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Abstract: There are many small datasets of significant value in the medical space that are being 

underutilized. Due to the heterogeneity of complex disorders found in oncology, systems capable 

of discovering patient subpopulations while elucidating etiologies is of great value as it can 

indicate leads for innovative drug discovery and development. Here, we report on a machine 

intelligence-based study that utilized a combination of two small non-small cell lung cancer 

(NSCLC) datasets consisting of 58 samples of adenocarcinoma (ADC) and squamous cell 

carcinoma (SCC) and 45 samples from the gene expression analysis of human lung cancer and 

control samples series (GSE18842). Utilizing a novel machine learning approach, we were able 

to uncover subpopulations of ADC and SCC while simultaneously extracting which genes, in 

combination, were significantly involved in defining the subpopulations. An interactive 

hypothesis-generating interface designed to work with machine learning methods allowed us to 

explore the hypotheses generated by the unsupervised components of the system. Using these 

methods, we were able to uncover genes implicated by other methods and accurately discover 

known subpopulations without being asked, such as different levels of aggressiveness within the 

SCC and ADC subtypes. Furthermore, PIGX was a novel gene implicated in this study that 

warrants further study due to its role in breast cancer proliferation. Here we demonstrate the 

ability to learn from small datasets and reveal well-established properties of NSCLC. These 

machine learning techniques can reveal the driving factors behind subpopulations of patients 

altering the approach to drug discovery and development by making precision medicine a reality.  
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1. Introduction 
 

The collection of transcriptomic data is expensive, resulting in datasets with a small 

number of sample numbers (in the hundreds) but thousands of variables. As a result, several 

techniques that are making significant strides in the imaging space, such as deep neural 

networks, are not suitable for these data, as a large number of samples are required. Furthermore, 

the heterogeneity of the patient population and the complexity of diseases found in oncology 

requires going beyond the labels. The development of techniques that can explain the driving 

variables behind patient subpopulations is tremendously valuable in identifying and developing 

novel therapeutic agents – this is particularly relevant for mapping out heterogeneous diseases 

such as lung cancer. 

Lung cancer is the leading cause of cancer mortality worldwide, with non-small cell lung 

cancer (NSCLC) accounting for 85% of all lung cancers [1]. NSCLC can be divided into three 

histological subtypes with distinct phenotypes and prognoses: adenocarcinoma (ADC), 

squamous cell carcinoma (SCC) and large cell carcinoma (LCC) [2,3]. The histological 

differences across these subtypes suggest that distinct molecular mechanisms are underlying the 

observed phenotypic differences. Although the differential gene expressions across NSCLC 

subtypes have been of increasing interest, the therapeutic implications on how these pathways 

interact, is only more recently being investigated [4]. The remarkable degree of genetic 

variability within each histological subtype only highlights the importance of molecular biology 

and genotyping for NSCLC [5,6].  

Fortunately, machine learning (ML) advancements have served as promising tools for 

stratifying NSCLC, predicting transcriptional mutations based on histological slides or 

discriminating NSCLC subtype through genomic expression levels. The bulk of ML efforts have 

focused on image analysis for predicting the stage of NSCLC [7-10]. However, the growing 

body of evidence highlighting the molecular abnormalities that underlie the genomic subtypes of 

NSCLC can train ML algorithms to identify novel biomarkers for NSCLC, moving towards 

precision medicine [11-13]. For instance, previous reports have identified that ADC is associated 

with increased expression of genes related to protein transport and cell junction, while SCC is 

associated with increased expression of genes related to cell division and DNA replication [14]. 

An analysis of gene expression profiles between ADC and SCC using machine learning 

algorithms has been previously reported, identifying several genes including CSTA, TP63, 

SERPINB13, CLCA2, BICD2, PERP, FAT2, BNC1, ATP11B, FAM83B, KRT5, PARD6G, and 

PKP1 that were differentially expressed in ADC and SCC [15].  

To consolidate of progress in NSCLC classification using ML, a review of recent work 

using imaging and genetic biomarkers has been performed. This review highlights the foundation 

by which our methodology was built on, while contextualizing the need for an ML framework 

that can further identify NSCLC genetic drivers using small datasets when labelled and/or big 

data is unavailable. 
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Review of Previous Work  

 
Discriminating Tumor vs. Normal Tissue  

ML models are highly efficient and well suited for image classification, outpacing human 

efforts [16]. More specifically, tumor size is a prognostic marker for patient survival, 

highlighting the necessity for automatic pattern analysis of tumor boundary detection [17]. 

Several ML methods have been proposed for this application, most notably using convolutional 

neural networks (CNNs). For example, a CNN-based approach has been used to identify specific 

features associated with patient prognosis based on histological slides of lung ADC [18]. The 

utility of CNNs to classify cancer vs. non-cancerous tissue has been corroborated as CNNs were 

found to outperform traditional non-deep learning methods, such as Gray-level Co-occurrence 

Matrix texture analysis with a support vector machine (SVM) classifier [19]. However, this 

model had a relatively low Area Under the Curve (AUC) of the Receiver Operator Curve (ROC) 

compared to other ML methods, owing to the complex morphometry of histological image data.  

 
 Discriminating ADC vs. SCC vs. Normal Tissue  

ADC and SCC account for approximately 40% and 25% of all lung cancer cases, 

respectively, with treatment strategies for the two subtypes differing significantly. Several 

methods have been developed to automate patient diagnosis based on both radiomic and 

histological images. For example, an automated GLCM-SVM binary classifier method was used 

to classify hybrid positron emission tomography (PET)/computed tomography (CT) images of 

ADC and SCC patient tumors [20]. They distinguished ADC and SCC patient samples with an 

AUC of 0.89 based on colour and texture features. Similarly, another group trained a hybrid 

genetic algorithm and SVM model on CT images to parse the heterogeneity of NSCLC subtypes 

with a classification success rate of 96.2%. CT images were used in a more recent study to 

classify NSLSC subtypes using a hybrid minimum redundancy maximum relevance algorithm 

and SVM method to attain an AUC of 0.655 [21].  

On the microscopic scale, one study used histologically stained images of SCC and ADC 

patients for subtype classification using a novel CNN, PathCNN, which was able to differentiate 

normal and pathological tissue but found AUCs for distinguishing the two subtypes to be 0.93 

[22]. Interestingly, microRNA data was the foundation of an investigation of the two NSCLC 

subtypes were distinguished using microRNA sequencing data from a publicly available dataset. 

They used a decision tree algorithm, where the two nodes corresponding to two microRNA 

thresholds to distinguish the two subtypes, obtaining an AUC of 0.916 [23]. These findings 

demonstrate the complexity of NSCLC subtyping at the tumor level; however, subtyping at the 

morphological level can impose additional challenges.  

 

Morphometry Subtype Prediction  

NSCLC subtypes present remarkable structural heterogeneity. The World Health 

Organization (WHO) has released guidelines on diagnosing the morphological subtypes of ADC: 

lepidic, acinar, papillary, micropapillary, and solid [24]. However, there is a high level of inter-

variability that exists between classifications. Furthermore, a single patient can present with a 

range of morphological subtypes. As a result, a careful diagnosis must be made as each subtype 

imparts a distinct set of characteristics, including therapeutic options and prognosis [25,26]. The 

Cohen’s kappa score (κ) can assess statistical reliability as no ground truth exists for classifying 
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the predominant morphological pattern. Thus, quantitative methods that can minimize variability 

in diagnosis are paramount in delivering targeted care. Using a CNN on histological slides of 

ADC, researchers classified tumors into one of the five subtypes, with a κ score of 0.41–0.60 

[27]. Similarly, a de-novo trained CNN was used to characterize patches of the ADC 

morphological subtypes on histological slides [28]. 

 

Mutation Subtype Prediction  

Understanding the etiology of NSCLC subtypes is essential to elucidate the mechanisms 

underpinning the morphological heterogeneity of NSCLC. Therefore, it comes as no surprise that 

there is a remarkable degree of genetic heterogeneity even within subtypes. For example, 20% of 

ADC tumours have been shown to have EGFR mutations and have subsequently become a 

druggable target [29,30]. As a result, efforts have been focused on using ML and histological or 

radiological images to predict the mutation status of NSCLC tumours. Using a CNN has enabled 

researchers to predict the six most common ADC mutations, such as EGFR and KRAS, based on 

histological slides [31]. This network correctly classified EGFR and KRAS mutations with AUCs 

of 0.826 and 0.733, respectively. Comparable results were reported for TP53 mutations with an 

AUC of 0.76 using the same CNN architecture [32].  

Research efforts have also begun to use non-invasive radiomic data at the mutational 

level. Gradient Tree Boosting outperformed a Random Forest model to distinguish the EGFR 

mutation status in PET/CT images of ADC and SCC patients with an AUC of 0.659 [33]. One 

study employed PET, CT and genomics data to test a spectrum of ML algorithms to predict 

EGFR and KRAS mutation status in a cohort of NSCLC patients with maximal AUCs of 0.82 and 

0.83, respectively, using a stochastic gradient descent classifier [34]. Using a CNN trained on 

tumor morphology and RNA sequencing data, researchers have been able to classify ADC and 

SCC transcriptomic subtypes with AUCs of 0.771-0.892 and 0.7, respectively [35]. These results 

showcase the potential for ML methods to predict NSCLC transcriptional subtypes.  

 

NSCLC Stratification Based on Gene Expression 

ML also has applications in classifying the genetic expression profiles of ADC and SCC. 

In attempts to predict overall survival (OS) in NSCLC patients, investigators used a deep 

learning network, trained on clinical prognostic factors and microarray data to predict the 

probability of 5-year survival after the first treatment with an AUC of 0.8163 [36].  

NSCLC progression through the various pathologic stages has been shown to decrease 

overall 5-year survival [37]. Monotonically expressed genes have been hypothesized to give rise 

to stage progression and correlate to survival risk levels. Using a feature selection algorithm of 

microarray data accessed from the GEO of both ADC and SCC patients across NSCLC stages, 

no monotonically expressed genes were found to correlate to ADC or SCC stage [38]. However, 

a handful of genes were found to correlate with risk level for the ADC subtype, suggesting that 

ML-identified gene signatures might be useful for patient prognosis.  

Conversely, ML efforts can also be focused on discovering biomarkers for early tumor 

development. For instance, one group used a semi-restricted Boltzmann ML algorithm using 

clinical data, including OS and tumor stage, and a feature selection technique to derive the genes 

driving early cancer development and predicting tumor stage [39]. These genes may serve as 

therapeutic targets for early-stage NSCLC and warrant further investigation. In previous efforts 

in this field, groups used a Monte Carlo feature selection to build genetic profiles of ADC and 

SCC tumour samples obtained from the GEO and applied an SVM classifier to create a list of 
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optimal genes that distinguish the two subtypes [40]. Their classifier derived a list of 13 

differentially expressed genes in the two subtypes, including CLCA2, a member of the chloride 

channel family. 

In another study, a k-means clustering method was used to classify genetic subtypes of 

ADC. Healthy and ADC tissue was then classified using an SVM followed by input into a self-

organizing map neural network. The neurons in the output layer were categorized  using a 

hierarchical clustering method to divide ADC tumours into four genetic subtypes [41]. In 

addition to performing a survival analysis on the four subtypes, two subtypes were found to have 

high expression levels of immune-related genes, suggesting the crucial role of immune 

dysregulation in ADC development.  

 

Here, using a novel set of ML tools designed to learn from patient datasets to analyze 

gene expression data derived from ADC and SCC NSCLC patients, we were able to identify 

novel driving genes that distinguish these two broad subtypes. ML with statistical modelling 

tailored for small datasets has shown promise in showcasing disease heterogeneity[42]. Because 

large datasets are critical for contemporary machine learning methods, such as CNNs, there is a 

need for alternative techniques when data banks are insufficient to train the model. As such, our 

ML and statistical framework will allow for discovery of the non-linear ways in which groups of 

genes may interact to drive disease heterogeneity. This framework is designed for small datasets, 

which presents as a novel way of hypothesizing genetic subpopulations that may result in 

pathanogenesis. Our findings support genes previously reported to distinguish ADC and SCC 

subtypes; however, the novelty of this work lies in the machine’s ability to discover previously 

unknown subpopulations that are defined by several genes at a time. These findings shed light on 

the different mechanisms at play within these subtypes as well as highlight novel potential 

therapeutic interventions.  

2. Materials and Methods 
 

Datasets 
The dataset consisted of 58 samples of ADC and SCC (GSE10245) and 45 samples of 

human lung cancer and controls (GSE18842) to obtain a total of 103 samples. Only GSE10245 

was used when analyzing gene expression levels for discriminating differences between sex as 

this data was omitted from GSE18842. Genetic expression levels denote relative RMA-

calculated signal intensity [43]. Bar plots represent the mean expression level and error bars 

represent the standard deviation of the pooled data from each probe ID.  

 

Machine Intelligence 
In this study, we used a proprietary tool to organize the resulting models from several 

well-known machine learning methods to explore NSCLC genetic heterogeneity within a small 

dataset. This organizational technique was used to extract insights from models that could then 

be compared with statistical methods suitable for small data. An interactive hypothesis-

generating interface was used such that human interaction could facilitate the analysis of 

different models [44,45]. This methodology allows the user to explore hypotheses generated by 

the unsupervised clustering methods of the system. For the work reported in this paper, we only 

utilized the following process, coupled with a proprietary tool of organizing the resulting models: 
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1) Feature selection was performed via standard univariate variable reduction methods and 

ensemble trees (Random Forest) through cross-validation [46,47]. The only dependent variables 

used were ADC vs SCC.  

2) Principal components were utilized as a linear unsupervised clustering method to reveal 

obvious subpopulation structures. 

3) The loadings from the principal components were utilized to reduce the variables. 

4) Using the t-SNE [48] and UMAP [49] algorithms, we were able to extract subpopulations. 

5) We then collected the sample IDs from the clusters formed from these two clustering models, 

systematically compared each group with the others, and then applied statistical methods to 

determine differentially expressed gene candidates. 

6) A proprietary mathematical system was utilized to capture the models created up to this point 

in order to create maps. The advantage of using the NetraAI system is that it is easier to explore 

the subpopulations found to extract precisely which genes are most significant. In order to 

determine the significance of a gene, a standard Student t-test was used when two subpopulations 

were compared, and if more than two subpopulations were compared, an ANOVA was used. 

 

Clustering was performed via principal components, t-SNE, and UMAP and these were 

the basis of the maps found in this paper. Some proprietary algorithms were used to organize the 

resulting clustering models, in addition to the random forest models, so that we were able to 

explore the models interactively to derive a deeper understanding of the driving genes behind the 

sub-clusters [44]. The NetraAI system goes beyond these capabilities, but we did not utilize these 

proprietary methods to maintain academic standards. By allowing ourselves to use the 

proprietary organization methods provided by the NetraAI, we were able to identify 

subpopulations that we could compare with statistical methods suitable for a dataset with so few 

samples and avoid overfitting that often comes with utilizing machine learning methods with 

small datasets.  

 

3. Results 
 

3.1 Machine learning identifies differentially expressed genes from a small NSCLC 

dataset 
Using the ADC and SCC tumor gene expression data, our algorithm was able to generate 

a map distinguishing SCC (blue) and ADC subjects (red) (Figure 1). The genes that were found 

to have driven this distinction were DSC3, VSNL1, SLC6A10P, IRF6, DST, CLCA2, DSG3, 

LPCAT1 and PIGX. Previous studies have reported on differentially expressed genes in ADC and 

SCC. Here, we identified 17 genes that discriminate between SCC and ADC (Table 1). It is 

noteworthy that 16 of the 17 genes we identified have been previously reported to be 

differentially expressed in SCC and ADC, validating our methods. Interestingly, we found genes 

associated with gap junctions and tight junctions to be strong driving forces differentiating SCC 

and ADC. It is worth mentioning that PIGX was the only gene identified that has not been 

previously associated with NSCLC. Although there have been reports that PIGX promotes 

cancer cell proliferation by suppressing EHD2 and ZIC1, this warrants further investigation [50]. 
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Figure 1. Algorithm-generated map of NSCLC patients stratified into SCC and ADC. SCC (blue) and ADC subjects (red) 

delineated by user-defined segmentation of unsupervised patient map. The encircled groups were distinguished by DSC3, VSNL1, 

SLC6A10P, IRF6, DST, CLCA2, DSG3, LPCAT1 and PIGX.  

 

 
Table 1  Genes identified as discriminating between squamous cell carcinoma and adenocarcinoma. 

Gene Symbol Gene Name Description Reference 

DSC3 Desmocollin-3 Ca2+-

dependent 

glycoprotein 

involved in 

cell 

adherence 

[51] 

VSNL1 Visinin-like protein 

1 

Neuronal 

Ca2+ sensor 

protein; 

tumor 

suppressor 

gene 

[52,53] 

IRF6 Interferon regulatory 

transcription factor 6 

Transcription 

factor 

[54] 

DST Dystonin Cell adhesion [55] 

CLCA2 Chloride channel 

accessory 2 

Cell 

adhesion; 

tumor 

suppressor 

[56] 

PIGX Phosphatidylinositol 

glycan anchor 

biosynthesis, class X 

Tumor 

suppressor 

 

DSG3 Desmoglein 3 Cell adhesion [57-59] 
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LPCAT1 Lysophosphatidylch

oline acyltransferase 

1 

Cancer 

progression 

and 

metastasis 

[60,61] 

GJB5/CX31.

1 

Gap junction protein 

beta 5 

Intracellular 

communicati

on, gap 

junction 

protein 

[62-64] 

SLC16A1 Solute carrier family 

16 member 1 

Cell 

metabolism 

[65] 

BNC1 Zinc finger protein 

basonuclin-1 

Keratinocyte 

proliferation 

[66] 

GBP6 Guanylate binding 

protein family 

member 6 

 [56] 

SLC6A10P Solute carrier family 

6 member 10 

Neurotransmi

tter 

transporter; 

pseudogene 

of SLC6A8 

[67] 

KRT5 Keratin 5 Cytoskeleton 

and structural 

support 

[68] 

TRIM29 Tripartite motif-

containing 29 

Migration 

and invasion 

[69] 

KRT17 Keratin 17 Cytoskeleton 

and structural 

support 

[70] 

CGN Cingulin  Tight 

junction 

[64] 

 
3.2 ADC and SCC are associated with distinct cellular adhesion molecules 

Reports of SCC being characterized by the upregulation of desmosome and gap junction 

genes and ADC characterized by the upregulation of tight junction genes suggest that NSCLC 

subtypes are associated with a distinct set of adhesion molecules [64]. Here, we found that SCC 

was associated with cell adhesion marker DSC3, and ADC was associated with tight junction 

marker CGN (Figure 2). We identified two probes corresponding to DSC3, 206032_at and 

206033_s_at. There was a statistically significant association of both DSC3 probes with SCC (p 

< 0.0001) (Figure 2A). Interestingly, the elevated expression of DSC3 was associated with 

males; however, this was not statistically significant (p = 0.062 for 206032_at and p = 0.077 for 

206033_s_at) (Figure 2B). In contrast, the two probes corresponding to CGN, 223232_s_at and 

223233_s_at were significantly associated with ADC (p < 0.0001) (Figure 2C). The CGN probes 

were significantly associated with females (p = 0.014) (Figure 2D). The variability of adhesion 
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molecule expression across sex warrants further investigation to elucidate the details of the 

correlation and advance towards gender related precision medicine. 

 
Figure 2. Differential expression of DSC3 and CGN in NSCLC. (A) Expression level of DSC3 probes (mean ± SD), 206032_at 

and 206033_s_at, in SCC and ADC. (B) DSC3 probes, 206032_at and 206033_s_at, expression levels in males and females. (C) 

Expression level of CGN probes, 223232_s_at and 223233_s_at, in SCC and ADC. (D) CGN probes, 223232_s_at and 

223233_s_at, expression levels in males and females. Abbreviations: NSCLC, non-small cell lung cancer; SD, standard 

deviation; SCC, squamous cell carcinoma; ADC, adenocarcinoma. 

3.3 SLC6A10P is a key driver of a more aggressive ADC subtype 
Elevated SLC6A10P was significantly associated with two subgroups of ADC (p<0.0001) 

(Figure 3), in line with previous reports [54,67]. Interestingly, increased expression of the 

pseudogene SLC6A10P in ADC has been associated with increased metastatic risk and reported 

to be a significant predictor of poor clinical outcome [67]. Our ML methodology was able to 

reveal subpopulations of ADC subjects that are uniquely classified by SLC6A10P (p = 1.3×10-9), 

in an unsupervised way. This demonstrates the potential power of machine intelligence to reveal 

aetiologies within complex diseases, even when a small number of samples are present. 

However, the methods must be used to reveal subpopulations that can then be compared using 

appropriate statistical methods suitable for comparing small groups.  
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Figure 3. Algorithm-generated map of ADC subject subgroups. ADC subject (red) subgroups delineated by user-defined 

segmentation of unsupervised patient map. The NetraAI tool organized the resulted models in order to reveal that the two 

encircled ADC patient subgroups were driven by SLC6A10P. Abbreviations: ADC, adenocarcinoma. 

3.4 IRF6 and CLCA2 drive unique subpopulations of SCC 
Consistent with previous reports, we found two distinct subpopulations of SCC were 

found to be driven by IRF6 and CLCA2 (Figure 4) [54,56]. IRF6 and CLCA2 expression levels 

were higher in SCC than ADC (p<0.0001) (Figure 4B and 4C). The significance value between 

the CLCA2 and IRF6 probes in the two encircled SCC groups were evaluated to be 4.4×10-10, 

5.8×10-7, 9.3×10-11 and 0.046 for 206164_at, 206165_s_at, 206166_s_at and 1552477_a_at 

probes, respectively. 
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Figure 4. Differential expression of IRF6 and CLCA2 in NSCLC. (A) Algorithm hypothesized that encircled patient SCC 

subgroups were driven by IRF6 and CLCA2. (B) Expression level of the IRF6 probe (mean ± SD), 1552477_a_at in SCC and 

ADC. (C) Expression level of CLCA2 probes 206164_at, 206165_s_at, and 206166_s_at in SCC and ADC (mean ± SD). 

Abbreviations: NSCLC, non-small cell lung cancer; SCC, squamous cell carcinoma; ADC, adenocarcinoma; SD, standard 

deviation.  

4. Discussion 
 

This study highlights the genetic heterogeneity within NSCLC subtypes. Using a small 

dataset, we were able to identify a set of 17 genes that distinguish between SCC and ADC 

(Table1). Within these 17 genes, several have been previously reported to be associated either 

with NSCLC or a specific NSCLC, validating our ML approach. These findings were inline with 

previous reports on SCC genes being associated with the organization and assembly of cell and 

gap junctions, glutathione conjugation and the redox stress response, ECM organization and 

collagen-related proteins, interferon and cytokine signaling, and HLA downregulation and ADC 

genes associated with ECM organization proteins and complement, interferon and cytokine 

signaling, and collagen-related genes and proteins for ECM organization [62]. Another study 

identified epidermis development, cell division, and epithelial cell differentiation as the most 

common categories characterizing SCC, and cell adhesion enrichment, biological adhesion, and 

coagulation for ADC [63]. However, some of the genes we identified have not been previously 

associated with NSCLC or a specific subtype and represent areas that warrant greater 
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investigation for the advancement of precision medicine in NSCLC. Below, the genes of interest 

found using our methodology are highlighted in the context of previous findings in NSCLC. 

The first of the previously reported NSCLC-associated genes we identified, DSC3, plays 

a role in epidermal morphology and keratinocyte proliferation [51]. There are several studies that 

report on DSC3 distinguishing ADC and SCC, with a higher expression in SCC [71-74]. 

Interestingly, there has been a report on the association between DSC3 and tumor suppressor 

activity in NSCLC mediated by inhibition of EGFR [75]. However, there remain contradictory 

associations with DSC3 and prognosis, with elevated levels associated with increased metastatic 

risk in melanoma and better prognosis in lung and colon cancer [73]. This suggests that the same 

molecule may have differential effects in the tumor microenvironment (TME), which presents as 

an interesting field of research to understand how DSC3 expression correlates with NSCLC 

subtypes depending on where they originate in the lung.  

VSNL1 codes for the calcium-sensor protein VILIP1. Lower VSNL1 expression has been 

correlated with poor clinical outcomes in NSCLC patients [52]. VILIP-1 has been reported to be 

decreased or undetectable in aggressive and invasive SCC, while less aggressive SCC displayed 

VILIP-1 expression [52]. There is evidence linking decreased VILIP1 expression to increased 

cell motility and malignancy, suggesting that VSNL1 downregulation promotes SCC tumor 

invasiveness [76]. 

Although a direct role of IRF6 in lung cancer has not been identified, studies suggest that 

IRF6 is a crucial regulator of the cell cycle, promoting progression to the G0
 state and allowing 

for uncontrolled cell proliferation [51]. Decreased IRF6 expression has been associated with 

poor prognosis of gastric cancer and increased invasiveness of breast cancer [77,78]. 

Interestingly, SLC6A10P was the single gene that we found to drive two specific subtypes of 

ADC. SLC6A10P was previously found to be a marker for aggressive ADC [67], and recently, 

involved in the Notch signaling pathway [79]. Our findings suggest that SLC6A10P warrants 

further investigation as a genetic biomarker in the context the ADC patient subpopulation.  

DST and DSC3 have been increasingly reported to be highly expressed in both ADC and SCC. 

Overexpression of these desmosomal genes is associated with increased CD8+ T-cell infiltration 

in ADC [73].  

CLCA2 has been implicated as a negative regulator of cancer cell migration [80]. In the 

lung, CLCA2 has been reported to be highly expressed in SCC, suggesting that it may serve as a 

diagnostic marker to differentiate SCC from ADC. Female patients with CLCA2-negative SCC 

exhibited significantly poorer prognoses [56].  

DSG3 has been reported to play a role in SCC and has been used as a sensitive and 

specific marker for SCC and is an effective discriminator between SCC and ADC [57,58]. 

Higher DSG3 expression correlated with lower survival in SCC [59]. DSG3 and KRT5 have 

been reported to be downregulated in AC [68]. 

LPCAT1 has recently been shown to be overexpressed in lung SCC and associated with 

decreased OS [60]. In lung ADC, gene overexpression was associated with higher probabilities 

of ADC metastasis and poor clinical outcomes [61].  

There is evidence that supports the role of cell adhesion proteins in both ADC and SCC. 

However, GJB5 has been implicated in SCC mechanisms and is associated with gap junctions 

[62]. It is not surprising that there is a higher expression of GJB5 in SCC as it is primarily 

associated with gap junctions (Figure 2) [63,64]. GJB5 (gap junction protein beta 5 or protein-

coding gene: Cx31.1) is involved in intercellular communication related to epidermal 

differentiation and environmental sensing. Cx31.1 was found to be downregulated in NSCLC 
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with expression levels reversely related to metastatic potential, suggesting it inhibits malignant 

properties of NSCLC cell lines. Cx31.1 is colocalized with LC3-II (autophagy marker light chain 

3) and acts like a tumor suppressor as it plays a role in the regulation of cell proliferation, cell 

differentiation, tissue development and apoptosis [63].  

TRIM29  has been shown to be upregulated in NSCLC, and may be a marker for tumour 

aggressiveness [81]. It was been further associated with poorer histological grade and clinical 

and outcomes in SCC [69]. It was been suggested this may be due to the inhibition of p53 via 

TRIM29 [82]. 

KRT17 overexpression has been associated with both subtypes of NSCLC, but was 

significantly correlated to more advanced tumour grade, lymph node metastatic potential, and 

overall survival in ADC [70].   

BCN1 has been reported to be hypermethylated in NSCLC tissue [66]. Furthermore, 

decreased expression of BNC1 has been observed in other carcinomas [83]. Aberrant BNC1 and 

BNC2 expression contribute to tumor progression [84].  

Reports of upregulation of desmosomes and gap junctions in SCC and tight junctions in 

ADC suggest that SCC and ADC are characterized by a distinct set of adhesion molecules [64]. 

Here, we found that ADC was identified by CGN and SCC by DSC3 (Figure 2). CGN (cingulin) 

is involved in the organization of tight junctions and is downregulated in SCC [64]. In contrast, 

ADC has been reported to be characterized by tight junctions, while SCC is characterized by gap 

junctions.  

In addition to the 17 genes identified differentially expressed genes in ADC and SCC, 

PTGFRN (prostaglandin F2 receptor negative regulator; CD315) was also found to be associated 

with ADC. PTGFRN has been reported to be associated with worse survival in glioblastoma, 

while inhibition has been associated with decreased proliferation and tumor growth [85,86]. 

PTGFRN inhibits the binding of prostaglandin F2α to its receptor. Interestingly, there are reports 

that PTGFRN is associated with small cell lung cancer; however, the role remains unknown 

[87,88]. 

IRF6 and CLCA2 have previously been implicated in lung SCC [54,56]. CLCA2 in 

particular was highlighted to differentiate ADC and SCC. Furthermore, SCC was expressed was 

correlated to tumour grade upon histological characterization. In particular, CLCA2 negative 

samples were associated with poorly differentiated tumours [56].  

Males have been reported to have a significantly poorer NSCLC prognosis compared to 

women, shifting efforts towards sex-based approaches to diagnosis, prognosis, and therapeutic 

interventions [89,90]. Additionally, estrogens have been associated with increased risk in ADC 

in women despite equal expression of estrogen receptors α and β, however, the role remains 

unclear [91]. While there are several reports on the sex-based differences in cancer mechanisms, 

including differences in metabolism, immunity, and angiogenesis, differences in CGN and DSC3 

expression have not been previously reported, to the best of our knowledge [92]. Gap junction 

proteins, also known as connexins, serves as channels that connect the interior of adjacent cells, 

facilitating intracellular homeostasis and coordination of activities via second messengers [93]. 

Desmosomes primarily provide mechanical strength via a structural network. In contrast, tight 

junctions form a barrier around the cell, regulating permeability of the paracellular space [94,95]. 

These molecules play critical roles in epithelial-to-mesenchymal transition (EMT), a process 

involved in cancer metastasis. Though no sex-based differences have been reported, this presents 

as a unique field of research, as there may be different druggable targets for men and women.  
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Finally, the phosphatidylinositol glycan anchor biosynthesis class gene, PIGX, was found 

to be a driver of ADC and SCC differentiation in several instances (Figure 1). Little is known 

about the role of PIGX in NSCLC. However, it has been noted that PIGX has a proliferative role 

when expressed in breast cancer cells [50]. In addition, authors found higher PIGX expression 

was associated with shorter recurrence-free survival. This suggests that this gene plays a role in 

NSCLC that warrants further study to determine if it is a druggable target or a biomarker. 

 

5. Conclusions 
 

Genetic data sets are expensive to acquire, and therefore, many of them are small, i.e., 

containing few samples. Machine intelligence methods are becoming popular, but a major 

problem with machine learning, especially powerful methods like ensemble trees and deep 

neural networks, is that they require thousands of samples to create robust predictive models 

capable of generalizing. This is a real challenge within the medical sciences, and so research 

programs have started to explore the ability of machine intelligence to make an impact on small 

datasets. 

The approach utilized here to derive the insights relied on the ability for certain machine 

learning methods to create hypotheses about subpopulations of patients, and then to statistically 

test the driving variables of these subgroups of patients. In this way, we utilize machine learning 

to derive potential insights and then utilize statistical methods that are suitable for small data to 

evaluate differential expression. In order to create robust predictive models with machine 

intelligence, one requires large data sets, but here we utilized the ability for some of these 

methods to create hypotheses instead, and then use methods appropriate for small data to test 

these hypotheses. This bidirectional attack allowed us to derive insights from these small data 

that have been previously validated and to derive a new potential role for the gene PIGX in 

NSCLC.   
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