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Abstract

Alzheimer's Disease (AD) is a progressive neurodegenerative disorder and the most commonly diagnosed
cause of dementia, and it is the fifth leading cause of death among people aged 65 and older. During the years,
the early diagnosis of AD patients has been a significant concern for researchers, in view of the fact that early
diagnosis not only can lead to saving lives of the AD patients but also could bring a considerable amount of
saving in health and long-term care expenditures for both people and the government. Mild cognitive
impairment (MCI), defined as a transitional state between being healthy and having AD, is considered an
established risk factor for AD. Hence, an accurate and reliable diagnosis of MCI and, consequently,
discrimination between healthy people, MCI individuals, and AD patients can play a crucial role in the early
diagnosis of AD. In recent years, analysis of blood gene expression data has been grabbed more attention than
the conventional AD diagnosis method because it provides the opportunity to investigate the biochemical
pathways, cellular functions, and regulatory mechanisms for finding the key genes associated with MCI and
AD. Therefore, in this study, we employed blood gene expression data from Alzheimer's Disease Neuroimaging
Initiative (ADNI), two feature selection methods for determining the most prominent genes related to MCI and
AD, and three classifiers for the most accurate discrimination between three groups of healthy, MCI and AD.
The proposed method yielded the selection of top ten genes from more than 49,000 genes and the best overall
classification result between healthy and AD patients with average values of the area under the curve (AUC) of
0.77 % 0.08. Furthermore, gene ontology (GO) analysis revealed that four genes were enriched with the GO
terms of regulation of cell proliferation, negative regulation of cell population proliferation, signaling receptor

binding, biological adhesion, and cytokine production.
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Introduction

Alzheimer's disease (AD) is the most common diagnosed cause of dementia in older people [1]. Alzheimer's is
a progressive neurodegenerative disorder that causes memory loss and other adverse and potentially fatal
symptoms. In recent years, several investigations have been conducted to predict this disease in patients at
earlier stages. The early detection of AD can be beneficial by providing an opportunity for the patients to be
considered for clinical trials. Furthermore, early detection can give patients enough time to plan for their

financial and medical decisions.

Mild cognitive impairment (MCI) is a transitional stage between AD and a normal functional brain at a certain
age [2], and it is considered an early sign of Alzheimer's disease. The accurate diagnosis of MCI condition helps

the prognosis of AD more effectively.

The number of AD patients is exponentially increasing over the years, and based on estimation, around 13.8
million Americans will suffer from AD by 2050 [3]. With the rapid increase in the number of AD patients and
the slow progress in treatment and prevention methods over the years, it is essential to investigate different

approaches for finding any potential solution for more effective treatment or prevention for this disease.

Brain imaging modalities such as magnetic resonance imaging (MRI) and positron emission tomography (PET)
have led to tremendous development in analyzing the brain and understanding brain function and its changes
during the MCI and AD stages [4, 5]. Although using brain imaging techniques can provide vital information,
these techniques are usually costly. Investigation to find an alternative approach for gathering the brain data

from the patients to compare with normal people can be beneficial.

In recent years, human blood gene expression data have been received much attention as an affordable

alternative approach and the appropriate method for monitoring and diagnosing AD and MCI [6-8].

One of the primary blood gene expression datasets available for researchers belongs to Alzheimer's Disease
Neuroimaging Initiative (ADNI). This dataset has been used in some recent studies. The authors of [9]
conducted a study on ADNI and two other datasets, namely ANM1, and ANM2 to evaluate the gene expression
relation between normal and the AD group. In this study, they selected high-quality RNA samples (RIN>=6.9)
and then filtered out all the probes with a lower value than median gene expression to decrease the background
noise. Besides, they normalized the datasets and selected the DEGs using significant analysis of microarrays
(SAM). Eventually, they applied variational autoencoder (VAE), selected six genes to be trained in a machine
learning model, and observed significant expression variations in genes enriched with inflammatory or
immune pathways. However, predictive capacity has varied considerably from study to study[9, 10]. In another
study based on the ADNI dataset [10], the authors investigated the application of network medicine (NM) on
AD. More specifically, the authors conducted a network-based analysis of the gene expression level and

observed the co-expression patterns between the blood samples of NL, MCI, and AD.

Although gene expression data is a beneficial and affordable technique, its size is usually huge and makes the

analysis too challenging. To reduce the amount of computation, and the size of data, selecting a suitable
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approach for eliminating the unrelated or redundant variables is vital. Hence, feature selection techniques can
be very beneficial to understand the data and facilitate their visualization [11]. It is also helpful in decreasing
the space for data storage and reducing computational expenses by decreasing training and utilization times.
Since some techniques put more stress on one aspect of the selection; thus, it is crucial to choose the feature

selection wisely [12].

The current study is directed toward research on human blood gene expression data from the ADNI database
to determine the most relevant genes related to MCI and AD. Due to the massive volume of the ADNI data, we
used two different feature selection techniques for selecting the most relevant genes related to MCI and AD,
and also, we used three classifiers to discriminate between normal people, MCI individuals, and AD patients
using the selected genes. Moreover, gene ontology was used to interpret the top selected genes' function at the

molecular and cellular levels.

Material and Methods

The data used for this study belongs to Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu) [13]. The ADNI was launched in 2003 as a public-private initiative headed by Chief
Investigator Michael W. Weiner, MD. The overall purpose of the ADNI was to provide a database composed of
neuroimaging data such as MR and PET scan images, clinical data, genetic and biospecimen data that can be
used by researchers for further understanding the mild cognitive impairment (MCI) and AD. The ADNI's gene
expression data extracted from blood samples of 811 participants from the ADNI WGS cohort using the
Affymetrix Human Genome U219 Array (Affymetrix (www.affymetrix.com), Santa Clara, CA). Robust Multi-
chip Average (RMA) normalization approach was used to pre-process the raw expression values derived

directly from the CEL files.

Moreover, the blood RNA samples of 64 participants were removed from the dataset because they did not pass
the quality control check. The final ADNI gene expression data was composed of 747 participants and 49,386
probe sets per participant mapped and annotated with reference to the human genome (hg19). All the
participants were labeled with the diagnosis status of normal (NL), MCI, AD, NL to MCI, MCI to NL, and MCI to
AD. In this study, we only considered the participants labeled with NL, MCI, and AD (stable status), and the
participants who were diagnosed and labeled with the transitional states were removed. Finally, 713
participants (244 NL, 371 MCI, and 98 AD) were selected for further analysis. Subjects’ characteristics are shown
in Table 1.

1) Study Flowchart

To achieve the goals of the current work, we followed the chart illustrated in fig.3.
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Figure 1. Prediction of Alzheimer's disease using blood gene expression data flowchart

Table 1. Subjects’ Characteristics in ADNI Blood Gene Expression Dataset

Characteristic All Subjects Normal MCI AD
N=713 N =244 N =371 N =98

Age, years
=< 73 (median) 357 133 167 57
>73 356 111 204 41
unknown 0 0 0 0
Gender
Male 327 116 208 62
Female 386 128 163 36
Race
white 662 225 345 92
Am Indian 2 1 1 0
Asian 10 2 5 3
Black 29 16 11 2
Hawaiian/ other Pi 2 0 2 0
More than one 6 0 5 1
unknown 2 0 2 0
Education
=<12 105 24 64 17
>12 608 220 307 81
Ethnic category
Not Hisp/Latino 693 239 360 94
Hisp/Latino 17 4 10 3
unknown 0 0 0 0
Marital status
Married 540 176 282 82
divorced 68 24 40 4
Never married 17 10 7 0
widowed 85 34 39 39
unknown 3 0 3 0

A. Pre-Processing

1) Kernel Density estimation

Since the ADNI gene expression data were already normalized and log-scaled using the RMA normalization
technique, further normalization was not needed. However, for the assurance about the data normalization,

the kernel density estimation (KDE) approach was employed, and the plot can be seen in fig.4.
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Figure 2. Kernel density estimation plot
2) Detection of differentially expressed genes

After evaluating the data normality, for detecting the differentially expressed (DE) genes between three groups
of NL, MCI, and AD, Student's t-test was used. For the t-test analysis, we utilized an unpaired t-test by
considering the two-sided alternative hypothesis with a significance level of 0.05. The t-test was applied to the
pairs of NL vs. MCI, NL vs. AD, and MCI vs. AD. After obtaining the p-value for each gene, all the p-values were
adjusted using the false discovery rate (FDR) approach with the threshold level of 5 percent to limit the family

error rate, and the genes with a p-value less than 0.05 were considered for further analysis.
3) Feature Selection

Feature selection plays an essential role in data analysis. This method by reducing data dimensionality not only
decreases the analyzing complexity and time but also can increase the performance of the model (accuracy
improvement and reducing the overfitting) by removing the redundant and misleading features from data.
Feature selection methods are often divided into three categories, namely filter-based, wrapper-based, and
embedded methods. In this study, we used two feature selection methods: recursive feature elimination (RFE)
and Lasso (Least Absolute Shrinkage and Selection Operator) cross-validation from wrapper-based and
embedded methods, respectively [14, 15]. The RFE technique aims to find the best subset of performing
features while generating models and storing the best or worst performing feature in a single iteration. The
RFE can also make the next model by considering the left features before all features are exhausted. The Lasso
feature selection method with the primary goal of reducing the prediction error is based on two main tasks,
which are regulation and feature selection. By putting a penalty on the sum of the absolute value, this technique
tries to minimize the sum of the square errors. The sum must be less than a specific threshold, and during the
selection of the features, the variables with a non-zero coefficient may be selected as an integral part of the

model after the shrinking process.
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However, each feature selection algorithms ranks different features as the important features, and that is why
we used machine learning classifiers to evaluate the efficiency of the selected features in differentiation

between three groups of NL, MCI, and AD.

4) Classification techniques

Classification as a supervised machine learning technique tries to learn from a part of the labeled data (training)
to predict the class label of the unseen data, called test data. The rationale of using the classifier in this study
was to evaluate which subset of the selected genes by the two above mention feature selection techniques can
lead to more accurate discrimination between three groups of NL, MCI, and AD. Since each classification
technique's performance might be different in terms of accuracy, we used three different classifiers, namely

support vector machine (SVM), adaptive boosting (AdaBoost), and K-Nearest Neighbor (KNN).

SVM is a highly preferred and robust supervised machine learning algorithm that usually is used for solving
binary classification problems. The SVM algorithm performs the classification by finding a hyperplane that
maximizes the margin between two classes. The SVM performance depends on two primary hyperparameters
named cost (C) and gamma (y). The C is the penalty parameter, which indicates how much the algorithm cares
about misclassification by adding a penalty for each misclassified sample, and gamma determines the extent
of the effect of a single training example. In this study, we use an SVM with a linear kernel, and we defined the

C=1 and the value from the equation of 1 / (n_features x X.var()) for the gamma (X denotes the input values).

Boosting algorithms have recently attracted significant attention because of their low-complexity
implementation, good generalization, and processing speed [16]. These types of algorithms usually have higher
accuracy than some of the conventional machine learning algorithms because of their ability to convert weak
learners into strong learners. They are not only considered as a beneficial technique for solving binary
classification tasks but also are useful in solving multi-class classification problems. A booster is composed of
a set of training samples (x1, ¥1),.....(xn,yn), in which all the outcomes (yn) are labeled associated with
observations (xn) [17]. Adaptive boosting, which is also named Adaboost, is considered as a meta-estimator
classifier that aims to estimate the Bayes classifier iteratively by incorporating many weak classifiers and
inaccurate rules, which can finally turn a weak classifier into a robust and strong classifier. In this study, we
determined a Decision Tree Classifier as a base estimator for the AdaBoost algorithm, and also, we defined the

number of the estimators as 45.

The K-Nearest Neighbor (KNN) was the third classifier we used in this study. The KNN is considered the most
acceptable choice when very little or no prior knowledge present about the data distribution [18]. The term K
in KNN is a parameter that refers to how many numbers of nearest neighbors are chosen for the KNN algorithm.
For each sample, the algorithm calculates the distance with respect to K and classifies it into the nearest

distance neighbor class. In this work, we selected the K to be 5.
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5) Gene ontology (GO) enrichment analysis

The goal of all previous steps was to determine which subset of the genes is differentially expressed between
three conditions of NL, MCI, and AD and which subset of the genes can lead to the most accurate discrimination
between the three mentioned groups. However, the output of the analysis methods often leads to a long list of
DEGs, which makes the interpretation a bit challenging. GO enrichment analysis can be a very useful approach
to tackle this issue and to interpret and classify the DEGs' function at the molecular and cellular levels. Gene
Set Enrichment Analysis (GSEA) is a computational method developed for gene expression analysis from
microarray data [19]. The aim of the GSEA is to look for the expression changes in predefined gene sets. In other
words, GSEA uses a list of ranked genes to evaluate their distribution on predefined genes set, such as MSigDB
[20], by determining an enrichment score (ES) for each set of genes [21]. In this study, we used GSEA software
version 4.1.0 [19, 22] for further analysis. To do so, we selected c5.all.v7.2.symbols.gmt (Gene ontology) as the
gene set database, the number of permutations was set on 1000, and we considered the dataset as is in the
original format. Since the ADNI used the Affymetrix Human Genome U219 Array (Affymetrix
(www.affymetrix.com), Santa Clara, CA) for expression profiling, we used HG_U219 as the chip platform.
Further, we set the enrichment statistic on weighted, max size for excluding the larger sets on 500, and min

size for excluding the smaller sets on 2.
Results

Unpaired two-sided Student's t-test (FDR adjusted p-value <0.05) was used to identify the DEGs from the
original expression dataset. The t-test between the pair of NL vs. MCI resulted in 1559 genes, 5005 genes for
the pair of NL vs. AD, and 5949 genes for MCI vs. AD. Since DEGs analysis between three different pairs was led
to a long list of genes, to summarize the relationship between the genes and also to identify the commonly
expressed genes between NL, MCI, and AD, we used the Venn diagram. Finally, as shown in fig.5, 39 genes were
identified by the Venn diagram as the commonly expressed genes. It is worth mentioning that nine genes were
removed from the commonly expressed gene list because of the repetition, and the 30 remaining genes were
described in Table 2.

NL_MCI:1559 MCI_AD:5949

193
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39

207 3356
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Figure 3: The Venn Diagram of the most expressed genes and 39 common genes.
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B. Most important selected genes

The top 10 genes were selected by using the two well-known feature selection methods (RFE and LassoCV). At
the first step, all the 30 genes from the intersection of NL, MCI, and AD were ranked based on their coefficient
and importance using RFE. The V-set immunoglobulin-domain-containing 4 (VSIG4) ranked first as the most
important gene that can be used for classification between CN, MCI, and AD. WLS (Wnt Ligand Secretion
Mediator), TMEM97 (Transmembrane Protein 97), PLD1 (Phospholipase D1), and COX6B2(Cytochrome C

Oxidase Subunit 6B2) we the next four important genes which were selected by RFE

Table 2. List of DEGs

ProbeSet LocusLink Symbol P_value
11746877_a_at LOC83463 MXD3 0.000667
11722971_a_at LOC9586 CREB5 0.001372
11733513_a_at LOC79971 WLS 0.001372

11760084_x_at LOC254896 AC107959.4 | 0.001372

11740560_x_at LOC8439 NSMAF 0.001455
11761745_at - IGSF6 0.002528
11752332_x_at LOC4210 MEFV 0.003398
11729533 _s_at LOC161253 REM2 0.003851
11721632_a_at LOC27346 TMEM97 0.003981
11738921_at LOC58160 NFE4 0.004019
11747038_a_at LOC254013 METTL20 0.004019
11756516_a_at LOC23761 PISD 0.005359
11747006_a_at LOC387755 INSC 0.006366
11730579_a_at LOC57520 HECW2 0.006686
11739880_a_at LOC169792 GLIS3 0.006719

11738864_a_at LOC145447 ABHD12B 0.007282

11750058 _a_at LOC55284 UBE2W 0.007282
11745206_x_at LOC5887 RAD23B 0.007721
11723545_a_at LOC5337 PLD1 0.008008
11737032_x_at LOC222235 FBXL13 0.008474
11740041_at LOC57194 ATP10A 0.008474
11728950_at LOC132228 LSMEM2 0.010634
11759103_at - CYP4F3 0.010818
11758554 _s_at LOC64326 RFWD2 0.01092

11751762_s_at LOC26512 INTS6 0.011011
11751370_a_at LOC51762 RABSB 0.011077
11751989_a_at LOC3696 ITGB8 0.011359
11716818_a_at LOC11326 VSIG4 0.011663
11738159_x_at LOC125965 COX6B2 0.011663

11747940_a_at LOC127435 PODN 0.012904
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Moreover, GLIS3 (GLIS Family Zinc Finger 3), ETFBKMT (Electron Transfer Flavoprotein Subunit Beta Lysine
Methyltransferas-e), MXD3 (MAX Dimerization Protein 3), PODN (Podocan), and ITGB8 (Integrin Subunit Beta

8) genes were the next five important genes were selected by RFE, respectively.

In the same way, the LassoCV considered the ITGB8 as the most prominent gene, while this gene was ranked
10th by RFE. GLIS3, TMEM97, METTL20, PODN, and MXD3 were the other genes determined as ranked second
to fifth and seventh, respectively. These five mentioned genes were also selected by RFE as the important genes.
However, four other genes were selected by LassoCV, which did not consider as high-ranked genes by RFE.
ATP10A (ATPase Phospholipid Transporting 10A, INTS6 (Integrator Complex Subunit 6), RABSB (RABSB,
Member RAS Oncogene Family), and NFE4 (Nuclear Factor, Erythroid 4) were the genes ranked sixth, and eight

to tenth respectively by LassoCV. The results of the two feature selection methods are shown in Table 3.

Table 3. Top 10 genes selected by two feature selection methods

Rank Genes Selected by Feature Selection Techniques

RFE LassoCV

1 V-set immunoglobulin-domain-containing 4 (VSIG4) | Integrin Subunit Beta 8 (ITGB8)

2 Whnt Ligand Secretion Mediator (WLS) GLIS Family Zinc Finger 3 (GLIS3)

3 Transmembrane Protein 97 (TMEM97) Transmembrane Protein 97 (TMEM97)

4 Phospholipase D1 (PLD1) Mitochondrial Lysine Methyltransferase (METTL20)
5 Cytochrome C Oxidase Subunit 6B2 (COX6B2) Podocan (PODN)

6 GLIS Family Zinc Finger 3 (GLIS3) ATPase Phospholipid Transporting 10A (ATP10A)

Electron Transfer Flavoprotein Subunit Beta Lysine o )
7 MAX Dimerization Protein 3 (MXD3)
Methyltransferase (ETFBKMT)

8 MAX Dimerization Protein 3 (MXD3) Integrator Complex Subunit 6 (INTS6)
9 Podocan (PODN) Ras-related protein Rab-8B (RABSB)
10 Integrin Subunit Beta 8 (ITGB8) Nuclear Factor, Erythroid 4 (NFE4)

As mentioned above, the five genes of ITGB8, GLIS3, TMEM97, PODN, and MXD3 were the genes that both
feature selection techniques considered as the high importance features for classification between NL, MCI,
and AD.

After the feature selection step, since the RFE and LassoCV selected different subsets as the most important
genes, we used three binary classification methods (SVM, AdaBoost, and KNN) with 5-fold cross-validation to

evaluate the efficiency of the top 10 selected genes by LassoCV and RFE.
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As can be seen in Table 4, the best classification result (mean AUC of 0.77 + 0.08) was achieved for the pair of
NL vs. AD when the features selected by LassoCV were fed to the SVM classifier. The SVM also resulted in a
relatively close mean of AUC (0.75 % 0.12) for classification between NL and AD using the RFE selected genes.
The ROC curve (receiver operating characteristic curve) is a graph showing the performance of a classification
model at all classification thresholds. The ROC of both results is shown in figures 6 & 7. Although the highest
result for classification between NL and AD was achieved by the genes were selected using LassoCV, based on
the results, it seems the selected genes using RFE were led to better classification results for NL vs. MCI with
the mean AUC of 0.64 * 0.04, and the mean AUC of 0.62 # 0.08 for MCI vs. AD.

Table 4. Classification results for all of the states compared two by two applying SVM, AdaBoost, and KNN

Compared Mean AUC + std
Groups Classifier
LassoCV RFE
SVM 0.59 £0.05 0.64 £ 0.04
NL vs. MCI AdaBoost 0.55 £ 0.05 0.57 £ 0.04
KNN 0.56 £ 0.07 0.55 £0.05
SVM 0.77 £0.08 0.75£0.12
NL vs. AD AdaBoost 0.63+£0.12 0.62+0.14
KNN 0.64 £0.11 0.60 £ 0.09
SVM 0.57£0.13 0.56 £ 0.09
MCI vs. AD AdaBoost 0.58 £0.11 0.62 £ 0.08
KNN 0.56 £ 0.08 0.59 £ 0.09

We also considered the six genes that were common between RFE and LassoCV for further analysis to evaluate
their efficiency for classification between NL, MCI, and AD. The mean AUC of 0.75 + 0.12 was achieved for
classification between NL and AD by SVM, which was similar to the result of the classification between NL and
AD using the RFE selected genes. The other classification results (NL vs. MCI and MCl vs. AD) were not significant

enough to mention.
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Figure 5. ROC curve for RFE and SVM

C. Gene ontology (GO) enrichment analysis

Thirty intersected differentially expressed genes between NL vs. AD, NL vs. MCI, and MCI vs. AD that were
ranked according to their p-values used for the GO enrichment analysis. The GO enrichment test was performed
and GO terms with the p-values <0.05 were considered as the significant enriched GO terms. It is worth
mentioning that by considering the q-value <0.05, none of the GO terms was significantly enriched.
Nevertheless, by considering the p-value <0.05, representative GO terms enriched via four genes, namely
PODN, VSIG4, ITGB8, RAB8B, were as follows: regulation of cell proliferation (core enrichment: PODN, VSIG4),
negative regulation of cell population proliferation (core enrichment: PODN, VSIG4), signaling receptor binding
(core enrichment: ITGB8, RAB8B), biological adhesion (core enrichment: VSIG4, ITGB8), and cytokine
production (core enrichment: VSIG4, ITGB8). The enrichment plot of all the enriched GO terms is illustrated in

Figure 8.
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Figure 6. The enrichment plot of all the enriched GO terms.

Discussion

The main goal of this study was to find the most significant and relevant genes that can lead to the most
accurate classification between normal, MCI, and AD patients, from the ADNI blood gene expression dataset.
This research started with the ADNI data normality check. The t-test and Fold Change (FC) were used to identify
DE genes for all three groups. The two-sided unpaired Student's t-test with the significance level of 0.05 was
implemented to check each two sample groups. Similar to other studies on the ADNI dataset, gene expression
differences between samples in different classes were low. We selected DEGs based on adjusted p-values <
0.05 (FDR), and 1559 genes passed after comparing NL vs. MCI groups. Additionally, from the comparison
between NL vs. AD and MCI vs. AD, 5005 and 5949 genes passed, respectively.

Then 39 common genes between all the pairs were selected using a Venn diagram. Nine duplicated genes were
removed from further analysis, and the number of the final common genes was reduced to 30 genes. RFE and
LassoCV methods selected the top 10 genes from the 30 genes, and they were used as input to the SVM,
AdaBoost, and KNN binary classification methods. The best result was obtained from the comparison of NL vs.
AD using the SVM classification with the mean AUC of 0.77 + 0.08 for the LassoCV technique and 0.75 + 0.12
for the RFE analysis method. Our proposed feature selection method, together with SVM classification,
significantly outperformed T. Lee1 & Hyunju Lee's results [4].

We perceived different enriched GO terms, and also, most of the selected genes directly or indirectly are related

to AD by affecting on human nervous system.

In humans, the ITGB8 gene is a member of the integrin beta chain family that encodes integrin beta-8. Apart
from cell-extracellular matrix (ECM) and cell-cell adhesion mediation [23], most g subunits contain an NPxY

sequence in their cytosolic region which can interact with the cytoskeletal and signaling proteins containing a
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phosphotyrosine binding (PTB) domain [24]. Interestingly, these heterodimeric transmembrane receptors have
been suggested to play a role in intracellular Ca2+ and protein kinases signaling and reorganization of
cytoskeletal filaments. It has been shown that integrin and ECM are altered in physiological and pathological
conditions such as memory, tumor, Alzheimer's disease, and epilepsy [25, 26]. There are consistent reports of
abnormal calcium signaling in Alzheimer's disease [27]. Moreover, dysregulation of protein kinase signaling
cascade promotes the development of AD and contributes to neuronal death [28]. These findings may suggest
that dysregulation of ITGB8 expression could be related to these alterations, which leads to the development

of Alzheimer's disease.

The next important selected gene by our model was GLIS3 (GLI-similar 3) which is a member of the GLI-similar
zinc finger protein family encoding for a nuclear protein. This protein has a critical role in both repression and
activation of transcription. Interestingly, Genome-Wide Association Studies (GWAS) have shown that GLIS3 is
arisk gene for Alzheimer's disease endophenotype [29], and common variants within GLIS3 itself are associated

with cerebrospinal fluid Tau [30], a biomarker in Alzheimer's disease.

As a matter of fact, memory loss is one of the main symptoms of the AD and TMEM97 (transmembrane protein
97) as a gene that codes for the Sigma-2 receptor [31] is involved in calcium homeostasis [32, 33], which is
critical for the excitatory imbalance that regulates learning and memory. In human post-mortem brain
samples, TMEM97 has been presented in a higher proportion of synapses and close enough to amyloid-beta to

be recognized as a potential synaptic binding partner [34].

Another top selected gene that seems to play a critical role in AD prediction is PODN (Podocan). PODN is a
protein-coding gene that codes for a novel member of the small leucine-rich repeat protein family. It was
shown that ECM molecules are regulators of essential cell functions such as migration and proliferation [35,
36], and the small leucine-rich repeat proteins found in the ECM are also effective modulators of cell phenotype
[37]. It has been demonstrated that overexpression of podocan in Chinese Hamster Ovary (CHO) cells leads to
a marked suppression of cell migration. Besides, cells transfected with podocan showed a modest decrease in
Rho A activity compared to vector-transfected cells [38]. It is evident that Rho proteins play a crucial role in
organelle development, cytoskeletal dynamics, cell movement, and other common cellular functions [39-41],
and aberrant Rho-GTPase signaling leads to widespread neuronal network dysfunction and has been proposed
to cause certain diseases, including AD. Recent immunohistological studies suggest that the subcellular

localization of RhoA may be altered in AD brains [42].

The final gene selected as an important gene by both feature selection techniques was MXD3 (MAX
dimerization protein 3), a protein in humans encoded by the MXD3 gene and contributes to normal neural
development and brain cancer development [43, 44]. Several studies suggest that this gene plays a crucial role
in metabolic rewiring and context-specific tumor suppression [45, 46]. Interestingly the MXD3 protein binds
E-box sequences and increases cell proliferation at moderate MXD3 levels, but it can cause marked cell death
and apoptosis at higher expression levels in medulloblastoma cells [44]; however, the role of the MXD3 gene

in the development of AD is not well understood and needs more investigation.
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Conclusion

In this study, we investigated straightforward statistical and advanced feature selection-based analysis on
human blood gene expression data to identify the differentially expressed genes that are mostly related to MCI
and AD. Three classifiers were employed to differentiate between three groups of NL, MCI, and AD using the
selected genes. In addition, GO enrichment analysis was performed to interpret and classify the selected genes'
function at the molecular and cellular levels. The analysis resulted in selecting the top 10 genes, which can lead
to discrimination between two groups of NL and AD with an average AUC of 0.77 + 0.08. Furthermore, the five
genes selected by both feature selection techniques as the most important genes were discussed in detail.
Moreover, gene ontology (GO) analysis showed that four genes were enriched with the GO terms of regulation
of cell proliferation, negative regulation of cell population proliferation, signaling receptor binding, biological
adhesion, and cytokine production. Although, at first glance, some of the selected genes may not seem to be
directly related to AD or MCl, they can open a new window for further investigation, and they could be potential

risk-factor genes for MCI and AD.
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