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ABSTRACT 

The impacts of IFN signaling on COVID19 pathology are multiple, with protective and harmful effects 

being documented. We report here a multi-omics investigation of IFN signaling in hospitalized 

COVID19 patients, defining the biosignatures associated with varying levels of 12 different IFN ligands. 

Previously we showed that seroconversion associates with decreased production of select IFN ligands 

(Galbraith et al, 2021). We show now that the antiviral transcriptional response in circulating immune 

cells is strongly associated with a specific subset of ligands, most prominently IFNA2 and IFNG. In 

contrast, proteomics signatures indicative of endothelial damage associate with levels of IFNB and 

IFNA6. Differential IFN ligand production is linked to distinct constellations of circulating immune cells. 

Lastly, IFN ligands associate differentially with activation of the kynurenine pathway, dysregulated fatty 

acid metabolism, and altered central carbon metabolism. Altogether, these results reveal specialized 

IFN ligand action in COVID19, with potential diagnostic and therapeutic implications. 

 

IMPACT STATEMENT 

Analysis of multi-omics signatures associated with 12 different IFN ligands reveals their specialized 

action in COVID19. 
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INTRODUCTION 

The impact of Interferon (IFN) signaling on the course of COVID19 pathology has been the subject of 

much investigation, with both protective and deleterious effects being reported. The protective effects of 

IFN signaling are demonstrated by studies showing that severe COVID19 is associated with decreased 

IFN signaling (1), the presence of auto-antibodies blocking IFN ligand action (2), and genetic variants 

that impair IFN signaling (3). However, Type I IFN signaling has been established as a driver of 

pathology in mouse models of both SARS-CoV-1 and SARS-CoV-2 infections (4, 5), and Type I and III 

IFN signaling have been implicated in disruption of lung barrier function and increased susceptibility to 

secondary bacterial infections in mice (6). This ambivalence has fueled the design of seemingly 

contradictory clinical trials using either IFN ligands (7) or agents that block IFN signaling, such as JAK 

inhibitors (8). This duality is further illustrated by studies showing that genetic variants leading to low 

expression of the Type I IFN receptor IFNAR2 or high expression of TYK2, a protein kinase required for 

Type I IFN signaling, are associated with life-threatening disease (9). Therefore, it is possible that 

context-dependent variations in IFN signaling may attenuate or exacerbate COVID19 pathology in 

different settings. Indeed, retrospective analysis of IFN-α2b treatment in COVID19 showed that early 

administration was associated with reduced mortality, whereas late administration was associated with 

increased mortality (10). 

There are three major types of IFN signaling defined by the transmembrane receptors and downstream 

signaling kinases involved (11). Type I IFN involves IFN alpha, beta, epsilon, kappa, and omega 

ligands, the IFNAR1 and IFNAR2 receptors, and the downstream kinases JAK1 and TYK2. Type II IFN 

signaling involves the gamma ligand, the IFNGR1 and IFNGR2 receptors, and the downstream kinases 

JAK1 and JAK2. Type III IFN signaling involves the lambda ligands, the IFNLR1 and IL10RB receptors, 

and the JAK1 and TYK2 kinases. However, this classification fails to capture the biological complexity 

created by the differential effects of distinct ligands acting through the same receptors. This is most 

evident by the differential effects of alpha ligands and IFNB1 within Type I signaling (12). Even within 

alpha ligands there is significant heterogeneity in cellular source, site of action, and downstream effects 

(12). Nevertheless, in the context of lung viral infections, it is accepted that select alpha and lambda 
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ligands are first responders in the antiviral response due to their induced expression upon engagement 

of pattern recognition receptors in the lung epithelium (13). In the context of SARS-CoV-2 infections, 

little is known about the functional specialization of different IFN ligands and their relative contributions 

to different aspects of the ensuing pathology. Furthermore, SARS-CoV-2 has evolved diverse 

strategies to evade IFN signaling (14), and clinical trials for IFN alpha, beta, gamma and lambda 

ligands have been completed or are under way, even in combinations, but definitive results leading to 

approval for clinical use are pending (15). 

Within this context, we report here a multi-omics analysis of IFN signaling in hospitalized COVID19 

patients. This investigation includes a comprehensive examination of the whole blood transcriptome, 

plasma proteome, anti-SARS-CoV-2 antibodies, peripheral immune cell repertoire, and plasma and red 

blood cell metabolomes in relationship to levels of 12 different circulating IFN ligands. In hospitalized 

patients with moderate COVID19 pathology, transcriptome-based IFN scores are highly variable and 

significantly associated with levels of a subset of circulating IFN ligands such as IFNA2 and IFNG, but 

not so IFNA6 or IFNB1. Likewise, plasma proteomic signatures are also differential among ligands. For 

example, whereas IFNG and other ligands are clearly associated with production of monocyte 

activating and mobilizing chemokines, IFNA6 and IFNB1 levels associate with markers of platelet 

degranulation and endothelial damage. Furthermore, IFN ligands display differential relationships with 

immunoglobulins targeting SARS-CoV-2, revealing that seroconversion associates with decreased 

production of a select subset of ligands. This shift in IFN ligand production upon seroconversion is 

accompanied by significant changes in the immune cell types associated with production of the various 

ligands. For example, whereas IFNA10 is strongly associated with levels of Th1 CD4 T cells, CD56bright 

NK cells and plasmacytoid dendritic cells, its levels are strongly anti-correlated with levels of circulating 

plasmablasts. Lastly, we revealed specific metabolomic signatures associated with diverse ligands. 

Whereas IFNG is the most strongly associated with tryptophan catabolism through the kynurenine 

pathway, other ligands associate with metabolic pathways indicative of dysregulated central carbon 

metabolism, nitric oxide metabolism, and fatty acid oxidation. Altogether, these results indicate that 
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modulation of IFN signaling in the clinic, either with agonists or antagonists, must take into account the 

endogenous state of the IFN ligand milieu, and that ligand-specific effects are to be expected. 

 

RESULTS 

Variable IFN signaling in COVID19 associates with levels of a specific subset of IFN ligands. 

In this study, we analyzed the multi-omics datasets generated by the COVIDome Project 

(covidome.org) to investigate IFN signaling in hospitalized COVID19 patients. The COVIDome Project 

datasets have been previously described (16, 17) and include matched analysis of whole blood 

transcriptome, plasma proteomics via complementary SOMAscan® assays and mass spectrometry, 

measurement of 82 immune factors by multiplexed immunoassays, SARS-CoV-2 seroconversion 

assays, immune cell profiling by mass cytometry, plasma and red blood cell metabolomics, as well as 

annotated clinical data. The COVIDome Project cohort analyzed in this study consists of 73 

hospitalized COVID19 patients with mild-to-moderate disease versus 32 controls (see Supplementary 

file 1 for cohort characteristics and Methods). To monitor IFN signaling in this cohort, we first analyzed 

the transcriptome dataset. Using DESeq2 analysis, with adjustment for age and sex as covariates, we 

identified 2299 genes differentially expressed in the blood of COVID19 patients (Figure 1A, 

Supplementary file 2). Gene Set Enrichment Analysis (GSEA) identified the Hallmark Interferon Alpha 

and Gamma Response gene sets as the most significant positively enriched gene signatures in 

COVID19 patients (Figure 1B, Supplementary file 3). To assess inter-individual variation in 

expression of these IFN gene signatures, we calculated Z-score-based ‘IFN Alpha’ and ‘IFN Gamma’ 

transcriptional scores for each sample, showing that COVID19 patients show significantly increased yet 

highly variable IFN scores relative to controls (Figure 1C, Figure 1 – supplement 1A). In order to 

assess the degree to which this variability in IFN signaling was associated with the levels of circulating 

IFN ligands, we mined the SOMAscan® proteomics and multiplexed immunoassay datasets (Meso 

Scale Discovery assays, MSD, see Methods), which collectively measured a total of 17 different IFN 

ligands. To test the specificity of the reagents measured in these two platforms, we spiked single 

concentrations (SOMAscan®) or multiple concentrations (MSD) of 16 of these IFN ligands, for which 
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purified recombinant proteins were commercially available, into a pooled plasma reference sample 

(only IFNW1 could not be obtained, see Methods). This test led us to discard five SOMAscan® 

measurements (IFNA5, IFNA8, IFNA14, IFNA21, IFNL2) due to lack of sensitivity, and to relabel some 

measurements based on apparent cross-reactivity, such as IFNA4/16, IFN7/17/21, and IFNL3/2 

(Figure 1 – supplement 1B). When the same IFN ligand was measured by both platforms, we 

preferred the MSD measurements, which are quantified against a standard curve (Figure 1 – 

supplement 1C). This exercise allowed us to focus on measurements for 12 IFN ligands in our 

subsequent analyses: IFNA1, IFNA2, IFNA4/16, IFNA6, IFNA7/17/21, IFNA10, IFNA16, IFNB1, IFNG, 

IFNL1, INFL3/2, and IFNW1 (Figure 1 – supplement 1B-D). We next determined Spearman 

correlations between the RNA-based IFN Alpha transcriptional scores and levels of the 12 IFN ligands 

(Figure 1D). Interestingly, the correlations were highly variable, and four of the ligands did not show 

significant associations with the IFN Alpha transcriptional scores (IFNB1, IFNA16, IFNW1, and IFNA6). 

This result is clearly illustrated by the Type I ligands IFNA2 and IFNA6, which are the most and least 

correlated with IFN Alpha scores, respectively. Although both ligands are significantly upregulated in 

the plasma of COVID19 patients (Figure 1E), only IFNA2 levels correlate with the IFN Alpha scores 

(Figure 1F) and with expression of well recognized ISGs, such as ISG15 and OAS2 (Figure 1F-G). 

These differences could not be simply explained by the degree of induction of the various ligands in 

COVID19 patients, as illustrated by IFNA7/17/21, IFNL3/2, IFNA10 and IFNL1, all of which were not 

statistically higher among COVID19 patients (Figure 1 – supplement 1D) but nonetheless correlated 

significantly with IFN Alpha scores (Figure 1D). Repeating this analysis for IFN Gamma scores 

produced a very similar rank of correlations, which is perhaps not surprising given the high overlap 

between the IFN Alpha and Gamma Response Hallmark GSEA gene sets (18) (Figure 1 – 

supplement 1A, see Methods). 

To explore this phenomenon more deeply, we completed a comprehensive analysis of gene expression 

signatures in the whole blood transcriptome associated with varying plasma levels of the 12 IFN 

ligands, using only data from COVID19 patients. Toward this end, we defined Spearman correlations 

between each ligand and mRNAs for 15,000+ genes detected by RNAseq, which identified thousands 
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of significant positive and negative correlations, with great variability across ligands (Figure 1 – 

supplement 2A, Supplementary file 4). We then analyzed the ranked correlations for each IFN ligand 

using GSEA to identify known gene sets with significant enrichment among positive or negative 

correlations with the levels of each ligand (Figure 1H, Supplementary file 5). This analysis showed 

that the top gene signatures positively associated with 8 of the IFN ligands are indeed the IFN Alpha 

and Gamma Responses, followed by related inflammatory and immune pathways (e.g. TNFA signaling, 

Inflammatory response, IL6/JAK/STAT3 signaling). In contrast, for the other 4 ligands (IFNB1, IFNA6, 

IFNW1, and IFNA16), the top signatures enriched in the positive correlations are related to cell 

proliferation, such as G2M checkpoint, E2F targets, and MYC targets (Figure 1H). In fact, some of 

these ligands show negative correlations with the IFN Alpha and Gamma Responses (Figure 1H). This 

result is once again illustrated by the differential behavior of IFNA2 and IFNA6. Whereas mRNAs 

positively associated with IFNA2 show clear enrichment of the IFN Alpha Response gene set, these 

same mRNAs are negatively correlated with IFNA6 levels (e.g. ISG15, Figure 1 – supplement 2B). 

Altogether, these results suggest functional specialization among circulating IFN ligands, whereby only 

a fraction of ligands associates with the recognizable IFN transcriptional response in circulating immune 

cells. 
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Figure 1. IFN signaling at the whole-blood transcriptome level correlates with a subset of IFN 
ligands. (A) Volcano plot for DESeq2 differential expression analysis of gene-level count data for 
COVID19-positive vs. -negative samples, adjusted for age and sex. Horizontal dashed line indicates an 
FDR threshold of 10% for negative binomial Wald test; numbers above plot indicate significant genes at 
this threshold. Interferon stimulated genes (ISGs) are highlighted in green. (B) Bar plot of top 10 
Hallmark gene sets as ranked by absolute normalized enrichment score (NES) from Gene Set 
Enrichment Analysis (GSEA). Bar color represents NES; Bar length represents -log10(FDR q-value). (C) 
RNA-based IFN Alpha scores, separated by COVID19 status. Scores were calculated for each 
research participant by summing Z-scores for 51 differentially expressed genes from the Interferon 
Alpha Response Hallmark gene set from MSigDB. Z-scores were calculated from the adjusted 
concentration values for each gene in each sample, based on the mean and standard deviation of 
COVID19-negative samples. Data are presented as a modified sina plot with box indicating median and 
interquartile range. (D) Ranked heatmap representing correlations between RNA-based IFN Alpha 
scores and plasma levels of each IFN ligand. Values displayed are Spearman correlation coefficients 
(Rho); asterisks indicate significant correlations (10% FDR). (E) Sina plots comparing abundance for 
the indicated IFNs in COVID19-negative (-) vs. -positive (+) plasma samples. Data are presented as 
modified sina plots with boxes indicating median and interquartile range. Numbers above brackets are 
q-values for Mann–Whitney tests. (F) Scatter plots showing the relationship between RNA-based IFN 
Alpha score and plasma abundance of the indicated IFNs in COVID19-positive patients. Points are 
colored by density; blue lines represent linear model fit with 95% confidence intervals in grey. (G) 
Scatter plots showing the relationship between ISG mRNA levels and plasma abundance of the 
indicated IFNs in COVID19-positive patients. Points are colored by density; blue lines represent linear 
model fit with 95% confidence intervals in grey. (H) Heatmap representing enrichment of Hallmark gene 
sets among Spearman correlations between mRNA levels and plasma levels of each IFN ligand. 
Values displayed are NES from GSEA; asterisks indicate significant enrichment (10% FDR); columns 
and rows are grouped by hierarchical clustering. See also Figure 1 – supplement 1 and Figure 1 – 
supplement 2.  
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Figure 1 – supplement 1. Whole-blood RNA-based IFN Gamma scores and validation of plasma 
IFN ligand measurements. (A) Sina plot of RNA-based IFN Gamma scores, separated by COVID19 
status and ranked heatmap representing correlations between RNA-based IFN Gamma scores and 
plasma levels of each IFN ligand. IFN Gamma scores were calculated for each research participant by 
summing Z-scores for 84 differentially expressed genes from the IFN Gamma response Hallmark gene 
set from MSigDB. Z-scores were calculated from the adjusted concentration values for each gene in 
each sample, based on the mean and standard deviation of COVID19-negative samples. Data are 
presented as a modified sina plot with box indicating median and interquartile range. Heatmap values 
displayed are Spearman correlation coefficients (Rho); asterisks indicate significant correlations (10% 
FDR). (B) Validation of IFN ligand detection by SOMAscan® assay. Each plot represents relative 
abundance above background measured by IFN-targeting SOMAscan® aptamers (indicated by color) 
for each recombinant IFN ligand spike-in (indicated by plot labels). (C) Validation of IFN ligand 
detection by MSD immunoassay. Plots show the relationship between measured concentration and 
spike-in concentration for each recombinant IFN ligand (indicated by point and line color) for each 
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assay (indicated by plot labels). Horizontal dashed lines indicate measured concentrations for the 
pooled plasma sample with no spike-in; red lines indicate manufacturer-stated detection limits. (D) Sina 
plots comparing abundance for the indicated IFNs in COVID19-negative (-) vs. -positive (+) plasma 
samples. Data are presented as modified sina plots with boxes indicating median and interquartile 
range. Numbers above brackets are q-values for Mann–Whitney tests. 
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Figure 1 – supplement 2. Correlation analysis and GSEA for IFN ligands vs. whole blood 
transcriptome. (A) Volcano plots for Spearman correlation analysis of IFN ligands vs. gene-level 
RPKM values. Horizontal dashed line indicates an FDR threshold of 10% (q < 0.1); red points and 
numbers above plots indicate significant genes at this threshold. (B) Gene set enrichment analysis 
(GSEA) plots for the IFN Alpha Response Hallmark gene set from MSigDB. Green lines indicate 
cumulative enrichment score; black bars indicate gene set hits among all genes ranked by log2(fold 
change) for COVID19-positive vs. -negative samples. 
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IFN ligands show differential proteomic signatures associated to COVID19 pathophysiology. 

Next, we investigated the proteomic signatures associated with each ligand. Using a linear model 

adjusting for age and sex, we identified 963 epitopes measured by the SOMAscan® platform 

differentially abundant in the plasma of COVID19 patients (Figure 2A, Supplementary file 6). GSEA 

identified Hallmark IFN Alpha and Gamma Responses as the top proteomic signatures induced in 

COVID19 (Figure 2B, Supplementary file 7). As for the transcriptome, we created protein-based IFN 

alpha and gamma scores for each participant, which showed significantly higher yet highly variables 

IFN scores among COVID19 patients (Figure 2C, Figure 2 – supplement 1A). Notably, plasma 

protein-based IFN scores may inform about the organismal IFN response, not just that of circulating 

immune cells driving the whole blood transcriptome IFN signature, as multiple organs and tissues could 

contribute to secretion of IFN-related proteins. We then defined correlations between the 12 ligands 

and the protein-based IFN scores, which revealed some similarities and differences relative to the 

RNA-based IFN scores (Figure 2D). Whereas IFNA2 and IFNG remained as the ligands most 

correlated with the protein-based IFN Alpha and Gamma scores, other ligands behaved differently 

(Figure 2D, Figure 2 – supplement 1A). For example, IFNA10, which was significantly correlated with 

the RNA-based IFN Alpha and Gamma scores, was not so with the protein-based IFN Alpha and 

Gamma scores. In contrast, IFNA6 and IFNB1 ranked higher in their association with the protein-based 

scores (Figure 1D, Figure 2D, Figure 2 – supplement 1A). As for the transcriptome analysis, we then 

defined Spearman correlations between each of the 12 ligands and 4800+ epitopes measured by 

SOMAscan® proteomics and analyzed the correlation results with GSEA (Figure 2 – supplement 1B, 

Figure 2E, Supplementary file 8, Supplementary file 9). Interestingly, some IFN ligands with weak 

transcriptome signatures nonetheless present strong proteomic signatures. For example, IFNA6 and 

IFNB1, which show very weak correlations with mRNAs (Figure 1 – supplement 2A), are among the 

ligands with the most numerous significant associations with circulating proteins (Figure 2 – 

supplement 1B). In fact, unsupervised hierarchical clustering of the proteomic GSEA signatures 

placed IFNA6 and IFNB1 together with IFNA2 and IFNG (Figure 2E). This suggest that whereas IFNA6 

and IFNB1 may not contribute to the IFN transcriptional response of circulating immune cells, they may 
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nonetheless contribute to IFN responses in peripheral tissues and organs contributing to the protein-

based plasma IFN signature. This is illustrated by the behavior of CXCL11 (IFN-inducible protein 9), a 

canonical ISG, which is significantly correlated at the protein level with IFNA2, IFNA6 and IFNB1 

(Figure 2 – supplement 2A). Additionally, IFN ligands often display highly dissimilar, even opposite, 

relationships to certain proteomics signatures. This is clearly illustrated by the PI3K/AKT/mTOR 

signature, which was positively correlated with some ligands and negatively correlated with others 

(Figure 2E, compare correlations to HRAS for IFNA1, IFNA6 and IFNB1 in Figure 2 – supplement 

2B). 

To probe further into this phenomenon, we examined the top 5 positively and negatively correlated 

epitopes for each ligand using unsupervised clustering analysis, which revealed many specialized 

relationships with potential relevance to COVID19 pathophysiology (Figure 2 – supplement 2C). For 

example, several chemokines involved in immune control showed differential associations, such as 

CXCL10 (IP10, compare IFNG to IFNW1 in Figure 2F); CX3CL1 (fractalkine, compare IFNA10 to 

IFNA6 in Figure 2G); CCL7 (MCP3, compare IFNA2 to IFNA16 in Figure 2 – supplement 2D); and 

CCL5 (RANTES, compare IFNB1 to IFNA10 in Figure 2 – supplement 2E). Notably, the top positive 

correlations for IFNB1 are dominated by proteins stored in alpha granules of platelets, such as PPBP 

(multiple SOMAscan® aptamers), PDGFA, PDGFD, and PF4 (Figure 2 – supplement 2C, 

Supplementary file 8). These markers of platelet degranulation are also associated, albeit to a lesser 

degree, with IFNA6, but not so with other ligands (Figure 2 – supplement 2C, compare IFNB1 to 

IFNA10 in Figure 2H). This suggests that IFNB1 production is associated with platelet activation, which 

could be interpreted as a sign of endothelial damage at sites producing IFNB1. A subset of IFN ligands 

showed strong associations with components of the complement cascade, such as C1QC (Figure 2 – 

supplement 2C, compare IFNA2 to IFNB1 in Figure 2I). The top correlated epitope for IFNA10 is TRIL 

(TRL4 interactor with leucine-rich repeats), a component of the TLR4 complex, but this association was 

not clear for many other IFN ligands (Figure 2 – supplement 2C, compare IFNA10 to IFNA6 in Figure 

2 – supplement 2F). KIR3DL2 and KIR3DS1, two killer cell immunoglobulin-like receptors (KIRs) 

expressed by Natural Killer (NK) cells and subtypes of T cells were strongly correlated with a subset of 
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ligands, most prominently IFNA6, but not others (Figure 2 – supplement 2C, compare IFNA6 to 

IFNA10 in Figure 2 – supplement 2G). OLFM4 (Olfactomedin 4), a protein selectively expressed in 

inflamed colonic epithelium (19), was strongly associated with IFNA4/16, but not other ligands (Figure 

2 – supplement 2C, compare IFNA4/16 versus IFNA10 in Figure 2 – supplement 2H). 

Altogether, these results reveal that circulating levels of different IFN ligands associate with proteomics 

signatures indicative of multiple pathophysiological processes, such as tissue-specific inflammation, 

complement activation, and endothelial damage. 
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Figure 2. IFN signaling at the proteome level correlates with features of COVID19 
pathophysiology. (A) Volcano plot for linear regression analysis of Somascan plasma protein 
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abundance data for COVID19-positive vs. -negative samples, adjusted for age and sex. Horizontal 
dashed line indicates an FDR threshold of 10% (q < 0.1); numbers above plot indicate significant genes 
at this threshold. Proteins encoded by Interferon Stimulated Genes (ISGs) are highlighted in green. (B) 
Barplot of top 10 Hallmark gene sets as ranked by absolute normalized enrichment score (NES) from 
Gene Set Enrichment Analysis (GSEA). Bar color represents NES; Bar length represents -log10(FDR q-
value). (C) Protein-based IFN Alpha scores, separated by COVID19 status. Scores were calculated for 
each research participant by summing Z-scores for 14 differentially abundant proteins from the 
Interferon Alpha Response Hallmark gene set from MSigDB. Z-scores were calculated from the 
adjusted concentration values for each gene in each sample, based on the mean and standard 
deviation of COVID19-negative samples. Data are presented as a modified sina plot with box indicating 
median and interquartile range. (D) Ranked heatmap representing correlations between protein-based 
IFN Alpha scores and plasma levels of each IFN ligand. Values displayed are Spearman correlation 
coefficients (Rho); asterisks indicate significant correlations (10% FDR). (E) Heatmap representing 
enrichment of Hallmark gene sets among Spearman correlations between plasma levels of proteins 
measured by SOMAscan and each IFN ligand. Only proteins with at least one significant correlation are 
shown. Values displayed are NES from GSEA; asterisks indicate significant enrichment (10% FDR); 
columns and rows are grouped by hierarchical clustering. (F-I) Scatter plots comparing relationships 
between plasma proteins and the indicated IFNs in COVID19-positive patients. Points are colored by 
density; blue lines represent linear model fit with 95% confidence intervals in grey. See also Figure 2 – 
supplement 1 and Figure 2 – supplement 2.  
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Figure 2 – supplement 1. Plasma protein-based IFN Gamma scores and correlation analysis for 
IFN ligands vs. SOMAscan® proteomics. (A) Sina plot of protein-based IFN Gamma scores, 
separated by COVID19 status and ranked heatmap representing correlations between protein-based 
IFN Gamma scores and plasma levels of each IFN ligand. IFN gamma scores were calculated for each 
research participant by summing Z-scores for 23 differentially abundant proteins from the IFN Gamma 
Response Hallmark gene set from MSigDB. Z-scores were calculated from the adjusted concentration 
values for each gene in each sample, based on the mean and standard deviation of COVID19-negative 
samples. Data are presented as a modified sina plot with box indicating median and interquartile range. 
Heatmap values displayed are Spearman correlation coefficients (Rho); asterisks indicate significant 
correlations (10% FDR). (B) Volcano plots for Spearman correlation analysis of IFN ligands vs. 
Somascan protein abundance values. Horizontal dashed line indicates an FDR threshold of 10% (q < 
0.1); red points and numbers above plots indicate significant proteins at this threshold.  
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Figure 2 – supplement 2. Relationships between IFN ligands and SOMAscan® plasma 
proteomics. (A-B and D-H) Scatter plots comparing relationships between plasma proteins and the 
indicated IFNs in COVID19-positive patients. Points are colored by density; blue lines represent linear 
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model fit with 95% confidence intervals in grey. (C) Heatmap representing correlations between plasma 
levels of proteins measured by SOMAscan® and each IFN ligand. Values displayed are Spearman 
correlation scores (Rho) for proteins ranked in top 5 positive or top 5 negative correlations for at least 
one IFN; asterisks indicate significant correlations (10% FDR); columns and rows are grouped by 
hierarchical clustering.  
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Differential relationship between IFN ligands and seroconversion status. 

Next, we analyzed correlations between the 12 IFN ligands and the MS plasma proteomics dataset. 

The MS proteomics platform is highly complementary to the SOMAscan® dataset, as it detects many 

abundant proteins for which SOMAmer® reagents are not available, such as various immunoglobulins 

(Igs). Using a linear model adjusting for age and sex, we identified 70 proteins differentially abundant in 

the plasma of COVID19 patients (Figure 3 – supplement 1A, Supplementary file 10). Of the 28 

significantly elevated proteins, 17 of them are Igs (labeled green in Figure 3 – supplement 1A), 

potentially indicative of production of anti-SARS-CoV-2 antibodies in COVID19 patients. We then 

defined Spearman correlations between IFN ligands and all proteins detected by MS (Figure 3 – 

supplement 1B, Supplementary file 11) and visualized the top 5 positively and negatively correlated 

proteins for each ligand via unsupervised hierarchical clustering (Figure 3 – supplement 2A). This 

analysis confirmed some observations made with the SOMAscan® dataset, but also revealed several 

new associations. First, a subset of ligands associates strongly with recognizable IFN-inducible proteins 

such as B2M (beta-2-microglobulin, compare IFNA7/17/21 to IFNA6 in Figure 3A), and LGALS3BP 

(galectin 3 binding protein, compare IFNA4/16 to IFNA6 in Figure 3 – supplement 2B). Second, many 

of the same ligands associate with elevated levels of complement subunits such as C2 (compare IFNL1 

to IFNA6 in Figure 3B) and C9 (compare IFNA2 to IFNA6 in Figure 3 – supplement 2C). Third, 

several key regulators of coagulation and fibrinolysis were significantly associated with specific ligands. 

Salient examples include HABP2 (Hyaluronan Binding Protein 2, compare IFNA2 to IFNB1 in Figure 

3C), FGA (Fibrinogen Alpha Chain, compare IFNL1 to IFNA16 in Figure 3 – supplement 2D), F13B 

(Coagulation Factor XIII B Chain, compare IFNA10 to IFNA6 in Figure S6E), and PROZ (Protein Z, 

compare IFNW1 to IFNB1 in Figure 3 – supplement 2F). Fourth, very distinctly, IFNB1, and to a lesser 

degree IFNA6, associate positively with markers of platelet degranulation such as PF4, THBS1, PPBP, 

MMRN1, and SPARC (Figure 3 – supplement 2A, compare IFNB1 to IFNA10 in Figure 3D). Lastly, 

IFN ligands have clearly distinct relationships to a subset of immunoglobulin heavy and light chain 

variable domain peptides, that were either strongly positively or negatively regulated with the levels of 
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specific ligands (compare IFNA2 to IFNA6 in Figure 3E and IFNA1 to IFNB1 in Figure 3F). This result 

could potentially be explained by varying levels of IFN ligands upon seroconversion (16). 

In order to investigate in detail the interplay between specific IFN ligands, immunoglobulin expression, 

and seroconversion, we examined correlations between the ligands and all immunoglobulin variable 

domains detected by MS proteomics, as well as seroconversion assays used to detect IgGs against 

SARS-CoV-2 peptides (S1 full length, spike; S1 N-terminus; and S1 receptor binding domain, RBD; 

nucleocapsid) (Figure 3G). This analysis revealed that a subset of IFN ligands is strongly anticorrelated 

with seroconversion (e.g., compare IFNA2 to IFNB1 in Figure 3H) and specific Ig variable domains that 

have been previously found enriched in the bloodstream of COVID19 patients, such as IGHV1-24 and 

IGLV3-1 (20, 21). This could be interpreted as early production of some ligands which subsequently 

declines with seroconversion (e.g., IFNA2, IFNG), followed by later production of other ligands (e.g 

IFNA6, IFNB1), potentially from sites where SARS-CoV-2 evades humoral neutralization. 

Overall, these results further support the notion of differential action of IFN ligands in COVID19 

pathophysiology, suggesting a temporal sequence of IFN production prior and after seroconversion. 
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Figure 3. Differential association of IFN ligands with seroconversion. (A-F) Scatter plots 
comparing relationships between plasma proteins, as measured by MS proteomics, and the indicated 
IFNs in COVID19-positive patients. Points are colored by density; blue lines represent linear model fit 
with 95% confidence intervals in grey. (G) Heatmap representing correlations between IFN ligands and 
plasma levels of immunoglobulin subunits (top), as measured by MS proteomics, or antibody reactivity 
against SARS-CoV-2 (bottom), as measured by immunoassays. Only immunoglobulin subunits with at 
least two significant correlations are shown. Values displayed are Spearman correlation scores (Rho); 
asterisks indicate significant correlations (10% FDR); columns and rows are grouped by hierarchical 
clustering. (H) Scatter plots comparing relationships between plasma antibody reactivity against SARS-
CoV-2 S1 RBD region and the indicated IFNs in COVID19-positive patients. Points are colored by 
density; blue lines represent linear model fit with 95% confidence intervals in grey. See also Figure 3 – 
supplement 1 and Figure 3 – supplement 2. 
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Figure 3 – supplement 1. Differential abundance and correlation analysis for MS plasma 
proteomics. (A) Volcano plot for linear regression analysis of MS proteomics plasma protein 
abundance data for COVID19-positive vs. -negative samples, adjusted for age and sex. Horizontal 
dashed line indicates an FDR threshold of 10% (q < 0.1); numbers above plot indicate significant genes 
at this threshold. Immunoglobulin subunits (IGs) are highlighted in green. (B) Volcano plots for 
Spearman correlation analysis of IFN ligands vs. MS proteomics protein relative abundance values. 
Horizontal dashed line indicates an FDR threshold of 10% (q < 0.1); red points and numbers above 
plots indicate significant proteins at this threshold. 
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Figure 3 – supplement 2. Relationships between IFN ligands and MS plasma proteomics. (A) 
Heatmap representing correlations between IFN ligands and plasma protein levels, as measured by MS 
proteomics. Values displayed are Spearman correlation scores (Rho) for proteins ranked in top 5 
positive or top 5 negative correlations for at least one IFN; asterisks indicate significant correlations 
(10% FDR); columns and rows are grouped by hierarchical clustering. (B-F) Scatter plots comparing 
relationships between plasma proteins, as measured by MS proteomics, and the indicated IFNs in 
COVID19-positive patients. Points are colored by density; blue lines represent linear model fit with 95% 
confidence intervals in grey. 
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Differential immune cell signatures associated with fluctuations in IFN ligand levels. 

Next, we investigated the relationship between plasma levels of IFN ligands and circulating immune 

cells analyzed by mass cytometry which measured 38 features per cell event, including surface 

markers, activation molecules, and transcription factors. First, we employed the unsupervised clustering 

algorithm PhenoGraph (22) to identify distinct subpopulations of immune cells in the COVIDome mass 

cytometry dataset, combined with t-stochastic neighbor embedding (t-SNE) dimensionality reduction to 

aid in visualization (23, 24), resulting in identification of ~30 clusters, including subpopulations enriched 

for cell type-specific markers (see Methods, Figure 4 – supplement 1A-B). We then identified clusters 

whose relative frequency among all live cells was significantly associated with varying IFN ligand levels, 

using beta regression modelling with adjustment for age and sex (Figure 4A, Figure 4 – supplement 

1C-D, Supplementary file 12). This analysis revealed that multiple IFN ligands are significantly 

associated with increased abundance of clusters enriched for T cells (Clusters 9, 13, 16, and 27, CD3+) 

and/or NK cells (Cluster 30, 16+ and/or 56+), while also displaying negative associations with clusters 

enriched for B cells (Clusters 7, 15, and 24, CD19+) (Figure 4A, Figure 4 – supplement 1C-D). For 

example, IFNA1 is positively associated with clusters 9 (CD8+ T cells) and 30 (CD56+ NK cells) and 

negatively associated with cluster 15 (Switched memory B cells) (Figure 4 – supplement 1E). 

In order to validate and investigate these observations more deeply in relationship to known immune 

cell sub-populations, we analyzed relations between the IFN ligands and 50+ immune cell types 

defined by traditional gating based on marker expression (Figure 4B, Figure 4 – supplement 2A, 

Supplementary file 13, see Methods). This exercise confirmed clear specialized relationships 

between IFN ligands and specific lymphoid cell subsets. For example, among CD4+ T cells, the T-

helper 1 (Th1) subset displays significant positive associations only with IFNA1, IFNA2, IFNA7/17/21, 

IFNA10, IFNG, and IFNL3/2 (Figure 4B, compare IFNA10 to IFNA16 in Figure 4C). This pattern was 

also apparent for many, but certainly not all, T cell subsets (Figure 4B). Similarly, NK CD56bright cells 

also showed differential positive relationships with IFN ligands, with an overall pattern similar to that of 

key T cell subsets (compare IFNA2 to IFNA16 in Figure 4D). Notably, this analysis also revealed 

significant positive associations between specific ligands and plasmacytoid dendritic cells (pDCs), 
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which are strong producers of IFNs during viral infections (compare IFNA10 to IFNA16 in Figure 4E). 

Many of the IFN ligands positively associated with CD4+ T cell subsets were negatively associated with 

B cell subsets, while IFNA6 displays the opposite relationship (Figure 4B). This is clearly illustrated by 

plasmablasts (compare IFNA10 versus IFNA6 in Figure 4F). These differential associations could be 

interpreted as a transition from innate T cell-driven responses prior to seroconversion, followed by B 

cell activation and differentiation toward antibody-producing plasmablasts during seroconversion, along 

with decreased production of a specific subset of IFN ligands. 

Altogether, these results suggest a temporal sequence of IFN ligand production in coordination with 

changes in the peripheral immune cell compartment, whereby a larger subset of ligands is produced 

early on during the innate immune response, whereas a few others are associated with development of 

the adaptive humoral response. An overview of salient IFN ligand associations along the paths of T cell 

and B cell activation and differentiation is shown in Figure 4 – supplement 2B. 
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Figure 4. Differential association of IFN ligands with immune cell signatures. (A) t-SNE plots of 
69,000 cells analyzed by mass cytometry from 69 COVID19-positive patients (1,000 cells each). All 
cells within each PhenoGraph cluster (as in Figure 4 – supplement 1A) are colored by the fold-change 
in cluster proportion among live cells per standard deviation of abundance for the indicated IFN, as 
determined by beta regression analysis, adjusting for Age and Sex; numbers indicate clusters with 
significant associations with IFN abundance (10% FDR). (B) Heatmap representing relationships 
between IFN ligands and gated subpopulation proportions among live cells, as determined by beta 
regression analysis. Only subpopulations with at least one significant association are shown. Values 
displayed are fold-change in cluster proportion among live cells per standard deviation of IFN 
abundance; asterisks indicate significant associations (10% FDR); columns and rows are grouped by 
hierarchical clustering. (C-F) Scatter plots comparing relationships between gated subpopulation 
proportions among live cells, and the indicated IFNs in COVID19-positive patients. Points are colored 
by density; blue lines represent beta regression model fit with 95% confidence intervals in grey. See 
also Figure 4 – supplement 1 and Figure 4 – supplement 2. 
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Figure 4 – supplement 1. PhenoGraph clustering and beta regression analysis of clustered 
mass cytometry data against IFN ligands. (A) t-SNE plots of 69,000 cells analyzed by mass 
cytometry from 69 COVID19-positive patients (1,000 cells each). Numbers and coloring of cells indicate 
PhenoGraph cluster assignments. (B) t-SNE plots with cells colored by Z-scores for markers of T cells 
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(CD3, CD4, CD8), B cells (CD19), NK cells (CD16), and Monocytes (CD14). (C) Volcano plots for Beta 
regression analysis of IFN ligands vs. cluster proportions among live cells, adjusted for age and sex. X-
axes display log2-transformed fold-change in cluster proportion among live cells per standard deviation 
of IFN abundance; horizontal dashed line indicates an FDR threshold of 10% (q < 0.1); red points and 
numbers above plots indicate significant clusters at this threshold. (D) Heatmap representing 
relationships between IFN ligands and cluster proportions among live cells, as determined by beta 
regression analysis. Values displayed are fold-change in cluster proportion among live cells per 
standard deviation of IFN abundance; asterisks indicate significant associations (10% FDR); columns 
and rows are grouped by hierarchical clustering. (E) Scatter plots comparing relationships between 
cluster proportions among live cells, and the indicated IFNs in COVID19-positive patients. Points are 
colored by density; blue lines represent beta regression model fit with 95% confidence intervals in grey. 
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Figure 4 – supplement 2. Beta regression analysis of gated mass cytometry data against IFN 
ligands. (A) Volcano plots for Beta regression analysis of IFN ligands vs. gated subpopulation 
proportions among live cells, adjusted for age and sex. X-axes display log2-transformed fold-change in 
cluster proportion among live cells per standard deviation of IFN abundance; horizontal dashed line 
indicates an FDR threshold of 10% (q < 0.1); red points and numbers above plots indicate significant 
subpopulations at this threshold. (B) Cell lineage map indicating the relationships between gated cell 
subpopulations included in beta regression analysis. Boxed labels represent subpopulations for which 
relative cell frequencies were obtained. Grey horizontal lines denote subpopulations of cells derived by 
gating; black lines and arrows indicate subpopulations that are also related by cell differentiation; labels 
outside boxes indicate significant positive (red) and negative (blue) relationships with IFN ligands. 
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Metabolic signatures of IFN ligand action. 

Next, we investigated metabolic signatures associated with varying levels of IFN ligands, calculating 

Spearman correlations for detected metabolites in plasma and red blood cell (RBC) samples against 

each of the IFN ligands (Figure 5A-B, Figure 5 – supplement 1A-B, Supplementary files 14-15, see 

Methods). In plasma, significant positive correlations were observed between the tryptophan/indole 

pathway metabolites kynurenine and 5-hydroxyindoleacetate and IFNG, but not other IFNs (compare 

IFNG to IFNA16 in Figure 5C). In RBCs, kynurenine levels (as well as those of indoxyl, another 

tryptophan/indole metabolite) showed a strong positive association with IFNG, as well as IFNA7/17/21 

(compare IFNG to IFNA7/17/21 in Figure 5D). Activation of the kynurenine pathway has been well 

documented in COVID19 (25-29). Kynurenine production can be stimulated by induction of IDO1 

(indoleamine-2,3-dioxygenase 1), an ISG downstream of all three major types of IFN signaling (30). 

Therefore, it is interesting that this pathway is preferentially associated with IFNG in COVID19.  

Plasma levels of IFNA2 showed significant positive correlations with the markers of oxidative stress 

glutathione disulfide and 5-oxoproline, a byproduct of the gamma-glutamyl cycle (Figure 5A, compare 

IFNA2 to IFNW1 in Figure 5 – supplement 1C), and negatively associated with markers of endothelial 

dysfunction and nitric oxide signaling (arginine, citrulline) (Figure 5A, compare IFNA2 to IFNW1 in 

Figure 5 – supplement 1D), as well as metabolites of potential bacterial or iatrogenic origin (mannitol) 

and derived from purine oxidation (hypoxanthine) (Figure 5A). In RBCs, IFNA2 had once again strong 

positive correlations with several markers of oxidative stress (5-oxoproline) or pentose phosphate 

pathway activation (sedoheptulose phosphate) (Figure 5B, compare IFNA2 to IFNB1 in Figure 5E), 

which is required in RBCs to generate reducing equivalent (NADPH) for recycling oxidized glutathione 

and other NADPH-dependent antioxidant enzymes. IFNA2 levels also positively correlated with fatty 

acid mobilization in RBCs– perhaps as a result of the activity of peroxiredoxin 6 (31) or phospholipase 

A2 activity (32, 33) on complex lipids to fuel fatty acid release in the bloodstream to sustain viral capsid 

formation (34). Of note, among the positive correlates to IFNA2 levels in the fatty acid compartment, we 

observed only saturated (octanoic, dodecanoic, hexadecenoic, octadecanoic) or monounsaturated fatty 

acids (tetradecenoic, hexadecenoic, octadecenoic) (compare IFNA2 to IFNB1 in Figure 5F), suggestive 
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of limited fatty acid desaturase activation despite the stress induced by the viral infection (35). Several 

ATP precursors/breakdown products (AMP and adenine) positively correlated with IFNA2 in RBCs, as 

did pyruvate, phosphate and diphosphate – suggestive of altered glycolysis and overall energetics as a 

function of IFNA2 signaling. IFNA2 also negatively correlated with several amino acids in RBCs, 

including the antioxidants taurine, arginine, threonine and methionine – critical for RBC redox damage 

repair in the face of the incapacity to synthesize new proteins (36). 

Plasma IFNL1 significantly correlated with several glycolytic metabolites (e.g. pyruvate, compare IFNL1 

to IFNA1 in Figure 5G), as well as short chain fatty acids hexanoate and heptanoate, potentially 

indicative of dysregulation of mitochondrial metabolism in patients with high IFNL1. In RBCs, IFNL1 

levels showed positive correlations with the levels of IDP (compare IFNL1 to IFNA6 in Figure 5 – 

supplement 1E) and negative correlations with carnitine and acetyl-carnitine, potentially suggestive of 

RBC deformability issues (37, 38) as a function of IFNL1 signaling. 

Plasma IFNA7 and IFNA10 (and to a lesser extent – IFNA1 and IFNA2) were positively associated with 

a cluster of acyl-carnitines (including octenoyl, dodecanoyl, dodecenoyl, hexadecenoyl-carnitine, 

compare IFNA10 to IFNA6 in Figure 5H), suggesting an association between these IFN ligands and 

altered fatty acid oxidation. These data are relevant in light of the role of acyl-carnitines in coagulation 

(39) and the common thromboembolic complications and dysregulation of coagulation cascades in 

COVID19 patients associated with inflammatory markers such as IL-6 (40). 

Plasma levels of IFNB1 showed strong negative correlation with metabolites tied to the nitric oxide 

pathway (citrulline), as well as other amine group donors (glutamine, serine) or oxidant stress-related 

metabolites (carnosine, cystine). On the other hand, IFNB1 positively correlated with the plasma levels 

of glutathione and spermidine (antioxidant metabolites), succinate (marker of mitochondrial 

dysfunction), and purinergic agonists involved in vasodilatory/hypoxic responses (ADP and AMP), 

perhaps produced by hemolytic events (compare IFNB1 to IFNA10 in Figure 5I and Figure 5 – 

supplement 1F-G).  
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Altogether, these results not only confirm metabolic signatures previously associated with IFN signaling 

(e.g. activation of the kynurenine pathway), but also reveal unexpected associations between specific 

IFN ligands and diverse metabolic processes with ties to COVID19 pathophysiology. 
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Figure 5. Differential metabolite signatures associated with IFN ligands. (A-B) Heatmap 
representing correlations between IFN ligands and plasma (A) or red blood cell (RBC, B) metabolite 
levels. Only metabolites with at least one significant correlation are shown. Values displayed are 
Spearman correlation scores (Rho); asterisks indicate significant correlations (10% FDR); columns and 
rows are grouped by hierarchical clustering. (C-I) Scatter plots comparing relationships between select 
metabolites and the indicated IFNs in COVID19-positive patients. Points are colored by density; blue 
lines represent linear model fit with 95% confidence intervals in grey. See also Figure 5 – supplement 
1. 
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Figure 5 – supplement 1. Correlation analysis of plasma and RBC metabolites vs. IFN ligands. 
(A-B) Volcano plots for Spearman correlation analysis of IFN ligands vs. plasma (A) or RBC (B) 
metabolite relative abundance values. Horizontal dashed line indicates an FDR threshold of 10% (q < 
0.1); red points and numbers above plots indicate significant metabolites at this threshold. (C-G) 
Scatter plots comparing relationships between select metabolites and the indicated IFNs in COVID19-
positive patients. Points are colored by density; blue lines represent linear model fit with 95% 
confidence intervals in grey. 
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DISCUSSION  

IFN signaling is a critical component of the innate immune response and a main driver of the antiviral 

defense. In the context of viral infections, deficiencies in IFN signaling cause profound susceptibility in 

humans, as demonstrated by various inborn errors of immunity affecting IFN signaling (41). Despite 

these clear protective effects, dysregulation of IFN signaling can also contribute to diverse pathologies, 

as exemplified by Type I Interferonopathies, a group of genetic disorders characterized by chronic 

overproduction of IFN ligands and severe developmental and clinical phenotypes (42). Furthermore, 

triplication of the four IFN receptors encoded on chromosome 21 (IFNAR1, IFNAR2, IFNGR2, IL10RB) 

and consequent IFN hyperactivity in individuals with trisomy 21 are thought to contribute to the 

developmental and clinical hallmarks of Down syndrome, including their high risk of developing severe 

COVID19 (43-49).  In the context of COVID19, the role of IFN signaling has been the subject of much 

study and debate, with both protective and deleterious effects being documented in different 

experimental systems and clinical settings (2-4, 10, 14, 15). Within this framework, we provide here a 

comprehensive analysis of multi-omics signatures associated with production of multiple IFN ligands in 

hospitalized COVID19 patients, revealing a high degree of diversity and specialization, even among 

ligands in the same subfamily. 

During vertebrate evolution, the IFN ligand gene family has undergone significant expansion through 

both tandem gene duplication and retrotransposition events, most likely to accommodate increased 

regulatory diversity and functional specialization (50). Although modest, our current understanding of 

IFN ligand specialization is increasing. Functional specialization between major Type I, II and III ligands 

has been revealed by analysis of genetic mutations affecting specific receptors or downstream kinases 

and transcription factors in both humans and mice (41, 51). For example, it is accepted that deficiencies 

in IFNG signaling are associated with mycobacterial disease, whereas deficiencies in Type I/III 

signaling confer susceptibility to viral infections (41). IFN ligand specialization is also evident in the 

clinical use of recombinant ligands, with IFNB1 being the most effective therapeutic agent for the 

treatment of multiple sclerosis, whereas IFNA2 preparations are preferred for the treatment of chronic 

viral infections and some malignancies (52). Despite these advances, little is known about the 
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mechanisms behind these differential effects. In this context, our work provides a valuable resource for 

future mechanistic research. Although our multi-omics analysis is descriptive in nature and based 

largely on statistically significant associations that should not be interpreted as cause-effect 

relationships, its value is confirmed by the many associations observed for which mechanisms have 

already been established. For example, our unbiased analysis of the transcriptome correlations 

confirmed that 8 of the 12 ligands tested are indeed significantly and positively associated with a 

transcriptional program highly enriched for ISGs. Likewise, the association between IFNG and 

metabolites in the kynurenine pathway can be explained by induction of IDO1, a known ISG, during the 

inflammatory response elicited by SARS-CoV-2 (25-29). Therefore, using these confirmatory 

observations as reference points, we propose that the datasets described here will help the field 

elucidate many novel cause-effect relationships explaining IFN ligand specialization. 

The specialized biosignatures of IFN ligand action described here could be due to several non-mutually 

exclusive mechanisms, such as action through different receptors, differences in affinity or allosteric 

regulation for the same receptors, as well as differences in the location and timing of ligand production. 

One limitation of our study is that all measurements were performed from peripheral blood, which can 

only inform about a subset of the pathophysiological processes modulated by the various ligands. Our 

study would be highly complemented by studies of IFN ligands in various tissues (e.g. (53)). It is also 

possible that the specialized biosignatures observed are driven in part by SARS-CoV-2 itself. Like other 

members of the coronavirus family, SARS-CoV-2 has evolved diverse strategies to evade the antiviral 

effects of IFN signaling, and it is possible that these escape mechanisms do not affect all IFN ligands 

equally (54). Despite these limitations, key observations produced by our study include the differential 

relationship between IFN ligands and the antiviral transcriptional program in circulating immune cells, 

the specialized relationship between seroconversion, immune cell type abundance and IFN ligand 

levels, and the distinct metabolic signatures associated with the ligands. Throughout the study, the 

contrast between IFNA2 and IFNA6 exemplifies these points. Both IFNA2 and IFNA6 are specifically 

recognized by the reagents employed and significantly upregulated in the COVID19 positive cohort. 

However, whereas IFNA2 is strongly associated with the IFN transcriptional program in immune cells, 
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IFNA6 is not. IFNA2 proteomic signatures are enriched for cytokines and chemokines previously linked 

to IFN signaling, whereas IFNA6 proteomic signatures, similarly to those of IFNB1, are enriched for 

markers of platelet degranulation. IFNA2 levels decrease with seroconversion, IFNA6 levels do not. 

Accordingly, IFNA2 abundance associates with increased frequency of various T cell subsets involved 

in the early antiviral response, while IFNA6 levels correlate with signs of B cell maturation and 

differentiation. Whereas IFNA2 has the highest number of significant associations in the RBC 

metabolome of any ligand tested, IFNA6 has none. Therefore, a detailed comparative study of these 

two IFNA ligands is warranted, including studies in human cell preparations and animal models. 

In sum, our analyses and datasets provide a rich resource to advance understanding of the IFN ligand 

family in humans. In order to accelerate the use of these datasets at a global scale, they are made 

readily available through the COVIDome Explorer Researcher Portal (covidome.org) (17), where users 

can rapidly recreate the cross-omics correlations described here, investigate any other cross-omics 

correlations of choice, and download all data for further analysis. 
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METHODS 

Study design, participant recruitment, and clinical data capture. Research participants were 

recruited and consented for participation in the COVID Biobank of the University of Colorado Anschutz 

Medical Campus [Colorado Multiple Institutional Review Board (COMIRB) Protocol # 20-0685]. Data 

was generated from deidentified biospecimens and linked to demographics and clinical metadata 

procured through the Health Data Compass of the University of Colorado under COMIRB Protocol # 

20-1700. Participants were hospitalized either at Children’s Hospital Colorado or the University of 

Colorado Hospital. COVID status was defined by a positive PCR result and/or antibody test within 14 

days of the research blood draw. The control cohort consisted of COVID19-negative research 

participants receiving medical care for a range of conditions, none of them in critical condition at the 

time of the research blood draw. Cohort characteristics can be found in Supplementary file 1.  

 

Blood processing. Blood samples were collected into EDTA tubes, sodium heparin tubes, and 

PAXgene Blood RNA Tubes (PreAnalytiX/Qiagen). After centrifugation, EDTA plasma was used for MS 

proteomics, SOMAscan® proteomics, as well as multiplex immunoassays using MSD technology for 

both cytokine profiles and seroconversion assays. From sodium heparin tubes, PBMCs were obtained 

by the Ficoll gradient method before cryopreservation and assembly of batches for MC analysis (see 

below). 

 

Whole-blood RNA library preparation and sequencing. RNA was purified from PAXgene Blood RNA 

Tubes (PreAnalytiX/Qiagen) using a PAXgene Blood RNA Kit (Qiagen), according to the manufacturer’s 

instructions. RNA quality was assessed using an Agilent 2200 TapeStation and quantified by Qubit (Life 

Technologies). Globin RNA depletion, poly-A(+) RNA enrichment, and strand-specific library preparation 

were carried out using a Universal Plus mRNA-Seq with NuQuant, Human Globin AnyDeplete (Tecan). 

Paired-end 150 bp sequencing was carried out on an Illumina NovaSeq 6000 instrument by the Genomics 

Shared Resource at the University of Colorado Anschutz Medical Campus.  
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Plasma proteomics by SOMAscan® assays. 125 μL EDTA plasma was analyzed by SOMAscan® 

assays using previously established protocols (55). Briefly, each of the 4000+ SOMAmer reagents 

binds a target peptide and is quantified on a custom Agilent hybridization chip. Normalization and 

calibration were performed according to SOMAscan® Data Standardization and File Specification 

Technical Note (SSM-020) (55). The output of the SOMAscan® assay is reported in relative fluorescent 

units (RFU). Validation of IFN detection was carried out by spiking recombinant human IFN ligands into 

separate aliquots of a pooled plasma reference sample (10 pg/µL). Data were processed as above and 

then to account for background signal in the reference sample, the median relative abundance 

measured by each SOMAscan® aptamer reagent across all samples was subtracted from the 

corresponding values for each spike-in sample. Recombinant human IFN ligands were obtained from 

PBL Assay Science (Piscataway, NJ 08854 USA), with the following catalog numbers: 11002-1 (Human 

Interferon Alpha Sampler Set: IFNA1, IFNA2, IFNA4, IFNA5, IFNA6, IFNA7, IFNA8, IFNA10, IFNA14, 

IFNA16, IFNA17, IFNA21); 11725-1 (IFNL1); 11720-1 (IFNL2); 11730-1 (IFNL3); 11500-1 (IFNG); 

11420-1 (IFNB1). 

 

Cytokine profiling and seroconversion by multiplex immunoassay. Multiplex immunoassays MSD 

assays were performed on EDTA plasma aliquots following manufacturer’s instructions (Meso Scale 

Discovery, MSD). Absolute values were obtained by extrapolation against a standard curve using 

provided calibrators. Validation of IFN detection was carried out by spiking a range of concentrations of 

recombinant IFN ligands into separate aliquots of a pooled plasma reference sample followed by 

measurement as above. Recombinant human IFN ligands were obtained from PBL Assay Science 

(Piscataway, NJ 08854 USA), as described above. Seroconversion assays against SARS-CoV-2 

proteins were performed in a multiplex immunoassay using the IgG detection readout according to 

manufacturer’s instructions (MSD). Relative values were obtained by extrapolation against a 

standardized curve consisting of pooled COVID19-positive reference plasma (56). 
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Plasma proteomics by mass spectrometry. Plasma samples were digested in S-Trap filters (Protifi, 

Huntington, NY) according to the manufacturer’s procedure. Briefly, a dried protein pellet prepared from 

organic extraction of patient plasma was solubilized in 400 µl of 5% (w/v) SDS. Samples were reduced 

with 10 mM DTT at 55°C for 30 min, cooled to room temperature, and then alkylated with 25 mM 

iodoacetamide in the dark for 30 min. Next, a final concentration of 1.2% phosphoric acid and then six 

volumes of binding buffer [90% methanol; 100 mM triethylammonium bicarbonate (TEAB); pH 7.1] were 

added to each sample. After gentle mixing, the protein solution was loaded into an S-Trap filter, spun at 

2000 rpm for 1 min, and the flow-through collected and reloaded onto the filter. This step was repeated 

three times, and then the filter was washed with 200 μL of binding buffer 3 times. Finally, 1 μg of 

sequencing-grade trypsin (Promega) and 150 μL of digestion buffer (50 mM TEAB) were added onto 

the filter and digestion carried out at 47 °C for 1 h. To elute peptides, three stepwise buffers were 

applied, 200 μL of each with one more repeat, including 50 mM TEAB, 0.2% formic acid in H2O, and 

50% acetonitrile and 0.2% formic acid in H2O. The peptide solutions were pooled, lyophilized and 

resuspended in 1 mL of 0.1 % FA. 20 µl of each sample was loaded onto individual Evotips for 

desalting and then washed with 20 μL 0.1% FA followed by the addition of 100 μL storage solvent 

(0.1% FA) to keep the Evotips wet until analysis. The Evosep One system (Evosep, Odense, Denmark) 

was used to separate peptides on a Pepsep column, (150 µm internal diameter, 15 cm) packed with 

ReproSil C18 1.9 µm, 120A resin.  The system was coupled to a timsTOF Pro mass spectrometer 

(Bruker Daltonics, Bremen, Germany) via a nano-electrospray ion source (Captive Spray, Bruker 

Daltonics). The mass spectrometer was operated in PASEF mode. The ramp time was set to 100 ms 

and 10 PASEF MS/MS scans per topN acquisition cycle were acquired. MS and MS/MS spectra were 

recorded from m/z 100 to 1700. The ion mobility was scanned from 0.7 to 1.50 Vs/cm2. Precursors for 

data-dependent acquisition were isolated within ± 1 Th and fragmented with an ion mobility-dependent 

collision energy, which was linearly increased from 20 to 59 eV in positive mode. Low-abundance 

precursor ions with an intensity above a threshold of 500 counts but below a target value of 20000 

counts were repeatedly scheduled and otherwise dynamically excluded for 0.4 min. Raw data file 

conversion to peak lists in the MGF format, downstream identification, validation, filtering and 
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quantification were managed using FragPipe version 13.0. MSFragger version 3.0 was used for 

database searches against a Human isoform-containing UniProt fasta file (version 08/11/2020) with 

decoys and common contaminants added. The identification settings were as follows: Trypsin, Specific, 

with a maximum of 2 missed cleavages, up to 2 isotope errors in precursor selection allowed for, 10.0 

ppm as MS1 and 20.0 ppm as MS2 tolerances; fixed modifications: Carbamidomethylation of C 

(+57.021464 Da), variable modifications: Oxidation of M (+15.994915 Da), Acetylation of protein N-term 

(+42.010565 Da), Pyrolidone from peptide N-term Q or C (-17.026549 Da). The Philosopher toolkit 

version 3.2.9 (build 1593192429) was used for filtering of results at the peptide and protein level at 0.01 

FDR. Label-free quantification was performed by AUC integration with matching between all runs using 

IonQuant.  

 

Mass cytometry analysis of immune cell types. Cryopreserved PBMCs were thawed, washed twice 

with Cell Staining Buffer (CSB) (Fluidigm), and counted with an automated cell counter (Countess II - 

Thermo Fisher Scientific). Extracellular staining on live cells was done in CSB for 30 min at room 

temperature, in 3-5^106 cells per sample. Cells were washed with 1X PBS (Fluidigm) and stained with 1 

mL of 0.25 mM cisplatin (Fluidigm) for 1 min at room temperature for exclusion of dead cells. Samples 

were then washed with CSB and incubated with 1.6% PFA (Electron Microscopy Sciences) during 10 

min at room temperature. Samples were washed with CBS and barcoded using a Cell-IDTM 20- Plex 

Pd Barcoding Kit (Fluidigm) of lanthanide-tagged cell reactive metal chelators that will covalently label 

samples with a unique combination of palladium isotopes, then combined. Surface staining with 

antibodies that work on fixed epitopes was performed in CSB for 30 min at room temperature (see 

Supplementary file 16 for antibody information). Cells were washed twice with CSB and fixed in 

Fix/Perm buffer (eBioscience) for 30 min, washed in permeabilization buffer (eBioscience) twice, then 

intracellular factors were stained in permeabilization buffer for 45 min at 4°C. Cells were washed twice 

with Fix/Perm Buffer and were labeled overnight at 4°C with Cell-ID Intercalator-Ir (Fluidigm) for DNA 

staining. Cells were then analyzed on a Helios instrument (Fluidigm). To make all samples comparable, 

pre-processing of mass cytometry data included normalization within and between batches via 
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polystyrene beads embedded with lanthanides as previously described (57). Files were debarcoded 

using the Matlab DebarcoderTool (58). Then normalization again between batches relative to a 

reference batch based on technical replicates (59). 

 

Mass spectrometry-based metabolomics of plasma and red blood cells.  

Sample extraction. Samples were thawed on ice and extracted via a modified Folch method 

(chloroform/methanol/water 8:4:3), which completely inactivates other coronaviruses, such as MERS-

CoV. Briefly, 20 μL of sample was diluted in 130 μL of LC-MS grade water, 600 μL of ice-cold 

chloroform/methanol (2:1) was added, and the samples were vortexed for 10 seconds. Samples were 

then incubated at 4°C for 5 minutes, quickly vortexed (5 seconds), and centrifuged at 14,000 g for 10 

minutes at 4°C. The top (i.e., aqueous) phase was transferred to a new tube for metabolomics analysis 

and flash frozen. The bottom (i.e., organic) phase was transferred to a new tube for lipidomics analysis, 

then dried under N2 flow. 

UHPLC-MS metabolomics. Analyses were performed using a Vanquish UHPLC coupled online to a Q 

Exactive high resolution mass spectrometer (Thermo Fisher Scientific, Bremen, Germany). Samples 

(10 uL per injection) were randomized and analyzed in positive and negative electrospray ionization 

modes (separate runs) using a 5-minute C18 gradient on a Kinetex C18 column (Phenomenex) as 

described (60). Data were analyzed using Maven (Princeton University, Princeton, NJ, USA) in 

conjunction with the KEGG database and an in-house standard library. 

 

Biostatistics and bioinformatics analyses. Preprocessing, statistical analysis, and plot generation for 

all datasets was carried out using R (R 4.0.1 / Rstudio 1.3.959 / Bioconductor v 3.11) (61-63), as 

detailed below. 

Analysis of transcriptome data. RNA-seq data yield was ~40-80 x 106 raw reads and ~32-71 x 106 final 

mapped reads per sample. Reads were demultiplexed and converted to fastq format using bcl2fastq 

(bcl2fastq v2.20.0.422). Data quality was assessed using FASTQC (v0.11.5) 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and FastQ Screen (v0.11.0, 
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https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/). Trimming and filtering of low-quality 

reads was performed using bbduk from BBTools (v37.99)(64) and fastq-mcf from ea-utils (v1.05, 

https://expressionanalysis.github.io/ea-utils/). Alignment to the human reference genome (GRCh38) 

was carried out using HISAT2 (v2.1.0)(65) in paired, spliced-alignment mode with a GRCh38 index with 

a Gencode v33 annotation GTF, and alignments were sorted and filtered for mapping quality (MAPQ > 

10) using Samtools (v1.5)(66). Gene-level count data were quantified using HTSeq-count (v0.6.1)(67) 

with the following options (--stranded=reverse –minaqual=10 –type=exon --mode=intersection-

nonempty) using a Gencode v33 GTF annotation file. Differential gene expression in COVID+ versus 

COVID- was evaluated using DESeq2 (version 1.28.1)(68) in R (version 4.0.1), using q < 0.1 (FDR < 

10%) as the threshold for differentially expressed genes. 

Analysis of SOMAscan® data. Normalized data (RFU) was imported and converted from a SOMAscan® 

.adat file using a custom R package (SomaDataIO v3.1.0, https://github.com/SomaLogic/SomaDataIO) 

for use in all subsequent analysis. 

Analysis of MSD cytokine profiling data. Plasma concentration values (pg/mL) for each of the cytokines 

and related immune factors measured across multiple MSD assay plates was imported to R, combined, 

and analytes with >10% of values outside of detection or fit curve range flagged. For each analyte, 

missing values were replaced with either the minimum (if below fit curve range) or maximum (if above 

fit curve range) calculated concentration and means of duplicate wells used in all further analysis. 

Analysis of MS-proteomic data. Raw Razor intensity data were filtered for high abundance proteins by 

removing those with >70% zero values in both COVID19-negative and COVID19-positive groups. For 

the remaining 407 abundant proteins, 0 values (8,363 missing values of 44,363 total measurements) 

were replaced with a random value sampled from between 0 and 0.5x the minimum non-zero intensity 

value for that protein. Data was then normalized using a scaling factor derived from the global median 

intensity value across all proteins / sample median intensity across all proteins (69). 

Analysis of mass cytometry data. MC data was exported as individual FCS files. Within the cytofkit 

package graphical user interface (v1.11.3) (70), FCS files were imported to R (v4.0.3) using the 

read.FCS() function from the flowCore package (v2.2.0) (71) and raw intensity values inverse 
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hyperbolic sine transformed using the cytofAsinh() function with cofactor = 5 from the cytofkit package, 

and 1000 cells per FCS file sampled without replacement for downstream analysis. For visualization, 

dimensionality reduction was performed using the t-distributed stochastic neighbor embedding (t-SNE) 

method from the Rtsne package (v0.15) (72), using all markers. Unsupervised clustering, using all 

markers, was performed using the cytofkit implementation of the PhenoGraph algorithm (22). 

Transformed marker expression values for each clustered cell/event were exported and Z-scores 

calculated across all events for visualization on t-SNE plots. Relative frequencies for each cluster were 

calculated as proportions of live cells per sample for use in subsequent analyses. For traditionally gated 

cell subpopulations (gating strategy is described in (16)), relative frequencies were exported from 

CellEngine as percentages of various parental lineages for use in subsequent analyses. 

Analysis of LCMS-metabolomics data. Peak intensity data was imported to R. Across the 171 

metabolites, 0 values (486 missing values of 21,033 total measurements) were replaced with a random 

value sampled from between 0 and 0.5x the minimum non-zero intensity value for that metabolite. For 

downstream analysis, data was then normalized using a scaling factor derived by dividing the global 

median intensity value across all proteins by each sample median intensity. Median normalization was 

chosen as it is simple to employ, relies on few assumptions, and performs on-par with more complex 

normalization techniques, such as linear regression, local regression, total intensity, average intensity, 

and quantile normalization, in reducing intragroup variation (73), and is one of the non-reference-based 

normalization methods employed in the widely-used MetaboAnalyst pre-processing module (74). 

Gene Set Enrichment Analysis (GSEA). GSEA (75) was carried out using the fgsea package (v 1.14.0) 

(76) in R (version 4.0.1), using Hallmark gene sets (18) and either log2-transformed fold-changes (for 

RNA-seq and Somascan) or Spearman rho values (for IFN correlations) as the ranking metric. 

Interferon Alpha/Gamma Scores. To capture interferon signaling in each sample as a single value we 

calculated RNA-seq- or Somascan-based ‘Interferon Alpha’ and ‘Interferon Gamma’ scores as follows: 

Firstly, Z-scores were calculated from the age- and sex-adjusted concentration values for each 

gene/protein in each sample, based on the mean and standard deviation of COVID19-negative 

samples. Secondly, per-sample scores were calculated as the sum of Z-scores for genes/proteins in 
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the Hallmark Interferon Alpha or Hallmark Interferon Gamma Response gene sets (18), filtered to 

genes/proteins with significant increases in the COVID-positive group (see next section). 

Differential abundance analysis. For RNAseq, gene-level differential expression in COVID+ versus 

COVID- was evaluated using DESeq2 (version 1.28.1)(68) in R (version 4.0.1), with q < 0.1 (FDR < 

10%) as the threshold for differentially expressed genes, and considering only genes with ≥ 0.5 counts-

per-million in at least two samples. Differential abundance analysis for SOMAscan® proteomics, MSD 

cytokine profiling, MS proteomics, and LCMS metabolomics was performed using linear models in R 

(version 4.0.1) with log2 concentration/abundance as the outcome/dependent variable and COVID19 

status as the predictor/independent variable, with adjustment for Age and Sex. Multiple hypothesis 

correction was performed with the Benjamini-Hochberg method using a false discovery rate (FDR) 

threshold of 10% (q<0.1).  

Correlation analysis. To identify features in each dataset that correlate with plasma levels of the 12 IFN 

ligands in COVID19 positive samples, Spearman rho values and p-values were calculated against the 

Sex/Age-adjusted values for each dataset using the rcorr function from the Hmisc package (v 4.4-0) 

(77), with Benjamini-Hochberg correction of p-values and an estimated FDR threshold of 0.1. For 

visualization, Heatmaps and XY scatter plots, with points colored by local density using a custom 

density function, were generated using the ComplexHeatmap (v2.4.2) (78) and the ggplot2 (v3.3.1) (79) 

packages. Extreme outlier data points (above Q3 + 3xIQR or below Q1 – 3XIQR) were removed. 

Beta regression analysis of MC data. To identify cell clusters or gated cell subsets for which relative 

frequencies are associated with plasma levels of the 12 IFN ligands in COVID19 positive samples, beta 

regression analysis was carried out using the betareg package (v3.1-4) (80), with each model using cell 

cluster/subset proportions (relative frequency) as the outcome/dependent variable and log2-

transformed IFN abundance values as the independent/predictor variable, with adjustment for Age and 

Sex, and a logit link function. Effect sizes (as fold-change per unit IFN abundance) for each IFN ligand 

were obtained by exponentiation of beta regression model coefficients. For comparison across IFN 

ligands as in volcano plots and heatmaps, beta regression model coefficients were multiplied by the 

standard deviation of the corresponding ligand before exponentiating to give ‘standardized’ fold-
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changes per standard deviation of IFN abundance. Standardized fold-changes from each model were 

visualized by overlaying on t-SNE plots or as heatmaps using the ggplot2 (v3.3.1) (79) and 

ComplexHeatmap (v2.4.2) (78) packages. For visualization of individual IFN ligand vs. cluster/subset 

examples, data points were visualized as XY scatter plots, with points colored by local density using a 

custom function, and overlaid with beta regression fit curves and 95% confidence intervals extracted 

from model objects using the ggemmeans() function from the ggeffects package (v1.1.0) (81).   
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Supplementary file 1. Cohort characteristics. Table summarizing cohort characteristics. Information 

pertaining less than 10% of the cohort is indicated as <10% to prevent potential reidentification. 

Supplementary file 2. Transcriptome differential expression by COVID status. Results of DESeq2 

differential expression analysis of whole blood RNA-seq data in COVID-19-positive vs. -negative 

samples. 

Supplementary file 3. GSEA of transcriptome by COVID status. Results from Gene Set Enrichment 

Analysis (GSEA) of Hallmark gene sets using RNA-seq fold-change COVID-19-positive vs. negative as 

the ranking metric. 
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analysis between plasma levels of IFN ligands and whole blood RNA-seq gene-level expression in 

COVID-19-positive samples. 

Supplementary file 5. GSEA of IFN ligands vs transcriptome correlations. Results from Gene Set 

Enrichment Analysis (GSEA) of Hallmark gene sets using Spearman correlation scores for IFN ligands 

vs. whole blood RNA-seq gene-level expression as the ranking metric. 

Supplementary file 6. SOMAscan® proteomics differential abundance by COVID status. Results of 

linear model differential abundance analysis of plasma SOMAscan® proteomics data in COVID-19-

positive vs. -negative samples. 

Supplementary file 7. GSEA of SOMAscan® proteomics by COVID status. Results from Gene Set 

Enrichment Analysis (GSEA) of Hallmark gene sets using SOMAscan® proteomics fold-change COVID-

19-positive vs. negative as the ranking metric. 

Supplementary file 8. IFN ligands vs SOMAscan® proteomics correlations. Results of Spearman 

correlation analysis between plasma levels of IFN ligands and SOMAscan® proteomics data in COVID-

19-positive samples. 

Supplementary file 9. GSEA of IFN ligands vs SOMAscan proteomics correlations. Results from 

Gene Set Enrichment Analysis (GSEA) of Hallmark gene sets using Spearman correlation scores for 

IFN ligands vs. SOMAscan® proteomics data as the ranking metric. 
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Supplementary file 10. MS proteomics differential abundance by COVID status. Results of linear 

model differential abundance analysis of plasma mass spectrometry (MS) proteomics data in COVID-

19-positive vs. -negative samples. 

Supplementary file 11. IFN ligands vs MS proteomics correlations. Results of Spearman 

correlation analysis between plasma levels of IFN ligands and mass spectrometry (MS) proteomics 

data in COVID-19-positive samples. 

Supplementary file 12. IFN ligands vs mass cytometry clusters beta regression. Results of beta 

regression analysis of relative frequency data for PhenoGraph-defined subpopulation clusters against 

plasma levels of IFN ligands in COVID-19-positive samples. 

Supplementary file 13. IFN ligands vs mass cytometry gated subpopulations beta regression. 

Results of beta regression analysis of relative frequency data for cell subpopulations defined by manual 

gating against plasma levels of IFN ligands in COVID-19-positive samples. 

Supplementary file 14. IFN ligands vs plasma metabolomics correlations. Results of Spearman 

correlation analysis between plasma levels of IFN ligands and plasma metabolomics data in COVID-19-

positive samples. 

Supplementary file 15. IFN ligands vs RBC metabolomics correlations. Results of Spearman 

correlation analysis between plasma levels of IFN ligands and red blood cell (RBC) metabolomics data 

in COVID-19-positive samples. 

Supplementary file 16. Antibodies used in mass cytometry. List of antibodies used in mass 

cytometry. Column A indicates the antibody target, column B indicates the element conjugated to the 

antibody, column C indicates the mass of the element, column D indicates the manufacturer, column E 

indicates the catalog number, column F indicates the clone number, and column G indicates the type of 

stain protocol used (fixed, live or fixed with permeabilization). 

 

FIGURE SUPPLEMENTS 

Figure 1 – supplement 1. Whole-blood RNA-based IFN gamma scores and validation of plasma 

IFN ligand measurements. 
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Figure 1 – supplement 2. Correlation analysis and GSEA for IFN ligands vs. whole blood 

transcriptome. 

Figure 2 – supplement 1. Plasma protein-based IFN gamma scores and correlation analysis for 

IFN ligands vs. SOMAscan® proteomics. 

Figure 2 – supplement 2. Relationships between IFN ligands and SOMAscan® plasma 

proteomics. 

Figure 3 – supplement 1. Differential abundance and correlation analysis for MS plasma 

proteomics. 

Figure 3 – supplement 2. Relationships between IFN ligands and MS plasma proteomics. 

Figure 4 – supplement 1. PhenoGraph clustering and beta regression analysis of clustered 

mass cytometry data against IFN ligands. 

Figure 4 – supplement 2. Beta regression analysis of gated mass cytometry data against IFN 

ligands. 

Figure 5 – supplement 1. Correlation analysis of plasma and RBC metabolites vs. IFN ligands. 
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