. Automatic detection and quantification of BAC in these women

may be helpful in identifying patients at high-risk for cardiovascular events and following

progression of vascular calcifications without additional cost or radiation exposure10. Stored

digital mammograms over the past decade would also provide a vast dataset for robust

retrospective research. Currently, there is no standardized method for accurate detection,

segmentation and quantification of BAC on mammography, which limits the utility of this

potential biomarker. There are many challenges in automated detection of BAC. First, BAC

appear as slender, elongated regions of fragmented high pixel intensity on mammograms and

typically represent fewer than 1% of a 4K × 3K image. Moreover, the narrow appearance

and potential variable lengths make precise segmentation of BAC much more challenging

compared to general segmentation tasks. Second, there is no standard strategy for acquiring

groundtruth BAC segmentations due to the variations in vessel width, severity of calcifica-

tions along the vessel, and tortuous vessel paths. Third, the large image size (over 12MP)

adds significant difficulty in image processing.

Although there have been a number of existing works relevant to breast arterial calcifi-

cations, few have focused on accurate segmentation. Sulam et al.11 examined only prevalence

and Abriele et al.12, Juan et al.13 and Hossain et al.14 all detected BAC with a patch-based

method, but did not report detailed segmentation performance or quantification metrics.
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Since BAC segmentation can be considered as a type of semantic segmentation in the realm

of general computer vision, current semantic segmentation models can be attempted for

BAC segmentation. Generally, semantic segmentation models can be classified into two

main categories: non-real-time and real-time segmentation models. Non real-time models

such as U-Net15, SegNet16, DeepLabV317 and LinkNet18 usually have complex architectures

and a high number of trainable parameters. Thus, they may achieve high accuracy but

are slow to train and deploy. By contrast, real-time semantic segmentation models includ-

ing ERFNet19, ESNet20, FastSCNN21, ContextNet22, DABNet23, EDANet24, FPENet25,

CGNet26 have fewer trainable parameters but can still attain comparable performance with

the non-real-time models. At our institution, up to 250 screening mammograms are per-

formed daily constituting approximately 1,000 images. In live clinical deployment, it would

be advantageous that BAC detection and quantification occur in near real-time so that the

results are available to the interpreting radiologist in case patient referral is needed. There-

fore, segmentation models with a high number of trainable parameters (e.g., U-Net15 has

13,395,329 parameters) would be prohibitive in their inference times, and lightweight models

would enable more clinically viable.

To address the challenges and fulfill the requirement of clinical application, we propose

Simple Context U-Net (SCU-Net), an automated lightweight segmentation model, to seg-

ment BAC in mammograms in a patch-based way. SCU-Net offers comparable performance

of the most popular current segmentation architectures with an order of magnitude fewer

training parameters. It achieves this by taking advantage of both dilated convolution op-

erations and skip connections to learn and fuse global features with low-level information

efficiently while maintaining far fewer trainable parameters. We demonstrate the efficacy of

SCU-Net by visually and quantitatively presenting our BAC segmentation results as com-

pared to a series of popular semantic segmentation models. Furthermore, we present five

novel metrics to quantify the severity of BAC within the segmentation mask, compare our

quantification metrics to breast CT, and demonstrate the ability to track a longitudinal

increase in BAC in a cohort of patients with 10 years of retrospective mammograms. Thus,

SCU-Net model may serve as a potential research and clinical tool for early detection and

risk stratification of cardiovascular disease for women.

I. INTRODUCTION
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II. METHODS

II.A. Preprocessing

Mammograms contain a wide variety of pixel intensities with varying breast shapes and pro-

portions of breast tissue versus null background. Therefore, image pre-processing is critical

to identify breast tissue and normalize the image to maximize the model performance. To

this end, we first smooth the image using median filtering27 with a disk kernel of size 5 for

cleaning the noise but also avoiding causing serious blurring. This was chosen empirically

among the evaluated range of [5-20] based on visual evaluation during preliminary experi-

ments. To extract breast tissue only, we erode and then dilate the breast images with a disk

kernel (size is 10 in our experiment) to erase the scanner labels of mammograms such as

view type (i.e., “RMLO” – right mediolateral oblique, “LMLO” – left mediolateral oblique,

“RCC” – right craniocaudal, “LCC” – left craniocaudal). With the same setting, we dilate

and then erode the binary mask to link together and smooth any nearby annotation seg-

ments, producing a continuous vessel mask. Finally, we enhance image contrast to maximize

the difference between calcified vessel and background tissue. During training, we normalize

input image patches with zero-means method to minimize the impact of variation contrast

between vessels and background.

II.B. Network architecture

To overcome the issue of large image sizes and the inability to downsample images without

data loss, we propose Simple Context U-Net (SCU-Net), whose inputs are patches cropped

at the highest resolution of mammography images. The architecture of SCU-Net is shown

in Figure 1. All the feature sizes in the figure are presented same as our experimental

settings. SCU-Net is a symmetric, U-shaped model, similar to U-Net15. The model has

input image patches with size of 3 × 512 × 512. 1 The original input is fed into three

3 × 3 convolutional layers. To preserve the original image information, the input patch is

downsampled with scale factor of 1 and 2. The obtained two downsampled input features

1Although the mammogram image is grayscale and has only one image channel, three duplicates of the
mammogram patch are stacked together to form a three-channel image same as RGB image format. This
setting ensures the model to work for both natural and grayscale images, and can be comparable with
existing segmentation models.
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Figure 1: Network architecture of SCU-Net.

are in size of 3 × 256 × 256 and 3 × 128 × 128 corresponding to the second and third

green additional inputs of Figure 1. These two downsampled inputs will be concatenated

with later high-level features. Each concatenation is followed by BatchNormalization and

Parametric ReLU operations, enabling smooth fusion of high-level information with low-

level features. Feature fusing is important, but the surrounding context is also very helpful

for semantic segmentation26. Inspired by CGNet26 and DilatedNet28, SCU-Net adopts two

different dilated convolutional layers (Dconv1 and Dconv2 in Figure 1) to aggregate multi-

scale contextual information. In the decoder arm of the network, the learned image features

are upsampled with bilinear interpolation and then concatenated with the corresponding

encoder features of the same size. “Up” in Figure 1 means upsampling layer. Two 3 × 3

convoultional layers follow each concatenation. In total, there are three upsampling layers

to get the network back to the original size. Finally, two 3 × 3 convolutional layers helps

reduce the channel numbers to the class number, 1 in our case, and a Sigmoid layer is

used to get the final mask prediction. All the convolutional layers including conv, Dconv1,

Dconv2 and Up layers in Figure 1 are followed with BatchNormalization and Parametric

ReLU operations. To avoid overfitting, we use online data augmentation techniques during

training, including randomly vertical or horizontal flipping, randomly rotation by 90 or 270

degrees, and randomly changing the brightness, contrast and saturation of image.

Implementation details: In our experiments, binary cross entropy loss converges much

II. METHODS II.B. Network architecture

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 5, 2021. ; https://doi.org/10.1101/2021.07.30.21261406doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.30.21261406
http://creativecommons.org/licenses/by-nc/4.0/


Running title here: Printed July 30, 2021 page 5

more slowly than dice loss, therefore we adopt dice loss to optimize all the segmentation

networks. For optimization, we use Adamw optimizer with a learning rate of 0.001 for

model training. Each network is trained with 50 epochs. The pipelines are developed using

Pytorch 1.5.0, Python 3.0. and Cuda compilation tools V10.0.130 on a machine with 4

NVIDIA Quadro RTX 6000 with 24GB memory.

II.C. Experimental setup

With the approval of Emory Institutional Review Board (IRB), three cohorts of subjects

were identified from previous studies 7,8,9. All mammograms extracted were 2D full-field

digital mammograms (FFDM) obtained during routine screening exams on Hologic (Marl-

borough, PA) mammography scanners in accordance with Mammography Quality Standards

Act (MQSA) requirements. Screening exams consisted of four standard views - LCC, LMLO,

RCC, RMLO.

• Cohort A – 661 FFDM from 216 subjects were annotated and used for deep learning

model training and validation. The mean age was 70 ± 11 and 37% were African-

American. Because the previous studies focused on kidney disease, 35% had chronic

kidney disease, end-stage renal disease (ESRD), or renal transplantation. Mean breast

density was 2.23 ± 0.77 as reported according to Breast Imaging Reporting and Data

System (BI-RADS) guidelines (A=1, B=2, C=3, D=4). The majority of patients were

density B (scattered fibroglandular tissue - 43.6%) and C (heterogeneously dense -

41.7%) with a minority of density A (mostly fat - 7.2%) and D (extremely dense -

7.5%).

• Cohort B for comparison to breast CT calcification - A previously reported cohort of

10 subjects with contemporaneous measurement of BAC by breast CT. Mean age was

69 ± 11 and all but one were Caucasian. Mean breast density was slightly lower at

2.08 ± 0.76.

• Cohort C for longitudinal analysis - 26 additional subjects with BAC and at least 5

yearly mammograms were studied in order to assess the ability to detect progression

of BAC. The mean age was 65 ± 12 and 54% were African-American. Of these, 9 had
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ESRD or had undergone kidney transplantation. Mean breast density was similar at

2.19 ± 0.70.

Groundtruth acquisition: Mammograms from Cohort A were annotated by four anno-

tators - one physician (CO) with 15 years experience and three other annotators trained

and monitored by CO. Groundtruth segmentations are performed manually on whole im-

ages using the online platform Md.ai2 and standardized by annotating a multi-segmented

line down the center of any calcified vessel continuously until there is at least a 1cm length

of non-calcified vessel, at which point a new segmentation is started where the calcification

resumes. These annotations serve as groundtruth training and validation data.

Data preparation: To prepare high-quality datasets for training deep learning models,

the whole mammogram dataset is randomly divided into training and validation parts with

527 mammography images for training and 134 for validation. The mammography images

are either sized 4096 × 3328 pixels or 3328 × 2560 pixels, which require a large amount of

memory to load and analyze. Therefore, we crop images into fixed-size patches of 512× 512

with 64 pixels of overlap between adjacent patches. The overlapping ensures the ability to

connect BAC segmentations from adjacent patches and improves the overall segmentation

accuracy. We exclude black background image patches to eliminate unnecessary calculations.

Moreover, only patches that contain calcifications are left for segmentation training given

the fact that the calcification mask prediction is pixelwise classification. Ultimately, this

yields 3,455 effective patches for training and 901 patches for validation.

Model comparison: Experiments are performed with SCU-Net and state-of-the-art deep

learning models including SegNet16, DeepLabV317, U-Net15, LinkNet18, ERFNet19, ES-

Net20, FastSCNN21, ContextNet22, DABNet23, EDANet24, FPENet25 and CGNet26. Their

number of trainable parameters, including SCU-Net, are compared in Figure 2. The larger

the circle area for a model is, the more parameters the model contains. As can be seen,

SegNet16 has the most parameters while FPENet25 contains the least. Our model, SCU-

Net, has the second fewest parameters (marked in blue). Models with fewer parameters have

lower complexity, consume less memory, and achieve faster training. Since mammograms

(along with most radiology images) are very large in size, the number of model parameters

is an important factor for real-world implementation as it is directly related to speed.

2www.md.ai

II. METHODS II.C. Experimental setup
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Figure 2: Trainable parameters comparison of segmentation models.
The circle area is proportional to the total parameters of the model.
Comparatively, SCU-Net is roughly two orders of magnitude smaller
than other models.

Evaluation metrics for BAC segmentation: We evaluate both patch-wise segmentation

results and final whole image segmentation results of all the models with five metrics: Recall,

Precision, Accuracy, F1-score/Dice score, Jaccard Index value. The definitions are shown in

Equations 1 and 2. In the equations, TP , FN , TN and FP calculations refer to pixelwise

results.

Recall =
TP

TP + FN
, Precision =

TP

TP + FP
, Accuracy =

TP + TN

TP + TN + FP + FN
(1)

F1− score =
2×Recall × Precision

Recall + Precision
, JaccardIndex =

TP

TP + FP + FN
(2)

To further demonstrate the differences across all the models, we also perform pairwise

t-test to compute the statistical significance of state-of-the-art models compared with SCU-

Net. The p-value table is present in the supplementary material.

Evaluation metrics for BAC quantification: Beyond typical semantic segmentation

evaluation metrics (Recall, Precision, Accuracy, F1-Score/Dice Score and Jaccard Index ),

we propose five BAC quantification metrics in Equations 3 and 4 to further measure the
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effectiveness of BAC detection in the predicted segmentation masks. Because of the segmen-

tation challenges with BAC, we anticipated acceptable but imperfect segmentation results.

However, unlike cancer detection where localization is extremely important, vessel segmenta-

tion can be considered an intermediate task to achieve BAC quantification. Slight differences

in vessel segmentation region or width may have strong negative effects on standard evalua-

tion metrics like Dice score and Jaccard index, but may still provide excellent results in terms

of capturing clinically relevant calcifications. Therefore, we developed the following five met-

rics to capture the total segmented area, intensities of pixels within the segmented area, and

thresholded pixel intensities and counts within the segmented area. Equations 3 and 4

show the definitions for Sum of Mask Probability Metric (PM), Sum of Mask Area Metric

(AM), Sum of Mask Intensity Metric (SIM), Sum of Mask Area with Threshold Intensity

X Metric (T AMX) and Sum of Mask with Intensity Threshold X Metric (T SIMX). In the

equations, m and n refer to the width and height of the mammogram, pi,j is the probability

value at < i, j > returned by the trained model, Ii,j means the intensity value of pixel at

< i, j > and X is the intensity threshold.

PM =

m,n∑
i=0,j=0

pi,j, AM =

m,n∑
i=0,j=0

1pi,j>0.5, SIM =
∑

0≤i≤m,0≤j≤n|pi,j>0.5

Ii,j (3)

T AMX =
∑

0≤i≤m,0≤j≤n|pi,j>0.5

1Ii,j>X, T SIMX =
∑

0≤i≤m,0≤j≤n|pi,j>0.5,Ii,j>X

Ii,j (4)

Specifically, PM summates all predicted probabilities for an image to evaluate the confidence

of the model’s prediction; AM is the total number of pixels that are classified as BAC in

a mammogram; SIM is the sum of the intensities of the pixels classified as BAC; T AMX

is the total number of BAC-classified pixels greater than intensity threshold X, as the BAC

pixels usually have higher intensity values than background tissue area; T SIMX is the sum

of intensities for BAC-classified pixels with intensity value greater than the threshold X. In

our experiment, we set X to be 100 as the best threshold for T AMX and T SIMX metrics

based on visual observations of threshold values of 50, 75, 100, 150, 200. Metrics AM,

SIM, T AMX , and T SIMX are all calculated with a model prediction cutoff of p > 0.5.

Comparison of BAC quantification metrics against breast CT measurements: To

compare our quantification with a previously clinically validated measurement system9, we

II. METHODS II.C. Experimental setup
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evaluated our quantification metrics on mammograms of 10 patients in Cohort B who had

contemporaneous breast CT exams. All BAC quantification metrics on mammograms were

compared to calcified voxels and calcium mass as measured on breast CT.

Evaluation of BAC quantification metrics longitudinally: To evaluate the utility of

BAC quantification metrics to track calcification longitudinally, we examined 26 new subjects

(Cohort C) not included in the original dataset with serial mammograms. Each patient

had 5∼12 years imaging history with all four standard screening mammography views per

exams, totalling 961 images across all subjects. SCU-Net was applied to each image to obtain

the segmentation masks and T AM100 was calculated (based on top-performing correlation

as shown in Figure 5). Plotting T AM100 over time per view initially yielded very noisy

results in which calcification quantity appeared to oscillate over time, which typically would

physiologically not occur. We then took the sum of the T AM100 for all views plotted

against time, which somewhat decreased the fluctuation but did not eliminate it. Finally, we

realized that each year the patient’s breast position and magnification of the mammogram

could vary, meaning that the raw number of pixels as counted in the T AM100 metric would

be dependent on breast magnification. To normalize for this effect, we took T AM100 metric

divided by the breast area for each image and then sum this result across all four views.

This was the final method used for longitudinal analysis.

III. Results

Evaluation of BAC detection based on standard metrics - Figure 3 shows the patch-

wise segmentation results of SCU-Net as compared to several semantic segmentation models

including SegNet16, ContextNet22,U-Net15, CGNet26 and SCU-Net. The first row is of

particular interest as it demonstrates ductal calcifications which are benign and unrelated

to BAC, but can appear similar. SegNet16, ContextNet22, and U-Net15 each erroneously

detect these ductal calcifications to varying degrees, however SCU-Net correctly ignores

these. Interestingly, SCU-Net demonstrates similar performance to CGNet26 as they both

utilize dilated convolution operations to learn context features. The second row of Figure 3

demonstrates a patch with overall lower image contrast and overlapping breast tissue which

mimics linear calcifications. In this case, ContextNet22 detects the most false positive pixels.

The third and fourth cases contain less noise and a clear difference from the background
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Figure 3: Examples of patch-wise segmentation results for BAC across
multiple architectures as compared to the groundtruth. From left to
right: original image patches, groundtruth mask, and prediction results
of SegNet, ContextNet, U-Net, CGNet and SCU-Net.

tissue, in which case all the models perform well at detecting BAC. In brief, image noise, low

image contrast, and overlapping background tissue can all affect the quantitative accuracy

of segmentation. The same types of errors are noticed on whole-image-size mask prediction

as shown in Figure 4. For better visualization, only the breast region are kept by truncating

the unnecessary background from the original mammograms. In this figure, the dice scores

for the predicted masks of each case are labelled in the top right corner. As can be seen,

overall performance for BAC segmentation is quite good although each model suffers from

varying degrees of false positives due to issues with image noise, tissue contrast, and lookalike

findings. We also see that some images are intrinsically more difficult with lower dice scores

across the board for rows 1 and 2 in as compared to rows 3 and 4 in Figure 4. In general, the

segmentation masks of ContextNet22 contain more false positive fragments than other results.

Nevertheless, most of the BAC is captured by all the models. Notably, SCU-Net achieves

comparable dice scores compared to SegNet16, U-Net15 and CGNet26 despite significantly

fewer parameters.
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Figure 4: Examples of whole image segmentation results for BAC
across multiple architectures as compared to groundtruth. From left to
right: original mammography images (cropped to exclude background),
groundtruth mask, prediction results of SegNet, ContextNet, U-Net,
CGNet and SCU-Net. The F1-Score for each model is shown in the
top right of the predicted mask. Higher F1-score means more overlap
between groundtruth and the predicted mask.

Furthermore, we evaluate the segmentation results for both patches and whole images

to demonstrate the fine vessel calcification segmentation accuracy. Table 1 presents the

quantitative performance metrics for all tested models including SCU-Net, for both invid-

ual patches (columns with clear background) and whole mammography images (columns
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with gray background). For patch-wise quantitative results in Table 1, ERFNet19 has the

highest recall value, FPENet25 achieves the best precision value, and SCU-Net has the best

F1-score and ties with CGNet26 for top Jaccard Index value. Accuracy values of all the

models are relatively similar due to the high number of negative pixels in the image. Whole-

image-size results are generated by concatenating the corresponding patches for each whole

mammogram. Compared with patch-wise results, nearly all the evaluation metrics for the

whole image are higher and are tightly grouped across all models. The reason lies in the

overlapping 64 pixels with neighboring patches which helps enhance the segmentation accu-

racy by avoiding boundary effects3. On whole images, ERFNet19, FPENet25, DeepLabV317

still maintain their advantages in recall, precision and accuracy respectively. U-Net15 and

DeepLabV317 in Table 1 have the best F1-score/Dice-score (0.735) and Jaccard Index value

(0.59) for full image segmentation. With many fewer parameters (79x less), SCU-Net also

performs very well with 0.729 of F1-score and 0.581 of Jaccard Index value compared with

SegNet16 and FPENet25.

Table 1: Quantitative evaluation results for image
patches (columns without background) and whole im-
ages (columns with gray background) in the validation
dataset, subscripts denote standard deviation.

Method Recall Precision Accuracy F1-score Jaccard
SegNet16 0.707±0.100 0.764±0.159 0.704±0.095 0.743±0.128 0.981±0.005 0.998±0.002 0.676±0.084 0.734±0.098 0.554±0.079 0.589±0.113
DeepLabV317 0.742±0.099 0.781±0.154 0.709±0.088 0.726±0.134 0.981±0.005 0.998±0.002 0.692±0.084 0.735±0.100 0.568±0.081 0.590±0.118
U-Net15 0.738±0.092 0.789±0.144 0.704±0.088 0.723±0.141 0.981±0.005 0.998±0.002 0.689±0.074 0.735±0.097 0.562±0.073 0.590±0.112
LinkNet18 0.748±0.095 0.801±0.151 0.675±0.096 0.690±0.137 0.979±0.006 0.997±0.002 0.676±0.082 0.720±0.101 0.550±0.080 0.572±0.114
ERFNet19 0.788±0.088 0.826±0.133 0.669±0.086 0.673±0.151 0.979±0.006 0.997±0.002 0.694±0.075 0.724±0.106 0.568±0.077 0.578±0.123
ESNet20 0.757±0.096 0.796±0.164 0.684±0.091 0.707±0.137 0.980±0.005 0.997±0.002 0.687±0.083 0.727±0.108 0.563±0.081 0.581±0.122
FastSCNN21 0.687±0.105 0.738±0.171 0.662±0.100 0.695±0.136 0.979±0.006 0.997±0.002 0.647±0.096 0.697±0.112 0.522±0.092 0.545±0.124
ContextNet22 0.723±0.093 0.765±0.165 0.631±0.090 0.628±0.150 0.977±0.006 0.997±0.003 0.643±0.083 0.671±0.123 0.509±0.081 0.517±0.130
DABNet23 0.750±0.096 0.804±0.143 0.692±0.095 0.706±0.142 0.981±0.005 0.998±0.002 0.686±0.082 0.734±0.102 0.564±0.079 0.589±0.118
EDANet24 0.771±0.094 0.810±0.150 0.666±0.096 0.682±0.137 0.980±0.005 0.997±0.002 0.685±0.085 0.723±0.102 0.559±0.083 0.575±0.117
CGNet26 0.766±0.090 0.798±0.149 0.689±0.087 0.703±0.138 0.980±0.005 0.997±0.002 0.696±0.074 0.730±0.102 0.569±0.075 0.584±0.118
SCU-Net 0.778±0.085 0.789±0.137 0.682±0.082 0.708±0.140 0.980±0.005 0.997±0.002 0.698±0.074 0.729±0.093 0.569±0.074 0.581±0.110
FPENet25 0.682±0.106 0.730±0.173 0.715±0.095 0.750±0.130 0.981±0.005 0.998±0.002 0.666±0.092 0.721±0.114 0.544±0.087 0.575±0.129

Evaluation of BAC quantification based on defined metrics - Universal semantic seg-

mentation evaluation metrics are helpful in evaluating segmentation results by performing

pixel-to-pixel evaluation. However, the ultimate goal of this work is to quantify the amount

of BAC within a mammogram for eventual correlation with cardiovascular outcomes. To

evaluate the practical performance of SCU-Net’s segmentations in capturing BAC, we com-

puted the correlation for all metrics computed using SCU-Net segmentations against the

3Cropped patches may only contain a very small piece of calcification along the cropped boarder, which
is hard to segment accurately. However, the larger calcification can be more easily detected in the adjacent
patches. Thus, concatenating the predictions of adjacent patches can eliminate the boundary effects.
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Figure 5: Statistical analysis on validation data for Cohort A. First row:
R2-correlation of whole-image SCU-Net calcification quantification re-
sults for predicted masks (Y-axis) as compared to the groundtruth
(X-axis). All X-axis and Y-axis values are in scientific format. R2-
correlation values (r2) and standard errors (std err) are also reported
for each metric in each subfigure. Second row: Bland Altman test to
compare each metric computed from SCU-Net against the groundtruth.
There are 134 data elements in total for each subfigure, with each point
representing one image in the validation dataset.

same metrics computed on the ground truth segmentation. The upper row of Figure 5

shows the R2-correlation of whole-image-size segmentation results of SCU-Net compared to

the groundtruth based on the same metrics, demonstrating correlation >0.95 for all metrics.

On the 134 validation scans, SCU-Net has the highest R2-correlation value of 0.973 between

the predicted mask and groundtruth when using the T AM100 metric, which measures the

total number of pixels with intensity >100 in the segmented mask. The second row of Fig-

ure 5 indicates the Bland Altman test results29 for the same validation data. The plots show

the differences between quantitative metrics computed from the groundtruth and SCU-Net

against the mean of the two measurements. Most metrics demonstrate very few outliers,

and in particular PM does not have a single outlier.

Results of BAC quantification compared to breast CT: Evaluation of BAC

quantification against breast CT in cohort B yielded good results. For calcification

volume (voxels), R2-correlation values were 0.834, 0.843, 0.832, 0.798, and 0.800 for

the PM,AM,SIM, T AM100, T SIM100 metrics, respectively. For calcium mass, R2-

correlation values were comparable at 0.866, 0.873, 0.840, 0.774, and 0.798 for the same
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Figure 6: Longitudinal quantification of BAC in 5 patients. Left: The
top-performing T AM100 metric applied to SCU-Net segmentations for
five subjects plotted over time over time, wherein p1, p2, p3, p4, p5
represent different subjects. Right: Sampled mammograms from one
subject over 11 years demonstrating an increase in detected BAC over
time. BAC are highlighted in green. Each mammogram is cropped to
exclude background with its exam date shown below.

metrics. Although breast CT is not performed clinically, this demonstrates that BAC quan-

tification on mammography is comparable to a previously validated calcification quantifica-

tion metric.

Results of BAC longitudinal analysis: Results of longitudinal analysis using the

T AM100 metric showed the ability to automatically track BAC over time. Plots for five

subjects shown in Figure 6 demonstrate a gradual increase in BAC over time. Figure 6 also

shows five mammograms that demonstrate the progression of BAC in one subject over an

11 year period with predicted BAC masks highlighted in green.

IV. DISCUSSION

We present a lightweight and accurate semantic segmentation model Simple Context U-

Net (SCU-Net) designed for efficient vessel calcification segmentation on mammograms. It

incorporates dilated convolution operations to learn context features and fuses multi-level

features to enhance prediction accuracy. Due to the large size of mammograms, each image is

processed in patches for both training and validation and the resultant masks are re-stitched

to obtain whole-image predictions. Extensive experimental results for both patches and

whole mammography images of 216 subjects showed comparable or better performance of

SCU-Net as compared to current state-of-the-art models while maintaining far fewer training

parameters. A further advantage of our model is that it does not require raw mammography
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data and can be applied retrospectively. This will enable analysis of the vast datasets of

prior digital mammograms, allowing for large retrospective studies.

In addition to accurate segmentation of BAC, we applied quantification metrics to assess

the extent of calcification and demonstrated excellent correlation between quantification

values obtained on the predicted mask as compared to the groundtruth. Correlation was

best using the T AM100 metric which counts all pixels above intensity 100 to differentiate

between calcified and non-calcified portions of the vessel inside the mask. We also showed

strong correlation of all metrics to calcium volume and mass obtained on breast CT for 10

subjects. Lastly, we were able to track and quantify the progression of BAC in 26 subjects

longitudinally using this metric. Thus we believe this tool can accurately quantitatively

measure and track BAC progression in patients and could be used to assess the efficacy of

therapies and risk factors modification.

A limitation of this work is that the model is developed at a single institution using

a single brand of scanners. It is possible that the model could underperform on external

data, however we believe that the model can be successfully fine-tuned to re-optimized as

needed, particularly due to its low number of parameters. The model is developed using only

661 images so fine-tuning can likely be achieved using an even smaller segmented dataset if

needed. Another current limitation is that although our quantification metrics show strong

correlation to breast CT data and track increases in BAC over time, they have not yet been

validated against clinical outcomes in these patients. To address this in future work, we plan

to evaluate our model and quantification metrics against outcomes data or existing validated

risk assessment tools such as calcium scores on coronary CT.

In summary, a robust, minimally complex, deep learning method for segmenting and

quantifying breast arterial calcifications has been developed that can be applied retrospec-

tively to routine screening mammograms. This will allow for analysis of large populations

without additional imaging costs or radiation exposure. Future studies will determine the

performance of this tool for predicting clinical outcomes and determining the efficacy of

prevention approaches.
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V. DATA AVAILABILITY
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