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Abstract 

Electroconvulsive therapy (ECT) is the most effective intervention for patients with 

treatment resistant depression. A clinical decision support tool could guide patient 

selection to improve the overall response rate and avoid ineffective treatments with 

adverse effects. Initial small-scale, mono-center studies indicate that both structural 

magnetic resonance imaging (MRI) and functional MRI biomarkers may predict ECT 

outcome, but it is not known whether those results can generalize to data from other 

centers. Here, we used MRI data of 189 depressed patients from seven participating 

centers of the Global ECT-MRI Research Collaboration (GEMRIC) to develop and 

validate neuroimaging biomarkers for ECT outcome in a multi-center setting. We used 

multimodal data (i.e., clinical, structural MRI and resting-state functional MRI) and 

evaluated which data modalities or combinations thereof could provide the best 

predictions for treatment response (≥50% symptom reduction) or remission (minimal 

symptoms after treatment) using a support vector machine (SVM) classifier. Remission 

classification using a combination of gray matter volume with functional connectivity 

led to good performing models with 0.82-0.84 area under the curve (AUC) when 

trained and tested on samples coming from all centers, and remained acceptable when 

validated on other centers with 0.71-0.73 AUC. These results show that multimodal 

neuroimaging data is able to provide good prediction of remission with ECT for 

individual patients across different treatment centers, despite significant variability in 

clinical characteristics across centers. This suggests that these biomarkers are robust, 
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indicating that future development of a clinical decision support tool applying these 

biomarkers may be feasible.  
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Introduction 

Electroconvulsive therapy (ECT) is currently the most effective intervention for patients 

with treatment resistant depression1. Despite its high efficacy, ECT remains 

underutilized, as only 1-2% of patients with severe or persistent depression receive 

ECT2, 3. Although approximately 48% of treatment resistant patients recover with ECT, 

it is also associated with adverse cognitive effects and may be regarded as more 

invasive than other treatment options because the use of anesthesia is essential4. 

Furthermore, ECT is relatively expensive and non-responsiveness can only be 

determined after multiple sessions. Information that better predicts treatment 

outcome would enable patient selection thereby further improving the overall 

response rate and avoiding ineffective treatment with adverse effects. A personalized 

recommendation about the expected benefit of ECT would be a valuable addition to 

the treating physician's clinical judgement, and may increase its use in clinical practice. 

Attempts to develop instruments that may predict ECT outcome date back to the 

1950s5. Meta-analyses have associated several clinical characteristics with beneficial 

ECT outcome, in particular no history of treatment resistance, older age and psychotic 

symptoms6, 7. However, their predictive power is insufficient to guide individual patient 

selection4, 8-11. Recent studies have started using neuroimaging data to predict ECT 

outcome at the individual level using machine learning analysis, which can construct 

multivariate prediction models using all the available data. Initial small-scale studies 

have shown that both structural magnetic resonance imaging (MRI) and functional MRI 
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findings can be used to predict ECT outcome with approximately 80% accuracy, which 

is considered sufficiently good for clinical use11-20. These initial results have been 

confirmed by subsequent studies, and a recent meta-analysis showed an average 

prediction accuracy of 82%21.  

Despite these promising results, the existing studies have been limited by using 

small samples and mono-center settings. This reduces the possibility for models to 

generalize to new samples across centers. Although machine learning models typically 

perform better when trained on larger samples from the same center, classification 

accuracy of larger multicenter studies tends to decrease, presumably due to increased 

clinical (e.g., adults vs. elderly) and technological (e.g., different MRI hardware and 

protocols) variability across centers22-24. In order to develop robust and generalizable 

neuroimaging biomarkers for ECT outcome, we used data from the Global ECT-MRI 

Research Collaboration (GEMRIC) and validated classification performance in a multi-

center setting25. We used multimodal data (i.e., clinical, structural MRI (sMRI), and 

resting-state functional MRI (rs-fMRI)) and evaluated which data modalities or 

combinations thereof might provide the best predictions. As previous studies and 

clinical trials have used either treatment response (at least 50% symptom reduction) 

or remission (minimal symptoms after treatment) as outcome criterion, we assessed 

prediction accuracy for both criteria. Additionally, we evaluated whether model 

performance would increase when only data from centers with reasonable sample 

sizes are used. Finally, we visualized the brain regions that were most informative to 

the classifications, in order to gain insight into the brain regions predictive of ECT 
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outcome. To adhere to guidelines on transparent reporting of multivariable prediction 

models for individual prognosis or diagnosis (TRIPOD), the checklist is included in the 

Supplementary Files26. 
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Methods 

Participants  

We used data from GEMRIC, an international consortium that contains the largest 

multi-center database of neuroimaging on ECT25, 27. All contributing sites received 

ethics approval from their local ethics committee or institutional review board. In 

addition, the centralized mega-analysis was approved by the Regional Ethics 

Committee South-East in Norway (No. 2018/769). Analyses contained a selection of 

sMRI and rs-fMRI data from seven centers across Europe and North America, 

accounting for a total of 189 clinically depressed patients according to ICD-10 (167 

unipolar, 22 bipolar) who had received right unilateral or bilateral ECT (or both; 

Supplementary Table 1). Treatment outcome was measured using the 17-item 

Hamilton Depression Rating Scale (HAM-D) or Montgomery-Åsberg Depression Rating 

Scale (MADRS) that was converted to HAM-D (Supplementary Methods)28. Treatment 

response was defined as ≥50% HAM-D decrease compared to baseline and remission 

as post-ECT HAM-D score ≤7. ECT stimulus parameters varied between different 

centers, including electrode placement. As GEMRIC consists of samples ranging from 

very small (<20 patients) to relatively large (>40 patients), we performed all analyses 

on the entire cohort and for centers with ≥20 patients (three centers, N=109) in order 

to ensure classifiers were provided with sufficient examples per center. A description 

of centers-specific ECT procedures and image acquisition is provided elsewhere25, 27. 
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MRI data and preprocessing  

MRI acquisition parameters are listed in Supplementary Tables 2-3. Structural T1-

weighted scans were acquired using 1.5T and 3T scanners with a minimum resolution 

of 1.33 mm3 and preprocessed using the CAT12 toolbox for voxel-based morphometry 

(VBM). Images were segmented into gray matter (GM), white matter (WM) and 

cerebrospinal fluid (CSF), normalized to MNI space using DARTEL registration, 

resampled to 1.5 mm3 isotropic and spatially smoothed with an 8mm isotropic 

Gaussian kernel29. GM data were masked at 0.2 to exclude WM. 

150-266 rs-fMRI volumes were acquired with a TR of 1.7-3.0 seconds, in-plane 

resolution of 2.4-3.75 mm, and slice thickness of 3-5 mm. Preprocessing was 

performed using ANTs (https://github.com/ANTsX/ANTs) and FSL 

(http://fsl.fmrib.ox.ac.uk/), including brain extraction, boundary-based co-registration, 

motion correction, spatial smoothing with a 5mm isotropic Gaussian kernel, and 

normalization to a 2mm MNI template. Denoising was performed using ICA-AROMA, 

and depending on the type of analysis, high-pass (f>0.01) or bandpass filtering 

(0.009<f<0.08) was applied together with WM and CSF nuisance regression30. Denoised 

rs-fMRI data were resampled to 4mm isotropic. Subjects showing excessive motion 

were excluded31, 32. 

Only subjects that passed quality control for both rs-fMRI and sMRI were 

included for analysis, leading to a final sample of 189 patients (Supplementary Figure 
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1 for a flowchart). Details on MRI preprocessing, quality control and machine learning 

are provided in the Supplementary Methods. 

Feature extraction  

We extracted commonly used MRI features from the preprocessed data. For sMRI, we 

used voxel-wise modulated GM maps (VBM) and 142 cortical and subcortical 

parcellations using the Neuromorphometrics atlas (NMM; provided by 

Neuromorphometrics, Inc). For rs-fMRI, we used group independent component 

analysis (ICA) to extract physiologically meaningful resting-state networks and reduce 

data dimensionality to 70 independent components33. Components reflecting non-

neural signals were discarded, resulting in 53 spatial components for analysis. Group-

information guided ICA was used to derive subject-specific time-series and spatial 

maps for the 53 signal components34. Time-series were used to calculate individual 

functional connectivity (FC) matrices that described pairwise connectivity between 

signal components with Pearson correlations (ICA-DR FC). Additionally, we used an 

atlas-based approach from Power et al., and extracted time-series from 264 functional 

areas to compute FC matrices (Power FC)35. Correlations were converted to z-scores 

with Fisher r-to-z transformation before entering classification. 

 

Machine learning  

Machine learning classifications were performed using linear support vector machine 

(SVM; LIBSVM36) implemented in scikit-learn with stratified shuffle-split cross-
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validation (CV) with 100 iterations. At each iteration, stratified-splits were made by 

preserving the proportion of responders/remitters and non-responders/remitters 

from each center to obtain maximally homogeneous train-test splits in which 80% data 

was used for classifier training and 20% for testing. This CV procedure is further 

referred to as ‘internal validation’. In addition, we addressed leave-one-site-out (LOSO) 

CV, in which all but one center was used to train the SVM while the remaining center 

was used to assess model performance (further referred to as ‘external validation’). 

This procedure was repeated so that each center is used once for testing. LOSO reduces 

the risk of overfitting data from a single center but may result in large between-sample 

heterogeneity of training and test sets, resulting in lower classification performance 

compared to internal validation37. Hyper-parameters for SVM were optimized with 

gridsearch using nested cross-validation. We assessed classification performance using 

different sets of MRI features (VBM, NMM, ICA-DR FC, Power FC, and ICA spatial 

components), as well as using clinical data only (i.e., age, sex and pre-ECT HAMD 

scores) for baseline classification. Clinical data were always included for each 

classification. The primary performance metric was area under the receiver operator 

characteristic curve (AUC) and reported metrics were averaged across CV iterations38, 

39. Balanced accuracy, sensitivity, specificity, positive predictive value (PPV) and 

negative predictive value (NPV) are reported in Supplementary Tables 6-13.  

Statistical significance of classification performance was assessed using a label 

permutation-testing framework with 1000 iterations40. Obtained p-values were 

corrected for multiple comparisons using False Discovery Rate (FDR; two-stage (non-
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negative); alpha=0.05). 95% confidence intervals (CI) for AUC were computed using the 

modified Wald-method41. To reduce computational burden, only spatial ICA 

classifications that resulted in AUC>0.75 were tested for significance. Finally, we 

assessed classification performance for multi-modal classifications combining 

anatomical and functional features: regional neuromorphometrics GM volumes with 

either ICA or Power-atlas based FC, and voxel-wise GM with either ICA or Power-atlas 

based FC. 

 

Anatomical localization  

To investigate which regions contributed most to the voxel-wise classification, we 

employed a method to estimate p-values for the weights of the SVM42. A statistic was 

computed incorporating the weight component value and the size of the margin, and 

an analytical approximation to the null-distribution obtained through permutation 

testing was used to calculate p-values.  
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Results 

Demographic data  

Demographic data is presented in Table 1. Of the 189 included patients, 113 patients 

were ECT responders and 76 non-responders, and 76 were remitters and 113 non-

remitters. As expected, patients with a favorable outcome were older, and higher 

symptom severity at baseline was associated with ECT response but not remission. No 

significant differences in sex, initial electrode placement and total number of ECT-

sessions were observed.  

We assessed differences in sample demographics and clinical characteristics between 

the different centers regardless of ECT outcome using one-way analysis of variance 

(ANOVA) and χ². Age (F(7,181)=14.08, p<0.001), pre-treatment HAMD scores 

(F(7,181)=7.40, p<0.001), post-treatment HAMD scores (F(7,181)=5.24, p<0.001), 

HAM-D change (F(7,181)=8.65, p<0.001), number of ECT sessions (F(7,178)=10.78, p= 

p<0.001), depression type (X2(7, N=189)=19.10, p=0.008) and initial electrode 

placement laterality (X2(7, N=189)=109.8, p<0.001) differed significantly between 

centers. In contrast, sex did not differ between centers (X2(7, N=189)=3.84, p=0.80). 

Demographic data for the three largest centers (with N≥20) used for additional 

analyses are described in Supplementary Tables 4-5. Differences in sample 

demographics and clinical characteristics between the three largest centers were 

similar to those seen in the entire sample. These findings highlight that there is 

considerable clinical heterogeneity between centers. 
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 Total sample (n=189) Responders (n=113) Non-Responders (n=76) Resp vs Non-Resp Remitters (n=76) Non-Remitters (n=113) Rem vs Non-Rem 

mean std mean std mean std p mean std mean std p 

Age 51.7 14.5 54.400 13.7 47.6 16.9 0.0045* 56.3 14.2 48.6 15.5 0.0006* 

Sex (m/f) 83/106 n.a. 52/61 n.a. 31/45 n.a. 0.5705 32/44 n.a. 51/62 n.a. 0.7935 

Laterality (RUL/BL; n=188) 148/40 n.a. 87/25 n.a. 61/15 n.a. 0.8 60/15 n.a. 88/25 n.a. 0.86 

HAM-D pre-treatment 25 7.7 26.300 7.3 23 7.7 0.0031* 25.8 8.2 24.5 7.2 0.26 

HAM-D post-treatment 11 8.3 5.700 4.2 18.9 6.3 5.82E-31* 3.3 2.3 16.2 6.6 3.73E-42* 

HAM-D change 14 10.7 20.600 7.7 4.1 5.8 6.31E-39* 22.5 8.3 8.2 7.8 3.77E-23* 

Diagnosis (UP/BP) 167/22 n.a. 99/14 n.a. 68/8 n.a. 0.8726 67/9 n.a. 100/13 n.a. 0.8726 

Total ECT sessions (n=186) 13.4 6.2 13.000 6.4 14 5.8 0.2665 12.9 6.7 13.8 5.8 0.3474 

 

Table 1. Demographics of patients included in data analysis, with subject demographics and comparisons between ECT responders and non-responders, and between remitters and non-

remitters. Abbreviations: m: male; f: female; RUL: right unilateral ECT initially, BL: bilateral ECT initially; HAM-D: Hamilton Rating scale for depression; UP: unipolar depression; BP: bipolar 

depression; n.a.: not available. Asterisks depict significance using independent t-test or χ² test. 
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Response prediction 

The majority of the classification models for response prediction performed poorly 

with AUC<0.7 for internal validation, and none of the models remained significant with 

external validation after permutation testing with FDR correction. The results for 

response classification are presented in Figures 1 and 3 and Supplementary Tables 6, 

8, 10-11. Although in clinical patient care response to ECT may be beneficial, reaching 

remission after treatment is most preferable. Therefore, we focus on the results 

obtained for remission prediction below.  

 

Remission prediction 

Unimodal analysis 

All centers 

We first evaluated prediction performance across centers using all data (N=189) with 

internal validation. Sample size per center ranged from 14 to 42. Prediction 

performance with internal validation was poor with AUC ranging between 0.58-0.67 

across different MRI modalities (Figure 1A). Classification using clinical variables 

resulted in a comparable AUC of 0.62. All these AUCs were statistically significant. 

Classification using external validation hardly exceeded chance-level, with AUCs 

ranging between 0.51-0.58 and none were statistically significant. Classification using 

ICA networks did not exceed AUC>0.75 for either internal or external validation. 
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Balanced accuracy, sensitivity, specificity, PPV and NPV, p-values for AUC statistical 

significance and 95% CIs are provided in Supplementary Table 7. 

 

 

Figure 1. Multi-center predictions for ECT treatment response and remission using unimodal MR data modalities. Panel A 

depicts classification performance using data from all centers and different MR modalities with internal validation (AUC is 

averaged over 100 stratified cross-validation splits). Panel B shows classification performance using data from all centers with 

external validation (leave-one-site-out cross-validation, scores are averaged across different center left out for model 

testing). Panel C depicts classification performance using data from the  three largest centers with internal validation. Panel 

D shows classification performance using data from the three largest centers with external validation. VBM = voxel-based 

morphometry; NMM = Neuromorphometrics atlas; FC = functional connectivity; ICA = group information guided independent 

component analysis. Red dashed line depicts chance level performance (0.5 AUC). Asterisks indicate significant difference 

from chance level after permutation testing with false discovery rate correction for multiple comparisons (p<0.05, corrected). 
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Three largest centers 

We next assessed prediction performance using a subsample of data containing three 

centers with N≥20 (N=109) to provide the machine learning classifier with sufficient 

samples per center. Classification performance with internal validation ranged 

between 0.52-0.83 AUC across different features used, and 0.65 AUC was obtained for 

classifications using clinical variables only (Figure 1C). All AUCs obtained with internal 

validation showed statistical significance. Notably, the highest performance was 

achieved using voxel-wise GM data with 0.83 AUC. Four out of 53 ICA networks 

resulted in AUC>0.75 (Figure 2). A network incorporating right posterior parietal cortex 

and part of central executive network (CEN) resulted in 0.78 AUC, a network centered 

on the right pre- and postcentral gyrus resulted in 0.76 AUC, one located in posterior 

cingulate gyrus resulted in 0.77 AUC, and a thalamic network resulted in 0.80 AUC. All 

aforementioned AUCs were found to be statistically significant. Classifications with 

external validation ranged between 0.47-0.72 AUC (Figure 1D). The highest 

performance obtained was reduced from 0.83 AUC with internal validation to 0.70 AUC 

with external validation, and failed to obtain statistical significance following 

permutation testing with multiple comparison correction (puncorrected=0.018). None of 

the ICA networks resulted in AUC>0.75 with external validation (Supplementary Table 

9). 
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Figure 2. Visual representation of the four spatial components obtained from group ICA that led to AUC>0.75 for either 
response or remission classification. Top panel A depicts a network located in right posterior parietal cortex, part of the right 
central executive network. The second panel B shows a network located in right pre- and postcentral gyrus. The third panel 
C shows a network located in posterior cingulate gyrus. Finally, panel D illustrates a thalamic network. Images are thresholded 
at Z≥5 and overlaid on a standard 2mm MNI template.  

 

Multimodal analysis 

Classification using a combination of anatomical and functional MRI measures with 

samples from all centers led to a maximum of 0.68 AUC using internal validation which 

was statistically significant, whereas 0.64 AUC for external validation did not obtain 

significance. We then assessed multimodal classification performance using the three 

largest centers only. Classification of voxel-wise GM with ICA-based FC led to the best 

performing model, 0.84 AUC using internal validation, which remained acceptable 

using external validation with 0.71 AUC. Classifications for voxel-wise GM with Power-

atlas FC led to similar performances with 0.82 AUC for internal validation and 0.73 AUC 

for external validation. All of the aforementioned AUCs were statistically significant for 
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both internal and external validation. Classification performance for regional 

neuromorphometrics volumes with ICA-based FC resulted in 0.72 AUC with internal 

validation and 0.52 AUC for external validation. Classifications for regional 

neuromorphometrics volumes with Power-atlas FC led to 0.67 AUC using internal 

validation and 0.55 AUC for external validation. AUCs obtained for classifications using 

regional neuromorphometrics were statistically significant for internal validation but 

not for external validation (Supplementary Tables 12-13). 

Figure 3. Multimodal multi-center predictions for ECT response and remission. Panel A depicts classification performance 
using data from all centers and different combinations of features with internal validation (AUC is averaged over 100 stratified 
cross-validation splits). Panel B shows classification performance using data from all centers and different combinations of 
features with external validation. Panel C depicts classification performance using data from the three largest centers with 
internal validation. Panel D shows classification performance using data from the three largest centers with external 
validation. VBM = voxel-based morphometry; NMM = Neuromorphometrics atlas; FC = functional connectivity; ICA = group 
information guided independent component analysis. Red dashed line depicts chance level performance (0.5 AUC). Asterisks 
indicate significant difference from chance level after permutation testing with false discovery rate correction for multiple 
comparisons (p < 0.05, corrected). 
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Learning curves 

To evaluate the relation between sample size and classification performance, we 

examined learning curves for the best performing models (i.e. remission classification 

using data from the three largest centers) by subsampling the data using different 

proportions. Classification accuracy reached 0.83-0.84 AUC for unimodal (voxel-wise 

GM) and multimodal (voxel-wise GM and ICA-based FC) classifiers, with averaged 

AUC>0.75 for resamplings at 50% of the data (N=55) and AUC>0.8 for resamplings at 

85% of the data (N=88). See Supplementary Figure 2 for full learning curves. 
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Anatomical localization 

We investigated which brain regions contributed most to treatment classification for 

voxel-wise GM data. We only focus on our best performing unimodal model, which for 

remission classification resulted in 0.83 AUC using data from the three largest samples. 

P-values were plotted for GM weights only as we were interested in brain regions 

rather than the influence of covariates. As shown in Figure 5, regions located in 

dorsomedial prefrontal (dmPFC), precuneus and thalamus exhibited high contribution 

to the classification task. The sign of weights within thalamus was mostly negative, 

implying a high chance for non-remission classification, whereas signs of weights 

within dmPFC and precuneus were mostly positive, implying a high chance for 

remission classification. Note that these results reflected the contribution of these 

brain regions to the multivariate pattern used by the SVM classifier. 

 

 

Figure 4. Thresholded -log(p) value maps characterizing the regions important for the treatment remission classification using 

voxel-wise GM data of the three largest centers (thresholded at p<0.05 uncorrected). Hot colors indicate positive weights 

and cold colors indicate negative weights of the SVM. The figure was made with the nilearn package (http://nilearn.github.io).  
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Discussion 

These results show that neuroimaging data can provide a good prediction of ECT 

remission for individual patients across different centers. In line with recent meta-

analyses, older age and higher depression severity at baseline were associated with 

better ECT outcome7, 43, 44. However, our classification results show that this 

information is not sufficient for making individual predictions, highlighting the 

relevance of obtaining neuroimaging data for accurate predictions. Remission 

classification using a combination of voxel-wise GM with either ICA-based FC or Power-

atlas based FC led to good performing models when trained and tested on samples 

coming from each center (internal validation AUC>0.8), and remained acceptable when 

validated on completely new data from other centers (external validation AUC>0.7). 

These results indicate that multimodal neuroimaging data may provide a robust 

biomarker that could be used to guide clinical decision-making. By providing patients 

and clinicians a patient-specific prognosis, this could ultimately increase the success 

rate of ECT, avoid ineffective treatments and accompanying adverse effects, and 

increase the use of the most effective antidepressive treatment available. 

Previous monocenter studies using neuroimaging data to predict ECT outcome 

with either structural or functional MRI were able to obtain up to 0.84 AUC21. Here we 

achieved similar classification performance in a multicenter setting. Using data from 

different samples involves many additional sources of technological (e.g., different MR 

hardware and scanner protocols) and clinical (e.g. different ECT protocols, patient 
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cohort and recruitment procedures) variability23. These additional sources of variability 

may decrease prediction accuracy of MRI measurements for ECT outcome23, 45. 

Conversely, a multicenter study avoids cohort-specific solutions and so helps test 

generalizability of the results across different samples, increasing the likelihood that 

features identified as discriminatory between remitters and non-remitters reflect 

generic properties related to treatment outcome across datasets. Our results showed 

that generalizability to new samples came at the cost of lower accuracy, as 

classifications performed with internal validation (AUC≈0.83) outperformed those 

using external validation (AUC≈0.72). Additionally, we found that using a subsample of 

the data containing three centers with N≥20 each (N=109) led to better model 

performance compared to using all eight centers (N=189). This improvement could not 

be attributed solely to reduced clinical heterogeneity, as differences in sample 

demographics and clinical characteristics between the three largest centers were 

found to be similar to those seen in the entire sample (Supplementary Tables 1-2). We 

therefore hypothesize that the exclusion of smaller centers ensured that the model 

had sufficient examples per center for training.  

Brain regions that contributed most to remission classification using structural 

MRI data included dmPFC, precuneus and (hypo)thalamus. Our results also indicated a 

role for thalamus FC, as classification of the thalamus ICA resulted in the best 

performing functional MRI classifier. The thalamus is a hub connecting all cortico-

cortical circuits with links to hippocampus and medial PFC. It is a central hub in the 

affective network and plays an important role in emotion dysregulation12, 46-49. There 
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is evidence of decreased thalamic volume in depression50-53 and hyperactivity during 

rest and cognitive and emotion processing54, 55. Additionally, it has been suggested that 

seizure propagation between distant brain regions through cortical–thalamocortical 

and direct cortical–cortical connections is pivotal for ECT effectiveness56-60. There is 

also evidence that links reduced thalamic volume and altered rs-fMRI connectivity with 

clinical improvement12, 19. The precuneus is the core of the posterior default mode 

network and is associated with self-related processing and episodic memory retrieval, 

and has shown altered FC in depression61-63. Preliminary evidence links changes in 

precuneus network connectivity and structure with ECT treatment outcome64, 65. 

Altogether, these results provide evidence for the importance of thalamic and 

precuneus structure and their functional connectivity with other brain regions for both 

depression and ECT-related clinical response. Several ECT outcome prediction studies 

using structural MRI have also implicated the precuneus15, 19, 20, and studies using rs-

fMRI have reported functional connectivity with the thalamus as important regions18, 

60. Notably, the identification of brain regions contributing most to the classification 

resulted from a multivariate analysis, and the localization of these regions should 

therefore be interpreted with caution as these regions may not only be related to 

treatment outcome but also contribute to denoising during the classification process66. 

Several limitations have to be taken into account when interpreting our findings. We 

used a retrospectively pooled sample from existing data across the world, without 

harmonized protocols for scanning, inclusion criteria or demographic and clinical 

characteristics. Not surprisingly, we found significant differences in sample 
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demographics and clinical characteristics between the different data collection 

centers.  These sources of heterogeneity may limit classification performance but also 

provide an opportunity for model development using independent data sets and the 

discovery of generalizable biomarkers that are reproducible across centers. However, 

classification performance might be improved by using standardized acquisition 

parameters for possible future clinical utility. Additionally, our findings show that the 

prediction of treatment response was poor, while prediction of remission was good. 

This indicates that ECT outcome prediction is limited to remission, which may also 

provide a better outcome criterion compared to response. Remission has become the 

gold standard for depression treatment, because patients who do not remit have a 

poorer prognosis and greater chance of relapse and recurrence than those who do. 

Remission is also associated with a lower full symptomatic recurrence rate compared 

with achieving treatment response7, 67, 68. Furthermore, while unimodal and 

multimodal models performed comparable for remission classification using data from 

the largest centers with internal validation, only the multimodal classifications 

remained acceptable with external validation on different centers. We speculate that 

multimodal data may increase the probability that either the structural or functional 

MRI data overlaps across centers. 

Taken together, this study suggests that ECT remission can be accurately 

predicted using MRI data in a large, ecologically valid, multi-center sample of patients 

receiving ECT, indicating that future development of a clinical decision support tool 

might be feasible. MRI could easily be incorporated during decision making, as ECT is 
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typically provided in a hospital setting. And as MRI is inexpensive compared to ECT, the 

additional costs are expected to outweigh the costs of unsuccessful treatments. 
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