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Abstract—Seizure detection and seizure-type classification are
best performed using intra-cranial or full-scalp electroencephalo-
gram (EEG). In embedded wearable systems however, recordings
from only a few electrodes are available, reducing the spatial
resolution of the signals to a handful of timeseries at most.
Taking this constraint into account, we tested the performance
of multiple classifiers using a subset of the EEG recordings
by selecting a single trace from the montage or performing a
dimensionality reduction over each hemispherical space. Our
results support that Random Forest (RF) classifiers lead most ef-
ficient and stable classification performances over Support Vector
Machines (SVM). Interestingly, tracking the feature importances
using permutation tests reveals that classical EEG spectrum
power bands display different rankings across the classifiers: low
frequencies (delta, theta) are most important for SVMs while
higher frequencies (alpha, gamma) are more relevant for RF
and Decision Trees. We reach up to 94.3% F 5.3% accuracy in
classifying absence from tonic-clonic seizures using state-of-art
sampling methods for unbalanced datasets and leave-patients-out
3-fold cross-validation policy.

Index Terms—TUH, tonic-clonic, absence seizures

I. INTRODUCTION

Epilepsy manifests through seizures which occurs uncon-
trollably [1]. Several types of seizures exist based on semi-
ology, symptomatic experience and electrophysiological sig-
natures [2]. Patients with epilepsy can display several seizure
types [3], and the monitoring of seizures for forecasting and
detection is a subject of intense research [4], [5]. Recent
advances in the field use elaborate methods from machine
learning to analyse EEG timeseries and automatically extract
the most relevant features from the signals to perform the
detection or classification task [6], [7].

An issue of those deep learning methods lies in the lack of
interpretability of the abstract features learned by the deep neu-
ral network to perform the task [8]. Using manually engineered
features can help for interpretation but typically these perform

sub-optimally on electrophysiological recordings [9], [10],
therefore highlighting a trade-off challenge between efficiency
and interpretability.

Another challenge in patient monitoring is the movement
away from the hospital settings and towards recording sponta-
neous seizures from a wearable device at home or in daily life
[11], [12] . A major drawback of these wearable recordings
is that their spatio-temporal resolution is further constrained
in order for the device to be minimally inconvenient for the
patient [13], [14].

Here, we confront those two challenges by reducing the
spatio-temporal resolution of EEG signals to single timeseries
per hemisphere and training classifiers on these series using
engineered features. A combination of preprocessing methods,
sampling algorithms and classifier types is explored system-
atically. The importance of each feature for each classifier is
assessed using the best combination of preprocessing steps.

II. MATERIALS & METHODS
A. Dataset

We used the EEG Corpus from the Temple University
Hospital (TUH) dataset [15]. The data was recorded using
scalp EEG with 20 electrodes following the standard interna-
tional 10-20 system, and timeseries were analyzed using the
longitudinal transverse bipolar montage. All patient recordings
which sampling frequency were different from 256 Hz were
resampled at 256 Hz prior to preprocessing.

B. Pre-processing and feature extraction

Samples of pre-ictal and ictal periods were created using
4s sample size (as in [16]). Periods shorter than the sample
size were discarded. A combination of several preprocessing
steps were performed on each sample:
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Fig. 1. Example of a 4s EEG sample (left) and its reduction to one timeserie per hemisphere (middle) using averaging over channels, PCA, or a subset of
temporal channels. Power spectral features are used for a, 3, v, 0 and 0 bands (right).

Transformation to single timeseries per hemisphere: the
signals from electrodes of each hemisphere were reduced
to a single timeseries by either taking (a) the average over
electrodes from the right and left hemisphere separately; (b)
the strongest vector of the principal component analysis over
the left and right hemisphere separately; or (c) the difference
between electrodes (F7-T3 and F8-T4 for left and right hemi-
spheres, respectively).

Normalization: the signal was then normalized for each

sample using a z-score normalization over the sample size,
ie. X = (w;i‘“), and further zero-centered using the moving-
average over a 1s sliding window.
Fig. 1 illustrates the preprocessing of EEG samples. Features
are computed as the average power over the alpha (a, 8-12
Hz), beta (3, 12-25 Hz), gamma (v, 25-80 Hz), delta (9, 0-4
Hz) and theta (0, 4-8 Hz) frequency bands.

C. Sampling of imbalanced classes

Class imbalance can lead to skewed classification accuracies
towards the class with most samples [17]. We alleviate this
problem by sampling from the classes during training and
testing phases using several methods from the imblearn
library [18]:

e Random Under Sampling is a method that picks random
samples (without duplicates) from the majority class(es)
until the number of samples equals the minority class.
This method is therefore referred to as unbiased from the
sample distribution.

o Cluster Centroids uses the samples from the majority
class that are closest to the class center determined by K-
mean clustering. This methods is therefore biased towards
samples that represent the average of the class.

e Near-Miss under-sampling is a method that takes the
samples from the majority class which are on average the
closest to the samples from the minority class [19]. This

method makes the classification more difficult as samples
are selected to be least discriminable between classes.

D. Classification

We assessed several types of classifiers to discriminate
between absence and tonic-clonic seizures. Here, we briefly
summarize the different characteristics of each classifier:

o Support Vector Machines (SVMs) try to find the max-
imally separating hyperplanes between samples from 2
classes (and do so repeatedly for each combination of
classes in multi-class classification). The kernel is a sim-
ilarity function that scores the distance between samples
in feature space. We assess the score of SVMs using a
linear kernel (simplest case) and a non-linear radial-basis
function (RBF) kernel. Since our feature space is much
smaller than our number of samples, the method was not
prone to over-fitting and the regularization parameter was
set to C' = 1.

e Decision trees are hierarchical structures (connected
nodes) whereby each branching represents conditions
over features which aggregate through the depth of the
tree to define class labels. The conditions for the split
criterion are found by maximizing the entropy at each
node of the tree. We set the maximum depth of the tree
to be the number of features (5) and a minimum of 2
samples is necessary to split a node into branches.

e Random Forests are a set of many decision trees which
outputs are combined to form the best weighted conglom-
erate. Individual trees are created at random based on
feature values at the beginning and then refined through
training.

E. Cross-validation

We performed our analysis using 3-fold cross validation
scheme with leave-patient-out policy. This means that for
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Fig. 2. Overall accuracy of each classification scheme computed by Fl-score across preprocessing methods. The horizontal dashed line is the score under

the null hypothesis, i.e. when the class is predicted randomly.

each split, all samples from a patient are either in the
training set or the test set, without overlap. This prevents
over-fitting on the specific patient trace which is commonly
observed in standard n-fold cross validation policies ( [6], [7]).
We used the Stratified Group K-fold splitting module from
scikit—-learn [20], whereby classes are seizure labels and
groups are individual patients.

FE. Feature importance

The importance of each of the spectral band features to the
overall performance of trained classifiers is assessed through
a random permutation test over samples (rows), one feature
(column) at a time. For each permutation, the classifier is
re-trained using the permuted feature values and the score is
compared to the originally trained classifier’s score [21]. The
score’s difference is averaged over 100 permutations to give
a value between 0 (low importance) to 1 (high importance),
and was performed using the scikit-learn library [20].

III. RESULTS

We created a pipeline combining sample creation from raw
EEG, preprocessing, feature extraction, dataset splitting for 3-
fold cross validation, sampling, classification and extraction
of feature importances. We first assessed the performance of
each classifier using a combination of preprocessing steps and
data samplers. We then analyse which features play a major
role in discriminating between seizure types.

A. Performance of the different classifiers across preprocess-
ing methods

Figure 2 shows the performance of the 4 classifiers using the
3 samplers and 3 different dimensionality reduction techniques
at preprocessing . We observe that performing a PCA over the
EEG instead of using a subset of temporal electrodes systemat-
ically increases the accuracy of the downstream classification
(mean +17.4%, SD 8.8%). It is also observed that the PCA
does better than averaging across all electrodes per hemisphere
(mean +0.9%, SD 3.7%).

The difference in sampling method accounts to 9.9% (SD
2.8%) of classification performance. Cluster centroids resulted

in the highest performances. Surprisingly, a near miss sam-
pling can outperform a random sampling (or perform simi-
larly) when using a dimensionality reduction technique such
as PCA or averaging. Also, linear SVM is more sensitive to
the sampling methods that non-linear SVM, decision tree and
random forest classifiers.

B. Feature importance differs across classifiers

Lastly, we assess the contribution of each feature to the clas-
sification accuracy. This is performed by randomly permuting
row entries of a feature column and re-training the classifier
to assess its new accuracy using the permuted feature values.
The drop in accuracy is indicative of the feature importance
of the column being shuffled. Since preprocessing using PCA
and cluster centroids sampling reached the best classification
accuracy, we show feature importances for each classifiers
using this preprocessing methods but similar results were
observed using averaging across electrodes and other sampling
methods.
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Fig. 3. Feature importance across classifiers.

Figure 3 shows that the feature importance for the delta
frequency band (0-4 Hz) exceeds all others for SVM classi-
fiers, while higher frequency bands (alpha and gamma) play
the major role for decision tree and random forest classifiers.
This indicates that higher frequencies in the EEG play a subtle
but essential role in improving the classification performances
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across seizure types and across the classification methods that
we explored.

IV. CONCLUSION

We assessed several pre-processing methods in the con-
text of EEG signal classification between tonic-clonic and
absence seizures. By systematically comparing classification
performances across timeseries normalization schemes, sam-
pling from imbalanced classes and dimensionality reduction
techniques, our results demonstrate that applying a PCA over
the whole EEG signals leads to better outcomes than using
only a subset of electrodes or averaging across electrodes.
This indicates that sacrificing temporal precision for spatial
integration of the signals across the scalp is beneficial for
this seizure type classification task. It is clear that in the
designing of wearable systems for patients monitoring using
EEG, recordings from many electrode spatially distributed
over the scalp gives better classification outcomes than using
a single electrode. This is especially important for patients
experiencing a wide range of seizure types or when the
seizure semiology evolves across the span of the disorder (e.g.
transitioning from absence to tonic-clonic [22]).

Our work also paves the route for more interpretable results
of machine learning outputs. This is especially important for
medical applications, since a mechanistic understanding of the
Al systems can permit better comprehension of the processes
at play in patients. Others have reviewed features of interest
for seizure detection and classification [10], [23]. Our results
indicate that while low frequency EEG component (i.e. delta
band) is most relevant for classification using SVM, more
elaborate classifiers devote greater importance to the higher
frequencies (alpha and gamma bands). Since the interplay of
low and high frequency discharges during seizure is complex
and specific to certain seizure types, our results suggest that
each classifier type is picking up on those features differently.
A next step will involve modeling of seizure dynamics [24],
and optimization of model parameters to reproduce the dif-
ferent classes synthetically as conceptually introduced in a
previous study on classifying transcranial magnetic stimulation
responses [9].
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