
1

Assessing optimal time between doses in two-dose

vaccination regimen in an ongoing epidemic of

SARS-CoV-2

Leonardo Souto Ferreira1,2,*, Otavio Canton1,2, Rafael Lopes Paixão da
Silva1,2, Silas Poloni1,2, Vı́tor Sudbrack1,2,3, Marcelo Eduardo Borges2,5
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1Instituto de Fı́sica Teórica, Universidade Estadual Paulista, São Paulo, Brazil
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Abstract

The SARS-CoV-2 pandemic is a major concern all over the world and, as vaccines20

became available at the end of 2020, optimal vaccination strategies were subjected to intense
investigation. Considering their critical role in reducing disease burden, the increasing demand
outpacing production, and that most currently approved vaccines follow a two-dose regimen,
the cost-effectiveness of delaying the second dose to increment the coverage of the population
receiving the first dose is often debated. Finding the best solution is complex due to the trade-25

off between vaccinating more people with lower level of protection and guaranteeing higher
protection to a fewer number of individuals.

Here we present a novel extended age-structured SEIR mathematical model that includes a
two-dose vaccination schedule with a between-doses delay modelled through delay differential
equations and linear optimization of vaccination rates. Simulations for each time window and30

for different types of vaccines and production rates were run to find the optimal time window
between doses, that is, the one that minimizes the number of deaths.

We found that the best strategy depends on an interplay between the vaccine production
rate and the relative efficacy of the first dose. In the scenario of low first-dose efficacy, it is
always better to apply the second dose as soon as possible, while for high first-dose efficacy,35

the optimal window depends on the production rate and also on second-dose efficacy provided
by each type of vaccine. We also found that the rate of spread of the infection does not affect
significantly the thresholds of the optimal window, but is an important factor in the absolute
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number of total deaths. These conclusions point to the need to carefully take into account both
vaccine characteristics and roll-out speed to optimize the outcome of vaccination strategies.40

Keywords – SARS-CoV-2; Compartmental models; Delay differential equations; Linear optimization
models.

I. INTRODUCTION

As the implementations of SARS-CoV-2 vaccination programs evolve in several
countries around the world, governments must decide how to allocate doses among45

the population during the epidemic, usually prioritizing the most at-risk groups, such as
healthcare workers, people with comorbidities, and older adults. In a context of limited
vaccine supply, an optimized dose allocation strategy is critical to effectively immunize
the population whilst achieving the best reduction in hospitalizations and deaths. On
this basis, some countries considered partially protecting a greater percentage of the50

population by administering the first dose more widely at the expense of delaying
second doses, and thus having less fully vaccinated individuals [16, 20, 28].

Vaccination programs can have different goals depending on the context and char-
acteristics of both the disease and the available vaccines. The immunization program
against Covid-19 has focused on reducing the burden of hospitalizations and deaths,55

which is justified given the risk of health care system collapse and the lack of vaccine
supplies to quickly reach the high coverage required to substantially reduce infections.
Another strong argument for that strategy is that many of the current vaccines are
highly effective against hospitalization and death, but not in preventing new infections.
For instance, AZD1222 (Oxford/AstraZeneca) has shown an efficacy of 86% (95%60

CI: 53-96%) against hospitalization [34], but 59.9% (95% CI: 35.8-75.0%) effective
against new infections measured by nucleic acid amplification-positive tests [36]; for
CoronaVac (Sinovac) this contrast is even starker with 83.7% (95% CI: 58.0-93.7%)
efficacy against severe cases but only 50.7% (95% CI: 35.9-62.0%) for mild symptomatic
cases as outcome [24]. Even BNT162b2 (Pfizer/BioNTech), which showed high efficacy65

against infections in the first trials [25] may provide a lower protection against new
variants, as exemplified by the variant B.1.617.2 (also known as Delta) [6]. In this
context, vaccination programs in many countries have prioritised the groups most at
risk of developing severe disease, namely high exposure individuals (e.g. health care
professionals), people with aggravating conditions, and older adults [29, 21].70

Mathematical models in epidemiology have been widely used to assess optimal
vaccination strategies for a variety of communicable diseases [4, 11, 12, 13, 37]. In
a previous study on influenza viruses, Matrajt et al. [19] explored how two different
vaccination strategies (single dose or two dose) could be integrated into pandemic
control plans of a limited vaccination supply. They conclude that the best strategy75

depends on the level of partial protection introduced by a single dose, but the study is
limited to pre-pandemic vaccination scenario and does not capture vaccination roll-out
during a pandemic.
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Mass vaccination strategies have been proposed as the main approach to tackle the
spread of SARS-CoV-2, complementing or replacing non-pharmaceutical interventions80

(NPIs). SIR-like models have pointed to the possibility of securely relaxing NPIs months
after vaccination campaigns, depending on the rate of vaccination, as shown by Kraay
et al. [17]. The same work also suggests that, given a low roll-out rate scenario, one-
dose strategies allow safe relaxation of NPIs sooner if the first dose corresponds to more
than 80% of the vaccination protection (vaccination parameters based on BNT162b2).85

Although one-dose vaccination allows earlier relaxation of NPIs, it requires a slower
transition to pre-pandemic levels for more vaccines to be delivered. The one-dose scheme
is modelled as an effectively weaker vaccine, with no second doses being considered
in the long run.

In this work we aim to find the optimal time-window between doses under different90

scenarios of relative efficacy of the first dose and infection rate in the population. We
assess these scenarios for the three most used vaccine platforms, namely inactivated
virus, viral vector of adenovirus, and mRNA-based vaccines. Given that most vaccination
protocols requires a second dose, we introduce a mathematical model that rigorously de-
scribes a two-dose vaccination scheme and optimal allocation of vaccines through delay95

differential equations. We explore the consequences of different strategies regarding the
time-window between the two vaccine doses. The distribution of available vaccines for
the first and second dose is optimized for each between-doses time interval, assuming
a constant production rate. The partial protection offered by single-dose vaccination
compared to double-dose vaccination is controlled by a single relative efficacy parameter.100

We find that the best strategy depends on the interplay between the vaccine production
rate and the single-dose relative efficacy, with the effective reproduction number being
an important factor for the reduction of deaths.

II. METHODS

To investigate the impact on total hospitalizations and mortality of delaying the second105

dose in a two-dose vaccination roll-out during an ongoing epidemic, we built a model
that takes into account the severity of the disease, age classes (the main risk factor for
severity and death), and vaccination status.

Our model consists of an SEIR model extended to account for asymptomatic, se-
vere/hospitalized, and deceased individuals, thus being named SEAIHRD, correspond-110

ing to susceptible, pre-symptomatic, asymptomatic, mildly symptomatic, severely symp-
tomatic/hospitalized, recovered, and deceased classes respectively. Each epidemiological
class comprises three age classes, namely children and teenagers (0-19), adults (20-59),
and older adults (60+) classes. To account for vaccinated individuals with one or two
doses, we have duplicated this set of classes for individuals who received one dose115

and two doses, which have different epidemiological parameters, as discussed below.
The model structure is shown in Fig. 1 and the model equations are presented in the
supplementary material (SM).
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Fig. 1: Diagram representing the full model structure. Subscripts v and w indicate the first- and second-dose
vaccinated classes, respectively. Black arrows indicate transitions between epidemiological stages, green arrows
indicate vaccination. All classes pictured inside the gray box are infectious. Because epidemiological progressions
happen at time-scales shorter than those related to vaccine effects, infectious classes are not vaccinated in the model.
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TABLE I: Parameters related to vaccine efficacy. The observed efficacies are obtained from trials or effectiveness studies. The parameters of protection are
calculated through the method explained in the appendix A1.

Parameter Description CoronaVac AZD1222 BNT162b2

Eβ,w Observed efficacy against infectious contact given second dose 0.00a 0.599 [36] 0.90 [9]
Eα,w Observed efficacy against clinical symptoms given second dose 0.50 [24] 0.813 [36] 0.94 [9]
Eσ,w Observed efficacy against hospitalization given second dose 0.83 [24] 0.900b 0.87 [9]
Eµ,w Observed efficacy against death given second dose 0.95b 0.950b 0.98b

εβ,w Protection against infectious contact with second dose 0.000 0.599 0.900
εα,w Protection against clinical symptoms given second dose [0.499, 0.498, 0.494] [0.533, 0.533, 0.537] [0.402, 0.415, 0.494]
εσ,w Protection against hospitalization of infected individual given second dose 0.830 0.750 -0.300
εµ,w Protection against death of hospitalized cases given second dose 0.706 0.500 0.846

a Assumed. There is no data available yet.
b Assumed. The value reported had no statistical significance.

The demographic characteristics of the population were based on the State of São
Paulo, Brazil. The basic epidemiological parameters come from current literature and120

are detailed in the SM. The daily contact rates between age classes are based on the
matrices projected by Prem et al. [26], from which we use the Brazilian all-locations
average for simplicity, reducing the age compartments using the same approach as in
[8] (Supplementary material, section 3).

We assume a “leaky” vaccination effect, in which vaccinated individuals receives par-125

tial protection, in contrast to the “all-in” model where part of the vaccinated individuals
receives full protection. Bubar et al. [7] has shown that the outcome of these models do
not differ substantially and the leaky model is simpler to understand and to implement.

The main parameters that describe the vaccination dynamics are the vaccine‘s protec-
tive effect against (i) acquiring the disease, (ii) developing symptoms, (iii) developing130

severe symptoms (i.e., leading to hospitalization), and (iv) death. We present our analysis
using sets of parameters that represent three types of vaccine developed for Sars-Cov-2;
inactivated virus (CoronaVac, from Sinovac), adenovirus-based vaccine (AZD1222, from
AstraZeneca-Oxford) and mRNA (BNT162b2, from Pfizer-BioNTech). The parameters
for each vaccine are shown in Table I.135

As the required parameters may not be available in the studies for each vaccine,
specially regarding the efficacy of a single dose, we simplify the problem by assuming
that the efficacy for each outcome is proportional to the efficacy after the second dose by
a fixed ratio, called relative efficacy of the first dose. This is a key parameter influencing
the model outcome: if it is too small it is better to apply the second dose sooner, but140

the opposite should be expected if the efficacy with one dose is as large as with two
doses. Thus, we vary this parameter over all reasonable values (0-100%).

As the efficacy related to a specific outcome can be caused by a multiplicative effect
of efficacy related to another outcome, (for example, lower number of deaths caused by a
lower number of hospitalizations), we translate mathematically the observed efficacies145

that come from field studies to the parameters used in the mathematical model, as
described in Appendix A1. The values of parameters used in the model are given in
Table I. Notice that this mathematical translation makes the protection against clini-
cal symptoms age-dependent and also makes the protection against hospitalization for
BNT162b2 negative. The latter case occurs because the efficacy against hospitalization is150
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lower than the efficacy against infectious contact, but when the parameters of protection
are multiplied as in the model’s equations (SM) the value of efficacy is recovered.

Since we aim to study vaccination roll-out during an ongoing epidemic, we set the
initial conditions for recovered and infectious populations using estimated values from
hospitalization data. The procedure follows closely the one presented in Coutinho et al.155

[8], and is described in the SM. We use epidemiological and demographic data from the
state of São Paulo, Brazil, although we do not expect the results to change substantially
from one region to another.

We do not explicitly implement non-pharmaceutical interventions in our study, opting
instead to model different scenarios by fixing the initial value of the effective reproduc-160

tion number Rt. Thus, we computed Rt using the method of Next Generation Matrix
(for details, see Appendix B) and chose the value of probability of infection per contact
(β) that yields the desired value of Rt at the beginning of the simulation. We vary this
initial Rt between 0.9 and 1.4, accounting for potentially more transmissible variants
[8, 10] or increased contact rates due to less rigid non-pharmaceutical interventions.165

The distribution of vaccines follows the priority of age groups: first older adults,
then adults, and at last children and teenagers [35]. We assume that serological tests
are not performed before vaccination, therefore vaccination does not depend on the
individual’s previous serological status. Thus, susceptible and recovered individuals are
vaccinated proportionally to the compartment’s population size. Severe and symptomatic170

individuals do not receive doses while infectious due to noticeable infection. We also
exclude pre-symptomatic and asymptomatic from vaccination, since it would lead to
unrealistic immediate benefits and there is a window between the date of application
and the start of protective effects. Recovered individuals are assumed to be completely
immune and, since we fix our simulation interval at 300 days, we consider that the175

effects of waning immunity can be negligible. Likewise, we ignore aging dynamics,
since it would be relevant only at much longer time scales.

Our model specifies that the time between the applications of the first and second
doses (a) is fixed for all individuals, which leads to a delay differential equation
formulation. In contrast, constant rate models, where individuals receive the second180

dose at a fixed rate with an exponential distribution of times, would imply that some of
them immediately receive the second dose and lead to incorrect average times between
doses when vaccination rates fluctuate over time. We also allow for a proportion θ of
individuals that take the first but not the second dose, representing abandonment; this
value is fixed at 0.1 throughout our simulations (In the case of CoronaVac vaccine phase185

3 trial, the rate of abandonment was 0.16 [2]).
To optimally allocate the vaccination, keeping the number of stocked vaccines as low

as possible while ensuring that second doses are available, we solve a delayed optimiza-
tion problem. We assume an initial stock of vaccines V0 and a constant production (or
deployment) rate p and solve for the control variable that is the vaccination rate v(t),190

with an upper limit of vmax. The full mathematical description of the problem and its
solution are described in Appendix C.
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To assess which conditions is best to employ a longer (up to 12 weeks) or shorter
(at least 3 weeks) interval between first and second doses, we simulate the model and
compute the total number of deaths across all ages and vaccination status at the end195

of a period of 300 days, choosing as the optimal window the one that has the lowest
number of deaths. We performed this comparison by varying the relative efficacy of
the first dose and also the parameters related to the current rate of infection (Rt) and
vaccine production rate.

III. RESULTS200

The optimal vaccine roll-out with time between doses of 3 and 12 weeks is shown in
Fig. 2. We can see that for reasonable parameters of production and vaccine application
rate for São Paulo State, the vaccine stock can be kept close to zero (i.e. all doses can
be used immediately) after about 30 days after the beginning of dose application when
using a time interval of 3 weeks. For the time interval of 12 weeks, the stock is kept205

close to zero during the first stage of the first dose vaccination, but doses need to be
stored for the application of second-doses for a small time window. In both cases, we
see a pattern of alternating stages of first and second dose vaccination, while optimally
keeping the stock of vaccines close to zero.
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Fig. 2: Vaccination rate as a function of time for first (solid, black) and second doses (dashed, grey) – scale is
given by the left y-axis. Number of stored vaccine doses as function of time (dot-dashed, blue), scale in the right
y-axis. Taking into account 3 or 12 weeks (panels) as separation between doses. V0 = 2.83% of population in doses,
ρ(t) = 0.23% of population in doses/day, vmax = 0.45% of population in doses/day.

By varying the initial values of Rt for a fixed production rate (Figure 3), we see that210

longer periods between the first and second doses led to a lower number of deaths when
the relative efficacy of the first dose alone is higher than approximately 60%, whereas
smaller time intervals are better if the relative efficacy is lower than approximately 50%,
and intermediary periods are the optimal interval between doses if the relative efficacy
is between 50% and 60%. It is also important to note that the value of initial Rt does215

not substantially affect the value of relative efficacy where transitions between optimal
windows occur, but is an important factor in the absolute value of deaths.
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CoronaVac AZD1222 BNT162b2

R
t: 0.9

R
t: 1

R
t: 1.1

R
t: 1.2

R
t: 1.3

R
t: 1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10.0%

20.0%

30.0%

40.0%

50.0%

10.0%

20.0%

30.0%

40.0%

50.0%

10.0%

20.0%

30.0%

40.0%

50.0%

10.0%

20.0%

30.0%

40.0%

50.0%

10.0%

20.0%

30.0%

40.0%

50.0%

10.0%

20.0%

30.0%

40.0%

50.0%

Relative Efficacy of First Dose

R
ed

uc
tio

n 
in

 T
ot

al
 N

um
be

r 
of

 D
ea

th
s

Weeks
3
7
12

Fig. 3: Reduction in total number of deaths as function of the first dose relative efficacy, considering three time
windows between doses: 3,7 and 12 weeks (colors); varying vaccine type (columns); and effective reproduction
number at the start of simulation (rows). V0 = 2.83% of population in doses, ρ(t) = 0.23% of population in
doses/day, vmax = 0.45% of population in doses/day.

Since our results show that the optimal time window is not strongly dependant on the
value of Rt, we fixed this value at 1.1 and varied the relative efficacy and production
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rate. Then, we compare the optimal window relative to the reduction in deaths for several220

time-window intervals (Figure 4). The result is computed by simulating a coarse grid
of values and then linearly interpolating a finer mesh. For all vaccines, relative efficacy
of the first dose below approximately 45% indicates that regardless of the vaccine
production rate, the best strategy to reduce mortality is to complete the two-dose scheme
3 weeks after the initial dose. If the production rate is low (approximately below 0.2%225

of doses/population-day), increasing the relative efficacy above 45% rapidly shifts the
optimal time-window to increasingly larger periods, and converges to the maximum
interval of 12 weeks. However, on this same range for the relative efficacy of the first
dose, increasing the production rates results in a non-linear transition to shorter time-
windows.

CoronaVac AZD1222 BNT162b2
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Fig. 4: Best window (color) for reduction of deaths as function of production rate (x axis) and relative efficacy of
first dose (y axis). Each panel represents a different vaccine with the respective second dose parameters. The initial
Rt is 1.1, V0 is set to zero, vaccination rate limited to approximately 0.45% of population in doses per day.

230

Although it is expected that the optimal time window should always increase with
higher relative efficacy, and decrease with higher production rate, the latter hypothesis
is sometimes violated in the simulations (Fig. 4). Despite that, the general pattern is
largely unaltered.

IV. DISCUSSION235

Our model evaluates the optimal time windows between first and second doses for
individuals in a context of limited vaccine supply in the ongoing COVID-19 pandemic.
We found that the time window that best reduces the mortality depends on the interplay
between two key parameters: vaccine production rate and the relative efficacy of the
first dose. Within the simulated regimes with low single-dose efficacy, the resulting best240

strategy consistently relied on allocating the available doses to complete the two-dose
scheme at the shortest time possible to provide the vaccine’s maximum protection and
minimize the mortality of the population. However, when the first dose presents a higher
level of relative efficacy and vaccine supply is restricted, the best strategy relied on
prioritizing the allocation of doses to increase the proportion of the population receiving245
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the first dose, resulting in a longer interval between doses to effectively allocate the
use of the limited vaccine supply. Further, this interval is shortened by increasing the
vaccine supply, as it progressively alleviates the conflict on dose allocation. Given that
the effective reproduction number has little effect when considering the optimal window
between doses, this further ensures the applicability of our results to other locations.250

Another important parameter that varies across vaccines is the protection against
infection, i.e. reduction in susceptibility, after the second dose, with values of 0, 0.6 and
0.9 for CoronaVac, AZD1222 and BNT162b2 respectively (See table I). This difference
allows for larger delays with lower relative efficacy of the first dose, even with similar
protection against deaths (0.95, 0.95, 0.98, in the same order) simply by avoiding new255

infections.
Given the key role of the efficacy of the first dose in deciding the best strategy to

reduce mortality, it is worth considering the best available knowledge for the vaccines
evaluated in this study. Preliminary results of the effectiveness of the inactivated virus
vaccine CoronaVac in Chile have shown that the first-dose efficacy of that vaccine is260

substantially lower before the application of the second dose, with effectiveness against
symptomatic infection being 17.2% (95% CI: 15.8–18.6%) [14]. This result, together
with previous studies concerning inactivated virus vaccines showing that the protection
against infectious contact is likely to be low [1, 32], suggests that the safest strategy
concerning second dose application of CoronaVac is to apply it in three weeks, the265

shortest recommended interval, to achieve the largest reduction in the number of deaths.
In the case of the adenovirus-based AZD1222 vaccine, Voysey et al. [36] estimated

76.7% (95% CI: 47.0-89.8%) for the efficacy against symptoms 21 days after the first
dose. Albeit this estimate provides reasonably high values, the small number of events
results in great uncertainty on this estimate, reflected in its wide confidence intervals.270

Pritchard et al. [27] corroborates those results with effectiveness against having a positive
RT-PCR test of 64% after 21 days (95% CI: 59–68%) in a study in the UK, but without
differentiating between AZD1222 and BNT162b2. Using this value as a proxy of first
dose efficacy compared to the efficacy against symptoms post second-dose, the relative
efficacy would be around 80%, which, according to our results, would suggest that275

delaying the second dose can be an effective strategy, especially in lower production
rates. The efficacy post second-dose using a window less than 6 weeks is substantially
lower (55.1%, 95% CI: 33.0-69.9%) when compared to 12 weeks (81.3%, 95% CI:
60.3-91.2%) [36], providing another argument in support of delaying the second dose
of AZD1222.280

For the mRNA vaccine BNT162b2, Pritchard et al. [27] have shown that its effective-
ness is very high 21 days after the first dose (78%, 95% CI: 72-83%), results corrob-
orated by a study conducted by the Joint Committee on Vaccination and Immunisation
[16], from the UK. With these values, together with very high post second-dose efficacy
against infectious contacts, our model results entail that postponing the application of285

the second dose is the best strategy. However, as this is the first known vaccine using the
mRNA platform, it would be advisable to postpone the second dose only after studies
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assuring the efficacy of such vaccine in these conditions, as pointed out by Robertson,
Sewell, and Stewart [30].

Previous studies that have evaluated the best strategies for vaccination for COVID-19290

have focused on the interplay between vaccination and non-pharmaceutical interventions
[7, 15, 23]. More recently, some agent-based models estimated the reduction in deaths
and infections if postponing the application of the second dose: Moghadas et al. [22]
found that delaying the second dose for BNT162b2 and mRNA-1273 (from Moderna) is
usually the best strategy until it reaches peak values for longer intervals; Romero-Brufau295

et al. [31] found that the results are even better in the scenarios of low vaccine production
rates. We confirm these initial results and extend the analysis to more combinations of
first dose efficacy and production rates, and also consider more types of vaccine. Our
model also accounts for optimal allocation of vaccination rates of first and second doses,
an issue not addressed in those works.300

Using a differential equations formulation, Mak, Dai, and Tang [18] compared the
strategies of “hold back” (storing half of the vaccines to guarantee the second dose) and
“release” (applying as much as first doses possible, while minimizing the backlog of
second dose vaccination) and found that first dose efficacy is essential when deciding
optimal vaccine protection coverage if delaying the second dose. Their results agree305

with ours but it has the limitation of not guaranteeing that the mean period with single-
dose protection is preserved in a varying vaccination rate, which is only possible using
a more complex formulation, such as delay differential equations as used here. They
also argue that, while the “release” strategy enables better allocation of vaccines, in a
real-world situation the implementation of such strategy is too complicated to manage.310

While we agree that this strategy adds a complication factor, we also believe that
stock optimization models such as the one developed in this study could be linked
to vaccination databases and, as the vaccination roll-outs to tackle the SARS-CoV-2
pandemic were centralized by the national health systems, thus allowing more efficient
allocation of vaccines.315

Throughout this study, we assumed that post second-dose efficacies do not depend
on the time-window between doses, although evidence suggests that this is not the
case for AZD1222 vaccine [36]. This simplifying assumption probably leads to a slight
underestimation of the benefits of increasing the lag between doses for this vaccine.
We have also assumed that first dose efficacy is constant over time, when in reality320

it builds up over approximately 2 weeks and wanes later on [27, 33]. This can be
addressed using agent-based models [22], or age-of-infection models in a differential
equations formulation, but that would greatly increase the complexity of the algorithm.
This difficulty is also present when trying to compare model parameters to first dose
efficacy in observational studies, as only the period after 14 days is usually considered,325

leaving a very short period in which events can occur. The impact of this on our
conclusions can go in either direction: for shorter time windows, the efficacy in the
model should be lower than the observed one, since for most of the time – the first
14 days – protection is virtually non-existent; while for longer time windows the same
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happens, that is, model parameters should be below measured efficacies due to waning330

effects of the vaccine. We currently do not have enough details of the profile of the
immunological response over time to settle the issue definitively, yet we expect the
pattern of the results to hold, given that we cover every possibility of relative efficacy
and thus this can be compared to averaged values in time of the efficacy of the first
dose.335

In summary, we developed a novel approach to assess the optimal conditions to delay
the application of the second dose of three different vaccine platforms for COVID-19.
Our approach consisted of using a SEIR-like model coupled with a delay differential
equation vaccination model and optimization of vaccine stock. We found that the first
dose efficacy relative to post second dose efficacy is an essential parameter when defin-340

ing the optimal window between doses, but the vaccine production rate in each country
can be also decisive. Finally, we also found that those results have little dependence
on the current epidemic situation at the start of the simulation. Further research in this
theme would include non-constant production rate in the optimization scheme, together
with starting such model in an ongoing vaccination roll-out, as well as considering345

lower efficacy in different age bins and other dose prioritization schemes.
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APPENDIX

A. Parameterization of the model
The parameters of the model are as follows: β is the probability of infection given365

infectious contact. α is the proportion of asymptomatic individuals. σ is the proportion

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 31, 2021. ; https://doi.org/10.1101/2021.07.28.21261200doi: medRxiv preprint 

https://github.com/covid19br/VaxModel-paper
https://github.com/covid19br/VaxModel-paper
https://github.com/covid19br/VaxModel-paper
https://doi.org/10.1101/2021.07.28.21261200
http://creativecommons.org/licenses/by-nd/4.0/


13

of severe/hospitalized cases amongst infected individuals. µ is the proportion of hospi-
talized individuals that die. Such parameters are age-stratified unless otherwise stated
and their values are given in the supplementary material.

Parameters related to vaccine efficacy are given in table I.370

1) Efficacy parameters computation from observed efficacies: The vaccinated classes
parameters are combined with vaccine efficacies as:

βv = (1− εβ,v)β αv = 1− (1− εα,v)(1− α)

βw = (1− εβ,w)β αw = 1− (1− εα,w)(1− α) (1)
σv = (1− εσ,v)σ µv = (1− εµ,v)µ
σw = (1− εσ,w)σ µw = (1− εµ,w)µ

To avoid multiplicative effects in vaccine efficacies, we need to calculate the efficacy
parameters from the reported values. Let us start with the risk of infection. In our model,
this is given by β. Thus the observed efficacy against infection Eβ is given by:375

Eβ = 1− (1− εβ)β

β
= εβ (2)

Therefore the protection against infection parameter is simply the observed efficacy.
Note that we dropped the dose index as these expressions are valid for both first and
second dose efficacies.

The risk of individuals being hospitalized is given by βσ, therefore, the observed
efficacy in reducing hospitalized cases Eσ is then given by:

Eσ = 1− (1− εβ)β(1− εσ)σ

βσ
= 1− (1− εβ)(1− εσ) (3)

In terms of known values, the protection against hospitalization is given by:

εσ = 1− 1− Eσ
1− Eβ

(4)

Being µ the proportion of hospitalized individuals that die, we have that the risk of
an individual being infected and die is given by βσµ, therefore the observed efficacy
against death Eµ is given by:

Eµ = 1− (1− εβ)β(1− εσ)σ(1− εµ)µ

βσµ
= 1− (1− εβ)(1− εσ)(1− εµ) (5)

We then can obtain εµ in terms of known values:

εµ = 1− 1− Eµ
(1− εβ)(1− εσ)

= 1− 1− Eµ
(1− Eβ) (1−Eσ)

(1−Eβ)

= 1− 1− Eµ
1− Eσ

(6)
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In our model, symptomatic cases are given by severe (hospitalized) and mild cases,
the risk of becoming a symptomatic individual is given by β[σ + (1− σ)(1− α)], then
the observed efficacy Esymp is given by:

Esymp = 1− (1− εβ)β{(1− εσ)σ + [1− (1− εσ)σ][(1− εα)(1− α)]}
β[σ + (1− σ)(1− α)]

(7)

Thus
(1− Esymp)[σ + (1− σ)(1− α)]

1− εβ
= (1− εσ)σ + [1− (1− εσ)σ][(1− εα)(1− α)] (8)

Then

1− εα =

(1−Esymp)

(1−εβ)
[σ + (1− σ)(1− α)]− (1− εσ)σ

[1− (1− εσ)σ](1− α)
(9)

Therefore, εα is given in terms of known variables as:

εα = 1− (1− Esymp)[σ + (1− σ)(1− α)]− (1− Eσ)σ

(1− Eβ)

[
1− (1− Eσ)

(1− Eβ)
σ

]
(1− α)

(10)

Note that 1− Esymp does not multiply the whole expression.

B. Effective reproduction number and initial conditions estimation380

Both initial conditions estimation and effective reproduction number calculations
go through rewriting the model in a different notation. It is a system of equations
for two different groups, infected (y) and non-infected (z) populations, being y =
(E, A, I, H)T , and z = (S, R, D)T . Note that none of the vaccinated classes are
considered since at the initial condition no vaccine has been applied yet.385

We write the system

ẏ = F (y, z)−G(y, z), (11)
ż = J(y, z) , (12)

where F are all entries of new Infected, coming from classes z, whilst G accounts for
the transitions within infected classes and also recovery and death from the disease. J
accounts for the exits of the susceptible population to exposed classes, and the entrance
of recovered and deceased in their respective compartments. Consider a linearization390

around a fixed vector z = z̃, the equation for y becomes

ẏ = (F̂ − Ĝ)y , (13)
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where F̂ and Ĝ are matrices that appear from linearizing functions F and G, re-
spectively. Remembering that each of the compartments is divided into three age sub-
compartments, that is S = (Syoung, Sadult, Selderly) and that the only entrance of new
infected comes from the βSλ/N terms in the Ė equations, we write395

F̂ =
β

N

 ωb̂ b̂ (1− ξ)b̂ (1− ξsev)b̂

09,12

 , (14)

where
b̂ = diag(S)Ĉ , (15)

being Ĉ the contact matrices, from [26], ω the relative infectiousness of exposed
individuals and ξ and ξsev the reductions in contacts of people that are symptomatic
and hospitalized, respectively.

Now, Ĝ contains the terms of Exposed, E, developing the possible forms of disease
considered in the model as the terms in its first 3 rows, while it’s main diagonal contains400

terms of recovery and death, writing

Ĝ =


γ−1 0 0 0

−α(1− σ)γ−1 ν−1
i 0 0

−(1− α)(1− σ)γ−1 0 ν−1
i 0

−σγ−1 0 0 ν−1
s

 . (16)

Now, F and G are important for both Rt calculation and initial conditions estimation.
Note that for the linear problem, assuming, y(t) =

∑
i aie

rit, ai constant vectors, yields∑
i

riaie
rit = (F̂ − Ĝ)

∑
i

aie
rit. (17)

Defining r∗ = max ri, a∗ the vector associated with the exponential coefficient r∗,
and dividing the above equation by er∗t, we get405 ∑

i

riaie
(ri−r∗)t = (F̂ − Ĝ)

∑
i

aie
(ri−r∗)t , (18)

so after some time t elapses, the tuple (a∗, r∗) dominate the dynamics, and we’re left
with

r∗a∗ = (F̂ − Ĝ)a∗ (19)

The main eigenvector of F̂−Ĝ, a∗, gives a distribution of infected individuals among
different classes. With hospitalizations per day data, we can fit a re-scaling factor for
the eigenvector to match the term of hospital entrances (σγ−1E).410

Notably, the effective reproduction calculation can be performed with F̂ and Ĝ as
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Rt = ρ(FG−1) , (20)

where ρ(FG−1) is the spectral radius of FG−1, which may be seen as the dominant
eigenvalue of FG−1 in the simplest cases. The derivation of said result can be checked
in multiple textbooks, see, for instance, chapter 6 in Allen et al. [3].

C. Optimizing vaccination roll-out415

We write a dynamical equation for the vaccine stock V (t) assuming a constant
production rate p and a varying withdrawal rate is given by the vaccination rate, which
can be chosen, that is, it is the control variable. We impose that a constant fraction
θ′ = 1 − θ of the people who take the first dose will receive the second one after a
period a, so we must be careful that the total vaccination rate is the sum of both first420

and second dose vaccination rates, but the control variable v(t) is the vaccination rate
of first doses only. We also assume that there’s an initial stock of vaccines V0. The
equation for V (t) then is:

dV

dt
= p− v(t)− θ′v(t− a)

V (0) = V0 , v(t) = 0 ∀ t < 0
(21)

We note already that we can solve this equation, obtaining

V (t) = V0 + pt−
∫ t

0

v(t′)dt′ − θ′
∫ t−a

0

v(t′)dt′ (22)

We define the optimization problem by stating the objective function to be minimized425

and the restrictions that the solution must obey. Since we want to use vaccine doses as
quickly as possible, a reasonable goal is to minimize the stock of vaccines V (t). With
that, we impose that the total vaccination rate is limited by a certain maximum value,
and of course, it is positive; also, the vaccine stock V (t) is always positive. Finally, we
must ensure that in the period after the simulation ends (t > T ) there will be enough430

doses left to apply the second doses on those who have already taken the first dose.
These considerations lead to the following optimization problem:

find min
f
J =

∫ T

0

V (t)dt subject to

v(t) ≥ 0

v(t) + θ′v(t− a) ≤ vmax

V (t) ≥ 0

V (T ) ≥ θ′
∫ T

T−a
v(t′)dt′ − pa

(23)
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Solution: We can solve the problem defined by Eqs. (22, 23) using linear program-
ming. This is feasible because the objective function and all constraints are linear
functions of the control variable f and state variable V and, as Eq.(22) shows, V435

is linear on the control variable.
We first discretize the time in n intervals of length ∆t = T

n
, each interval ending

at ti, i = 1, . . . , n, and assume that the control function will be constant over each
interval (that is, a step function), with values ~x = (v(t1), v(t2), . . . , v(tn)). Eq.(22) then
becomes

V (ti) = V0 + pti −
i∑

j=1

xj − θ′
i−â∑
j=1

xj , (24)

and we seek to minimize the objective function (given by Eq.(23), up to a constant)
that is a linear function of ~x, subject to the (linear) restrictions.

The discrete version of the problem becomes:

min
~x
J = min

~x
−

n∑
j=1

[
j∑
i=1

xi + θ′
j−â∑
i=1

xi

]
subject to

~x ≥ 0

xi + θ′xi−â ≤ vmax , for i = 1, . . . , n
j∑
i=1

xi + θ′
j−â∑
i=1

xi ≤ V0 + pti , for j = 1, . . . , n

(1 + θ′)
n∑
i=1

xi ≤ V0 + p(tn + a) ,

(25)

where â = a
∆t

(chosen so that â is integer), and, to simplify notation, xi is taken to be440

zero over values of i below 1.
These conditions can readily be written in matrix form and solved using standard lin-

ear programming algorithms. We implemented them in R using the package lpSolve
[5] to solve the linear programming problem.
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