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Abstract  

Background: There are many small datasets of significant value in the medical space 

that are being underutilized. Due to the heterogeneity of complex disorders found in 

oncology, systems capable of discovering patient subpopulations while elucidating 

etiologies is of great value as it can indicate leads for innovative drug discovery and 

development.  

Materials and Methods: Here, we report on a machine intelligence-based study that 

utilized a combination of two small non-small cell lung cancer (NSCLC) datasets 

consisting of 58 samples of adenocarcinoma (ADC) and squamous cell carcinoma 

(SCC) and 45 samples (GSE18842). Utilizing a set of standard machine learning 

(ML) methods which are described in this paper, we were able to uncover 

subpopulations of ADC and SCC while simultaneously extracting which genes, in 

combination, were significantly involved in defining the subpopulations. We also 

utilized a proprietary interactive hypothesis-generating  method designed to work 

with machine learning methods, which provided us with an alternative way of 

pinpointing the most important combination of variables. The discovered gene 

expression variables were used to train ML models. This allowed us to create methods 

using standard methods and to also validate our in-house methods for heterogeneous 

patient populations, as is often found in oncology. 

Results: Using these methods, we were able to uncover genes implicated by other 

methods and accurately discover known subpopulations without being asked, such as 

different levels of aggressiveness within the SCC and ADC subtypes. Furthermore, 

PIGX was a novel gene implicated in this study that warrants further study due to its 

role in breast cancer proliferation.  

Conclusion: Here we demonstrate the ability to learn from small datasets and reveal 

well-established properties of NSCLC. This demonstrates the utility for machine 

learning techniques to reveal potential genes of interest, even from small data sets, 
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and thus the driving factors behind subpopulations of patients.  

Keywords  

Artificial intelligence; genetic subtypes; disease heterogeneity; squamous cell 

carcinoma; adenocarcinoma     

1. Introduction 

The collection of transcriptomic data is expensive, resulting in datasets with a 

small number of sample sizes (in the hundreds) but thousands of variables. As a result, 

several techniques that are making significant strides in the imaging space, such as deep 

neural networks, are not suitable for these datasets, as a large number of samples are 

required. Furthermore, the heterogeneity of the patient population and the complexity 

of diseases found in oncology requires going beyond the labels. The development of 

techniques that can explain the driving variables behind patient subpopulations is 

tremendously valuable in identifying and developing novel therapeutic agents – this is 

particularly relevant for mapping out heterogeneous diseases such as lung cancer. 

Lung cancer is the leading cause of cancer mortality worldwide, with non-small 

cell lung cancer (NSCLC) accounting for 85% of all lung cancers [1]. NSCLC can be 

divided into three histological subtypes with distinct phenotypes and prognoses: 

adenocarcinoma (ADC), squamous cell carcinoma (SCC) and large cell carcinoma 

(LCC) [2, 3]. The histological differences across these subtypes suggest that distinct 

molecular mechanisms underlie the observed phenotypic differences. Although the 

differential gene expressions across NSCLC subtypes have been of increasing interest, 

the therapeutic implications on how these pathways interact, is only more recently being 
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investigated [4]. The remarkable degree of genetic variability within each histological 

subtype only highlights the importance of molecular biology and genotyping for 

NSCLC [5, 6].  

Fortunately, machine learning (ML) advancements have served as promising 

tools for stratifying NSCLC, predicting transcriptional mutations based on histological 

slides or discriminating NSCLC subtype through genomic expression levels. The bulk 

of ML efforts have focused on image analysis for predicting the stage of NSCLC [7-

10]. However, the growing body of evidence highlighting the molecular abnormalities 

that underlie the genomic subtypes of NSCLC can train ML algorithms to identify novel 

biomarkers for NSCLC, moving towards precision medicine [11-13]. For instance, 

previous reports have identified that ADC is associated with increased expression of 

genes related to protein transport and cell junctions, while SCC is associated with 

increased expression of genes related to cell division and DNA replication [14]. An 

analysis of gene expression profiles between ADC and SCC using machine learning has 

been previously reported, identifying several genes including CSTA, TP63, SERPINB13, 

CLCA2, BICD2, PERP, FAT2, BNC1, ATP11B, FAM83B, KRT5, PARD6G, and PKP1 

which were differentially expressed in ADC and SCC [15].  

Here, using a combination of ML tools designed to learn from patient datasets 

to analyze gene expression data derived from ADC and SCC NSCLC patients, we were 

able to identify novel driving genes that distinguish these two broad subtypes. ML with 

statistical modelling tailored for small datasets has shown promise in showcasing 

disease heterogeneity[16]. Because large datasets are critical for contemporary machine 
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learning methods such as CNNs, there is a need for alternative techniques when data 

banks are insufficient to train the model. In addition, significant features found within 

small datasets may become diluted by more obvious statistical features and hence over-

represented in large datasets. As such, ML methods must be carefully used and 

complemented by statistical methods that allow for the discovery of non-linear ways in 

which groups of genes may interact to drive disease heterogeneity. The methodology 

presented here is designed for small datasets, which presents as a novel way of 

hypothesizing genetic subpopulations that may result in pathanogenesis. Our findings 

support genes previously reported to distinguish ADC and SCC subtypes. However, the 

novelty of this work lies in the machine’s ability to discover previously unknown 

subpopulations that are defined by several genes at a time. These findings shed light on 

the different mechanisms at play within these subtypes. 

This article has been formatted according to the TRIPOD guidelines. 

2. Materials and Methods 

Datasets 

The dataset consisted of 40 samples of ADC and 18 samples of SCC (GSE10245) 

[17] and 9 samples of ADC and 36 samples of SCC (GSE18842) [18] to obtain a total 

of 103 samples. Only GSE10245 was used when analyzing gene expression levels for 

discriminating differences between sex as this data was omitted from GSE18842. 

Genetic expression levels denote relative RMA-calculated signal intensity [19]. Bar 

plot means represent the mean expression level and error bars represent the standard 
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deviation of the pooled data from each probe ID.  

We utilized publicly available data sets that upon inspection had excellent signal 

for separating out adenocarcinoma and squamous cell carcinoma. The data consists of 

gene expression and is very expensive to acquire. We decided to analyze these two data 

sets because we were interested in what we could accomplish with a smaller than ideal 

data set using machine learning. This paper is a report of our findings after using a set 

of techniques that are appropriate for small data in order to encourage others to explore 

smaller data sets as there may be hidden valuable information within them that could 

be extracted with the techniques we described.  

Machine Intelligence 

In this study, we used a methodology to organize the resulting models from 

several well-known machine learning methods to explore NSCLC genetic 

heterogeneity within a small dataset. This organizational technique was used to extract 

insights from models that could then be compared with statistical methods suitable for 

small data. The only proprietary method used for these results are the techniques 

referred to as a feature selection tool [20, 21], in order to help us reduce the size of the 

data set to 16 dimensions. More specifically, we used these methods to create several 

new 16-dimensional data sets. We then used the following algorithm, based on standard 

methods, to create models and insights. For the work reported in this paper, we utilized 

the following process, after we performed our feature reduction: 

1) First, a simple variable reduction was performed via standard univariate  
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reduction methods and ensemble trees (Random Forest) through cross-

validation [22, 23]. The only dependent variables used were ADC vs SCC. All 

univariate statistical methods incorporated Bonferroni corrections. 

2) At this point we exercised two options: a) we used methods [20] to arrive at 16 

variable data sets (in order to test this system), and b) we allowed step 1 above 

to be our sole variable selection method. For replication purposes, one may run 

step 1 alone.  

3) Principal components were utilized as a linear unsupervised clustering method 

to reveal obvious subpopulation structures. 

4) The loadings from the principal components were utilized to reduce the 

variables. 

5) Using the t-SNE [24], HDBSCAN [25] and UMAP [26] algorithms, we were 

able to extract subpopulations. 

6) We then collected the sample IDs from the clusters formed from these two 

clustering models, systematically compared each group with the others, and 

then applied statistical methods to determine differentially expressed gene 

candidates. 

7) In order to determine the significance of a gene, a standard Student t-test was 

used when two subpopulations were compared, and if more than two 

subpopulations were compared, then an ANOVA was used. We then plotted the 

resulting clusters for the purpose of illustrating our findings. Again, these 

methods incorporated Bonferroni corrections. 
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Clustering was performed via principal components, t-SNE, HDBSCAN and 

UMAP and these were the basis of the maps found in this paper. Some proprietary 

algorithms were used to organize the resulting clustering models, in addition to the 

random forest models, such that we were able to explore the models interactively to 

derive a deeper understanding of the driving genes behind the sub-clusters [20]. The 

NetraAI system goes beyond these capabilities, but we did not utilize these proprietary 

methods to maintain academic standards. By allowing ourselves to use the proprietary 

organization methods provided by the NetraAI, we were able to identify subpopulations 

that we could compare with statistical methods suitable for a dataset with so few 

samples and avoid overfitting that often comes with utilizing machine learning methods 

with small datasets.  

3. Results 

3.1 Machine learning identifies differentially expressed 

genes from a small NSCLC dataset 

Using the ADC and SCC tumor gene expression data, our approach was able to 

generate a map distinguishing SCC (blue) and ADC subjects (red) (Figure 1). The genes 

that were found to have driven this distinction were DSC3, VSNL1, SLC6A10P, IRF6, 

DST, CLCA2, DSG3, LPCAT1 and PIGX. Previous studies have reported on 

differentially expressed genes in ADC and SCC. Here, we identified 17 genes that 

discriminate between SCC and ADC (Table 1). It is noteworthy that 16 of the 17 genes 

we identified have been previously reported to be differentially expressed in SCC and 
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ADC, validating our methods. Interestingly, we found genes associated with gap 

junctions and tight junctions to be strong driving forces differentiating SCC and ADC. 

It is noteworthy that PIGX was the only gene identified that has not been previously 

associated with NSCLC. Although there have been reports that PIGX promotes cancer 

cell proliferation by suppressing EHD2 and ZIC1, this warrants further investigation 

[27]. 

 

3.2 ADC and SCC are associated with distinct cellular 

adhesion molecules 

Reports of SCC being characterized by the upregulation of desmosome and gap 

junction genes and ADC characterized by the upregulation of tight junction genes 

suggest that NSCLC subtypes are associated with a distinct set of adhesion molecules 

[17]. Here, we found that SCC was associated with cell adhesion marker DSC3, and 

ADC was associated with tight junction marker CGN (Figure 2). We identified two 

probes corresponding to DSC3, 206032_at and 206033_s_at. There was a statistically 

significant association of both DSC3 probes with SCC (p < 0.0001) (Figure 2A). 

Interestingly, the elevated expression of DSC3 was associated with males; however, this 

was not statistically significant (p = 0.062 for 206032_at and p = 0.077 for 

206033_s_at). In contrast, the two probes corresponding to CGN, 223232_s_at and 

223233_s_at were significantly associated with ADC (p < 0.0001) (Figure 2). The CGN 

probes were significantly associated with females (p = 0.014). The variability of 
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adhesion molecule expression across sex warrants further investigation to elucidate the 

details of the correlation and advance towards gender related precision medicine.  

3.3 SLC6A10P may be a key driver of a more aggressive 

ADC subtype 

Elevated expression of SLC6A10P was significantly associated with two 

subgroups of ADC (p<0.0001) (Figure 3), in line with previous reports [28, 29]. 

Interestingly, increased expression of the pseudogene SLC6A10P in ADC has been 

associated with increased metastatic risk and reported to be a significant predictor of 

poor clinical outcome [29]. Our ML methodology was able to reveal subpopulations of 

ADC subjects that are uniquely classified by SLC6A10P (p = 1.3×10-5).. This 

demonstrates the potential power of machine intelligence to reveal aetiologias within 

complex diseases, even when a small number of samples are present. However, the 

methods must be used to reveal subpopulations that can then be compared using 

appropriate statistical methods suitable for comparing small groups.  

3.4 IRF6 and CLCA2 drive unique subpopulations of SCC 

Consistent with previous reports, we found two distinct subpopulations of SCC 

were found to be driven by IRF6 and CLCA2 (Figure 4) [28, 30]. IRF6 and CLCA2 

expression levels were higher in SCC than ADC (p<0.0001) (Figure 4B and 4C). The 

significance value between the CLCA2 and IRF6 probes in the two encircled SCC 

groups were evaluated to be 4.4×10-7, 5.8×10-3, 9.3×10-7 and 0.046 for the 206164_at, 
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206165_s_at, 206166_s_at and 1552477_a_at probes, respectively. 

4. Discussion 

This study highlights the genetic heterogeneity within NSCLC subtypes. Using 

a small dataset, we were able to identify a set of 17 genes that distinguish SCC and 

ADC (Table 1). Within these 17 genes, most have been previously reported to be 

associated either with NSCLC or a specific subtype of NSCLC, validating our ML 

approach. These findings were aligned with previous reports on SCC genes being 

associated with the organization and assembly of cell and gap junctions, glutathione 

conjugation and the redox stress response, ECM organization and collagen-related 

proteins, interferon and cytokine signaling, and HLA downregulation and ADC genes 

associated with ECM organization proteins and complement, interferon and cytokine 

signaling, and collagen-related genes and proteins for ECM organization [31]. Another 

study identified epidermis development, cell division, and epithelial cell differentiation 

as the most common categories characterizing SCC, and cell adhesion enrichment, 

biological adhesion, and coagulation for ADC [32]. However, some of the genes we 

identified have not been previously associated with NSCLC or a specific subtype and 

represent areas that warrant greater investigation for the advancement of precision 

medicine in NSCLC. Below, the genes of interest found using our methodology are 

highlighted in the context of previous findings in NSCLC. 

The first of the previously reported NSCLC-associated genes we identified, 

DSC3, plays a role in epidermal morphology and keratinocyte proliferation [18]. There 
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are several studies that report on DSC3 distinguishing ADC and SCC, with a higher 

expression in SCC [33-36]. Notably, there has been a report on the association between 

DSC3 and tumor suppressor activity in NSCLC mediated by inhibition of EGFR [37]. 

However, there remain contradictory associations with DSC3 and prognosis, with 

elevated levels associated with increased metastatic risk in melanoma and better 

prognosis in lung and colon cancer [35]. This suggests that the same molecule may have 

differential effects in the tumor microenvironment (TME), which presents as an 

interesting field of research to understand how DSC3 expression correlates with 

NSCLC subtypes depending on where they originate in the lung.  

VSNL1 codes for the calcium-sensor protein VILIP1. Lower VSNL1 expression 

has been correlated with poor clinical outcomes in NSCLC patients [38]. VILIP1 has 

been reported to be decreased or undetectable in aggressive and invasive SCC, while 

less aggressive SCC displayed VILIP-1 expression [38]. There is evidence linking 

decreased VILIP1 expression to increased cell motility and malignancy, suggesting that 

VSNL1 downregulation promotes SCC tumor invasiveness [39]. 

Although a direct role of IRF6 in lung cancer has not been identified, studies 

suggest that IRF6 is a crucial regulator of the cell cycle, promoting progression to the 

G0
 state and allowing for uncontrolled cell proliferation [18]. Decreased IRF6 

expression has been associated with poor prognosis of gastric cancer and increased 

invasiveness of breast cancer [40, 41]. 

Interestingly, SLC6A10P was the single gene that we found to drive two specific 

subtypes of ADC. SLC6A10P was previously found to be a marker for aggressive ADC 
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[29], and recently, implicated within the Notch signaling pathway [42]. Our findings 

suggest that SLC6A10P warrants further investigation as a genetic biomarker in the 

context of the ADC patient subpopulation.  

DST and DSC3 have been increasingly reported to be highly expressed in both 

ADC and SCC. Overexpression of these desmosomal genes are associated with 

increased CD8+ T-cell infiltration in ADC [35].  

CLCA2 has been implicated as a negative regulator of cancer cell migration [43]. 

In the lung, CLCA2 has been reported to be highly expressed in SCC, suggesting that it 

may serve as a diagnostic marker to differentiate SCC from ADC. Female patients with 

CLCA2-negative SCC exhibited significantly poorer prognoses [30].  

DSG3 has been reported to play a role in SCC and has been used as a sensitive 

and specific marker for SCC. It was also shown to be an effective discriminator between 

SCC and ADC [44, 45]. Higher DSG3 expression correlated with lower survival in SCC 

[46]. DSG3 and KRT5 have been reported to be downregulated in AC [47]. 

LPCAT1 has recently been shown to be overexpressed in lung SCC and 

associated with decreased OS [48]. In lung ADC, gene overexpression was associated 

with higher probabilities of ADC metastasis and poor clinical outcomes [49].  

There is evidence that supports the role of cell adhesion proteins in both ADC 

and SCC. However, GJB5 has been implicated in SCC mechanisms and is associated 

with gap junctions [31]. It is not surprising that there is a higher expression of GJB5 in 

SCC as it is primarily associated with gap junctions (Figure 2) [17, 32]. GJB5 (gap 

junction protein beta 5 or protein-coding gene: Cx31.1) is involved in intercellular 
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communication related to epidermal differentiation and environmental sensing. 

Cx31.1 was found to be downregulated in NSCLC with expression levels 

inversely related to metastatic potential, suggesting it inhibits malignant properties of 

NSCLC cell lines. Cx31.1 is colocalized with LC3-II (autophagy marker light chain 3) 

and acts as a tumor suppressor as it plays a role in the regulation of cell proliferation, 

cell differentiation, tissue development and apoptosis [32].  

TRIM29 has been shown to be upregulated in NSCLC, and may be a marker for 

tumour aggressiveness [50]. It has been further associated with poorer histological 

grade and clinical outcomes in SCC [51]. It has been suggested that this may be due to 

the inhibition of p53 via TRIM29 [52]. 

KRT17 overexpression has been associated with both subtypes of NSCLC, but 

was significantly correlated to more advanced tumour grade, lymph node metastatic 

potential, and overall survival in ADC [53].   

BCN1 has been reported to be hypermethylated in NSCLC tissue [54]. 

Furthermore, decreased expression of BNC1 has been observed in other carcinomas 

[55]. Aberrant BNC1 and BNC2 expression contributes to tumor progression [56].  

Reports of upregulation of desmosomes and gap junctions in SCC and tight 

junctions in ADC suggests that SCC and ADC are characterized by a distinct set of 

adhesion molecules [17]. Here, we found that ADC was identified by CGN and SCC 

by DSC3 (Figure 2). CGN (cingulin) is involved in the organization of tight junctions 

and is downregulated in SCC [17]. In contrast, ADC has been reported to be 

characterized by tight junctions, while SCC is characterized by gap junctions.  
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In addition to the 17 identified genes differentially expressed in ADC and SCC, 

PTGFRN (prostaglandin F2 receptor negative regulator; CD315) was also found to be 

associated with ADC. PTGFRN has been reported to be associated with worse survival 

in glioblastoma, while inhibition has been associated with decreased proliferation and 

tumor growth [57, 58]. PTGFRN inhibits the binding of prostaglandin F2α to its 

receptor. Notably, there are reports that PTGFRN is associated with small cell lung 

cancer; however, the role remains unknown [59, 60]. 

IRF6 and CLCA2 have previously been implicated in lung SCC [28, 30]. CLCA2 

in particular was highlighted to differentiate ADC and SCC. Furthermore, SCC 

expression was correlated with tumour grade upon histological characterization. In 

particular, CLCA2 negative samples were associated with poorly differentiated tumours 

[30].  

Males have been reported to have a significantly poorer NSCLC prognosis 

compared to females, shifting efforts towards sex-based approaches to diagnosis, 

prognosis, and therapeutic interventions [61, 62]. Additionally, estrogens have been 

associated with increased risk in ADC in women despite equal expression of estrogen 

receptors α and β, however, the role remains unclear [63]. While there are several 

reports on the sex-based differences in cancer mechanisms, including differences in 

metabolism, immunity, and angiogenesis, differences in CGN and DSC3 expression 

have not been previously reported to the best of our knowledge [64]. Gap junction 

proteins, also known as connexins, serve as channels that connect the interior of 

adjacent cells, facilitating intracellular homeostasis and coordination of activities via 
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second messengers [65]. Desmosomes primarily provide mechanical strength via a 

structural network. In contrast, tight junctions form a barrier around the cell, regulating 

permeability of the paracellular space [66, 67]. These molecules play critical roles in 

epithelial-to-mesenchymal transition, a process involved in cancer metastasis. Though 

no sex-based differences have been reported, this presents as a unique field of research, 

as there may be different druggable targets for males and females.  

Finally, the phosphatidylinositol glycan anchor biosynthesis class gene, PIGX, 

was found to be a driver of ADC and SCC differentiation in several instances (Figure 

1). Little is known about the role of PIGX in NSCLC. However, it has been noted that 

PIGX has a proliferative role when expressed in breast cancer cells [27]. In addition, 

authors found higher PIGX expression was associated with shorter recurrence-free 

survival. This suggests that this gene plays a role in NSCLC that warrants further study. 

 

5. Conclusions 

The approach utilized here to derive the insights relied on the ability for certain 

machine learning methods to create hypotheses about subpopulations of patients, and 

then to statistically test the driving variables of these subgroups of patients. In this way, 

we utilize machine learning to derive potential insights and then utilize statistical 

methods that are suitable for small data to evaluate differential expression. In order to 

create robust predictive models with machine intelligence, one requires large data sets, 

but here we utilized the ability for some of these methods to create hypotheses instead, 

and then use methods appropriate for small data to test these hypotheses. This 
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bidirectional attack allowed us to derive insights from these small datasets that have 

been previously validated and to finally derive a new potential role for the gene PIGX 

in NSCLC.  

Limitations 

This study highlights a methodology that targets genes of interest in a small, 

heterogenous subpopulation of NSCLC. Although small populations are more prone to 

local drivers of genetic heterogeneity, they will not encompass all genes that may drive 

other subtypes of NSCLC in patients. Therefore, a limitation of this methodology 

resides in it’s inability to forecast more obvious patterns found in larger datasets.  

 

  

Abbreviations 

ADC adenocarcinoma 

AUC area under the curve 

CNN convolutional neural network 

CT computed tomography 

EMT epithelial-to-mesenchymal transition 

LCC large cell carcinoma 

ML machine learning 

NSCLC non-small cell lung cancer 
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PET positron emission tomography 

ROC receiver operator curve 

SCC squamous cell carcinoma 

SVM support vector machine 

TME tumor microenvironment 
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Tables and Figures 

 

Table 1  Genes identified as discriminating between squamous cell carcinoma and 

adenocarcinoma. 

Gene Symbol Gene Name Description Reference 

DSC3 Desmocollin-3 Ca2+-

dependent 

glycoprotein 

involved in 

cell 

adherence 

[18] 

VSNL1 Visinin-like protein 1 Neuronal 

Ca2+ sensor 

protein; 

tumor 

suppressor 

gene 

[38, 68] 

IRF6 Interferon regulatory 

transcription factor 6 

Transcription 

factor 

[28] 
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DST Dystonin Cell adhesion [69] 

CLCA2 Chloride channel 

accessory 2 

Cell 

adhesion; 

tumor 

suppressor 

[30] 

PIGX Phosphatidylinositol 

glycan anchor 

biosynthesis, class X 

Tumor 

suppressor 

 

DSG3 Desmoglein 3 Cell adhesion [44-46] 

LPCAT1 Lysophosphatidylcho

line acyltransferase 1 

Cancer 

progression 

and 

metastasis 

[48], [49] 

GJB5/CX31.

1 

Gap junction protein 

beta 5 

Intracellular 

communicati

on, gap 

junction 

protein 

[17, 31, 32] 

SLC16A1 Solute carrier family 

16 member 1 

Cell 

metabolism 

[70] 

BNC1 Zinc finger protein 

basonuclin-1 

Keratinocyte 

proliferation 

[54] 
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GBP6 Guanylate binding 

protein family 

member 6 

 [30] 

SLC6A10P Solute carrier family 

6 member 10 

Neurotransmi

tter 

transporter; 

pseudogene 

of SLC6A8 

[29] 

KRT5 Keratin 5 Cytoskeleton 

and structural 

support 

[47] 

TRIM29 Tripartite motif-

containing 29 

Migration 

and invasion 

[51] 

KRT17 Keratin 17 Cytoskeleton 

and structural 

support 

[53] 

CGN Cingulin  Tight 

junction 

[17] 
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Figure 1. Classification of NSCLC patients stratified into SCC and ADC. SCC 

(blue) and ADC subjects (red) were delineated by HDBSCAN. The encircled groups 

were characterized by different expression levels of DSC3, VSNL1, SLC6A10P, IRF6, 

DST, CLCA2, DSG3, LPCAT1 and PIGX.  

 

 
    (a)               (b) 
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Figure 2. Differential expression of DSC3 and CGN in NSCLC. (A) Expression 

level of DSC3 probes (mean ± SD), 206032_at and 206033_s_at, in SCC and ADC. 

(B) Expression level of CGN probes, 223232_s_at and 223233_s_at, in SCC and 

ADC. Abbreviations: NSCLC, non-small cell lung cancer; SD, standard deviation; 

SCC, squamous cell carcinoma; ADC, adenocarcinoma. 

 

 

 

Figure 3. Unsupervised clustering of ADC subject subgroups. ADC 

(adenocarcinoma) subject (red) subgroups were delineated via the aforementioned 

clustering methods, namely HDBSCAN. These two ADC patient subgroups are driven 

by SLC6A10P.  
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Figure 4. Differential expression of IRF6 and CLCA2 in NSCLC. (A) Our 

methodology hypothesized that the encircled SCC (squamous cell carcinoma) patient 

subgroups were driven by IRF6 and CLCA2. (B) Expression level of the IRF6 probe 

(mean ± SD), 1552477_a_at in SCC and ADC. (C) Expression level of CLCA2 probes 

206164_at, 206165_s_at, and 206166_s_at in SCC and ADC (mean ± SD).  

 

    (b)                         (c) 

(a) 
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