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Abstract

Listeriosis is a food-borne disease caused by a bacterium known as Listeria monocytogens.
Humans can be infected by consuming contaminated food products. A transmission can
also occur through contact with infected animals or people, however to a less extent. In this
paper, a mathematical model for Listeriosis dynamics was developed. The steady states
and their stability of the model system were determined and analyzed. The result shows
that the disease-free equilibrium is asymptotically stable if the bacteria’s growth rate is less
than its removal rate, and also the growth rate of food contamination is less than its removal
rate. It was further observed that we can still have Listeriosis driven by the contaminated
food products even if the Listeria bacteria population in the environment is very small.The
results indicate that Listeriosis can be effectively controlled by removing contaminated food
products, which was the policy adopted by the South African government during the recent
Listeriosis outbreak.

Keywords: Food contamination threshold. Stability analysis. Contaminated food. Listeriosis.
Simulations.

1 Introduction

Listeria monocytogens are pathogens that are found in both raw and processed food products.
The consumption of such products causes infections among humans and animals. This pathogen
can be characterized as a Gram-positive bacteria [3]. Listeria strives very well in low-temperature
areas and unclean environments. Other favourable conditions for their survival include high salt
concentration and acidic conditions. Specifically, they are mostly found in soil, unclean water
bodies (lakes, rivers, etc.), vegetation, refrigerators, faeces of some animals as well as in foods
such as smoked fish, cold meats and soft cheeses. Animals such as cattle and poultry can also
carry this bacteria. Due to their presence in soil and vegetation, they easily affect raw foods.
Moreover, processed food can be contaminated by the presence of infected raw food and the use
of unclean processing materials [15]. Humans can be infected by consuming such contaminated
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food products. However a transmission can also occur through contact with infected animals or
people although to a less extent. Infected pregnant women and female animals can also transfer
these infections to their unborn babies [22], a process often referred to as vertical transmission.

The group of people who are at high risk to acquire this disease are elderly, pregnant women
and infants, as well as people with weak immune systems caused by illnesses with illnesses such
as cancer, diabetes, kidney disease and HIV AIDS patients [7]. Fever, flu-like symptoms, vomit-
ing, nausea and diarrhoea are the main symptoms of Listeriosis. Like most bacterial infections,
Listeriosis can be treated and prevented by storing food safely, avoiding storing products in the
fridge beyond the use-by date, cooking the meat and poultry properly and keeping raw food from
touching other foods and utensils [19]. Although the disease is relatively rare, it is often severe
with high hospitalisation and mortality rates. For instance, there were 10 cases of Listeriosis
reported from a small area of Switzerland which was due to the distribution of local soft cheese.
The same problem was experienced by the Czech Republic in 2006, with 78 patients of whom
13 died. Also, in 2006 and 2007, Germany reported having an outbreak of 16 cases caused by
pre-sliced ready-to-eat meat products [16]. Furthermore, the National Institute of Communi-
cable Disease (NICD) in South Africa reported that by 28 February 2018 there had been 943
laboratory-confirmed cases of Listeriosis with 176 deaths from the disease [4].

Mathematical models have been used to analyse the transmission dynamics of infectious dis-
eases in the past. Several mathematical models and statistical methods have been used to study
the spread of Listeriosis, see for instance [9–13]. The work by Buchanan et al. [8] shows that
the growth of Listeria monocytogens depends on the interaction of five variables namely pH,
temperature, sodium nitrate, atmosphere, and sodium chloride. According to their data, they
found out that sodium nitrate can have high significant bacteriostatic activity against Listeria
monocytogens and hence can be used to provide cured meats with a degree of protection against
this bacteria. This is achieved when there is a combination of high salt concentration, acidic
pH, vacuum packaging and adequate refrigeration. Ivanek et al. [5] conducted a study on how
ready-to-eat food (smoked fish) is contaminated with Listeria monocytogens in relation to some
associated factors during food processing. In their study, they developed a model where they
considered food contact surfaces and employees gloves as key factors for food contamination. It
was discovered that, the best way to prevent food contamination during food processing is to
make sure that the raw food and processing materials coming in are free from contamination.
According to the inference from the outbreak of the disease reported in Japan, Europe and North
America, the foods which are at high risk for susceptible humans are ready-to-eat meats and soft
cheese [20]. Furthermore, Luber et al. [14] pointed out that for successful employment of the food
safety methods against Listeriosis there is a need for food workers to be educated and trained on
how to prevent (protect) the ready-to-eat foods from Listeria monocytogens contamination and
also to advise the consumer to be aware and responsible for their food safety. In [17], conducted
a study with the aim of developing a predictive model that simulates the growth of Listeria
monocytogene in soft blue-white cheese. In their study, they come up with a tertiary predictive
model of the Listeria growth as a function of lactic acid, temperature, pH and sodium chloride.
According to their analysis, they found out that the growth rate of Listeria monocytogenes is very
high when present in cheese. Mateus et al. [1] pointed out that pregnant women affected with
Listeriosis are at a high risk of miscarriages and fetal death or neonatal morbidity in the form
of meningitis and septicemia. They also found out that improving education about Listeriosis
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transmission, control and prevention for pregnant and individuals with weak immune systems
will help in minimizing the mortality rate of this disease. Moreover, [13] developed a mathemat-
ical model to study the effect of the vaccination of animals on the spread of Listeriosis among
humans and animals (as vectors of Listeria). In their analysis, they found out that, secondary
infections can increase due to the decrease of human and animal death rate as well as animal
recovery rate.

Very few mathematical models the role of the environment and contaminated food products
have been developed to date. Simple model that compute the role of bacteria and food products
in transmission of dynamics of Listeriosis in the human population is formulated with the aim of
investigating the role of the few control measures that are available in the event of the out break.
The control measure include reduction of the rate of infection, removal of contaminated food
product and hygiene in the food manufacturing process. While the model presented in this page
represent the simplest caricature of the infection dynamics of Listeriosis, the results have signif-
icant influence on the management and qualification of control strategies over the long period of
time. We ague that despite its simplest, the model offers significant insights in the modelling of
Listeriosis driven by contaminated food products and bacteria from the environment.

The outline of this paper is as follows; Section 1 introduces the research paper followed by a model
formulation in Section 2. The model basic properties and analyses are presented in Section 3.
Numerical simulations are presented in Section 4 and Section 5 concludes the paper.

2 Model Formulation

In this section, we develop a mathematical model for Listeriosis dynamics which is divided into
three components namely; the human population, Listeria and factory products. The human
population comprises of three compartments which are susceptible humans, S(t), infected hu-
mans, I(t), and the recovered humans, R(t). Individuals are recruited into susceptible class at a
rate proportional to the total human population N(t) so that the recruitment is modelled by of
µN, where µ is the natural birth/mortality rate. The susceptible humans can move into infected
class either by acquiring Listeriosis through eating contaminated products or through contact
with contaminated material from the environment with a force of infection λh(t), defined after
system (2). Furthermore, the infected humans can either die naturally, die of the disease at a
rate of δ1 or recover at a rate of γ and join the recovered class. We are assuming that there is
no human to human transmission. Considering the factory dynamics, we are assuming that the
amount of food products, F (t) comprises of non-contaminated, Fn(t), and contaminated, Fc(t)
food products. We assume that factory products are manufactured or produced at a rate of
δ2F . By contact with contaminated surfaces and contaminated products, the non-contaminated
products can become contaminated with Listeria bacteria. Non-contaminated factory products
become contaminated with a force of infection λf (t) defined after system (2). The Listeria bac-
teria in the environment is assumed to grow at a rate of rb, and die at a rate µb. The growth
of the bacteria is assumed to be logistic with a carrying capacity of K. We assume that, at any
time, t, the human population and factory food products are constant and respectively given by;

N(t) = S(t) + I(t) +R(t),

F (t) = Fn(t) + Fc(t).
(1)
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The model structure is represented schematically in Figure 1. From the above model description
and Figure 1 we obtain the following system of non-linear ordinary differential equations:

Figure 1: Model flow chart for Listeriosis disease transmission dynamics. The dotted and solid
line shows the contributing factors for the human and food products to become contaminated as
well as infection links respectively.



dS

dt
= µN + σR− λhS − µS,

dI

dt
= λhS − (µ+ γ + δ1)I,

dR

dt
= γI − (µ+ σ)R,

dB

dt
= rbB

(
1− B

K

)
− µbB,

dFn
dt

= δ2F − (λf + δ2)Fn,

dFc
dt

= λfFn − δ2Fc,

(2)

where

λf (t) =
β1B

κ+B
+ β2Fc,

λh(t) =
β3B

κ+B
+ β4Fc.
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We rescale system (2) by setting

fn =
Fn
F
, fc =

Fc
F
, b =

B

K
, s =

S

N
, i =

I

N
, r =

R

N
,

κ̂ =
κ

K
, β̂2 = β2F, β̂4 = β4F,

and substituting r = n− s− i, to obtain the following system of differential equations:

ds

dt
= µ+ σ(1− s− i)− (µ+ λ̂h)s,

di

dt
= λ̂hs− (µ+ γ + δ1)i,

dfc
dt

= λ̂f − (λ̂f + δ2)fc,

db

dt
= rbb(1− b)− µbb,

(3)

where re-scaled forces of infections are

λ̂f =
β1b

κ̂+ b
+ β̂2fc, λ̂h =

β3b

κ̂+ b
+ β̂4fc,

subject to the following initial conditions

s(0) > 0, i(0) ≥ 0, fc(0) ≥ 0, b(0) ≥ 0.

All parameters of model system (3) are assumed to be positive at all time t > 0.

2.1 Basic Properties

We show that all the solutions of model system (3) has non-negative solutions, and bounded for
t > 0, that is remain biologically meaningful into feasible region (Ω).

2.1.1 Positivity of Solutions

The positivity of solutions to our model is given by the following theorem.

Theorem 1. Suppose s(0) > 0, i(0) ≥ 0, fc(0) ≥ 0, b(0) ≥ 0 then the solutions of s(t), i(t), fc(t)
and b(t) of system (3) are non-negative for all time t ≥ 0.

Proof. Let (s(t), i(t), fc(t), b(t)) be a solution of the system (3) with the given initial conditions.
From the first equation of system (3), we have that

ds

dt
= µ+ σ(1− s− i)− µs− λ̂hs ≥ −(σ + µ+ λ̂h)s, (4)

is the differential inequality from (4). Integration yields

s(t) > s(0)e−
∫ t
0 λ̂h(τ)dτ−(σ+µ)t > 0,
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where s(0) is the given initial condition for s(t). From the second equation of model equation (3)
we have the differential inequality

di

dt
≥ −(µ+ γ + δ2)i, (5)

so that

i(t) ≥ i(0)e−(µ+γ+δ1)t > 0

where i(0) is the initial condition for i(t). The remaining equations yields

fc(t) ≥ fc(0)e−
∫ t
0 λ̂f (τ)dτ−δ2t and b(t) ≥ b(0)e−(µb−rb)t.

Thus, the solutions (s(t), i(t), fc(t), b(t)) will remain positive in Ω at all time t ≥ 0.

2.1.2 Feasible Region

The feasible region of our model is captured by the following theorem.

Theorem 2. Consider the biologically feasible region given by

Ω = {(s(t), i(t), fc(t), b(t)) ∈ R4
+ : s + i ≤ 1, fc ≤ 1, b ≤ 1}. The solution of the system (3)

with the non-negative initial condition are bounded for all t ≥ 0 in the biologically feasible region,
(Ω).

Proof. The total change in the human population is given by

dn

dt
= µ+ σ − (µ+ σ)n− (γ + δ1)i, (6)

where n = (s+ i) ≤ 1. However in the absence of mortality due to human Listeriosis infections,
equation (6) reduces to

dn

dt
≤ (µ+ σ)(1− n), (7)

whose solutions yields
n(t) ≤ 1 + C1e

−(σ+µ)t,

where C1 is a constant. We note that as t→∞, then n(t)→ 1.

Considering the contaminated food product given by last equation of system (3), we have that

dfc
dt

= λ̂f − (λ̂f + δ2)fc ≤ λ̂f (1− fc), ,

whose solution yields

fc(t) ≤ 1 + φ2e
−

∫
λ̂f (t)dt,
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where φ2 is a constant. Note that as t→∞ we have fc(t)→ 1.
Furthermore, for the bacteria population, considering the third equation of system (3), we have
the Bernoulli’s equation

b−2db

dt
= b−1(rb − µb)− rb. (8)

The solution of equation (8) we obtain

b(t) =
1

rb
rb−µb

+ φ3e−(rb−µb)t
. (9)

Thus, as t→∞, b(t)→ 1− µb
rb
≤ 1. So, we note that for the Listeria to exist its death rate (µb)

must be less than the growth rate (rb), which implies that, 0 ≤ b ≤ 1.
Hence (s, i, fc, b) are all bounded in region Ω, and are biologically feasible, which complete the
proof.

2.2 Model Steady States

We determine the steady states of system (3) by setting the right hand side to zero as follows

µ+ σ(1− s∗ − i∗)− (µs∗ + λ̂h)s
∗ = 0,

λ̂hs
∗ − (µ+ γ + δ1)i

∗ = 0,

rbb
∗(1− b∗)− µbb∗ = 0,

λ̂f − (λ̂f + δ2)f
∗
c = 0.

(10)

From the third equation of the system (10), we have that

b∗ (rb(1− b∗)− µb) = 0,

which gives

b∗1 = 0 or b∗2 = 1− µb
rb

= b∗2 = 1−Rb.

where
Rb =

µb
rb

Remark 1. Note that, b∗2 exists if and only if Rb < 1.

We consider two cases.
CASE 1: When b∗1 = 0, we have that

λ̂f = β̂2f
∗
c and λ̂h = β̂4f

∗
c .

Now from the last equation of the system (10) we have

β̂2f
∗
c (1− f ∗

c )− δ2f ∗
c = 0,

f ∗
c

(
β̂2(1− f ∗

c )− δ2
)

= 0,
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and this yields
f ∗
c1

= 0, and f ∗
c2

= 1−Rf ,

where

Rf =
δ2

β̂2
.

Lemma 1. The steady state f ∗
c2

exist if and only if Rf < 1.

Now if b∗ = 0, then f ∗
c1

= 0, which implies that from the second equation of (10). Now substituting
into first equation of the system (10) we have

s∗ = 1.

Therefore, we have a disease free state (DFS) denoted by

E∗
0 = (s∗, i∗, f ∗

c1
, b∗1) = (1, 0, 0, 0).

From the second equation of the system (10) we have

β̂4f
∗
c2
s∗1 − (µ+ γ + δ1)i

∗
1 = 0,

which yields

i∗1 =
β̂4f

∗
c2
s∗1

(µ+ γ + δ1)
. (11)

Substituting equation (11) into the first equation of the system (10) we have

µ+ σ − σs∗1 − σ

(
β̂4f

∗
c2

µ+ γ + δ1

)
s∗1 − µs∗1 − β̂4f ∗

c2
s∗1 = 0,

which yields

s∗1 =
(µ+ σ)(µ+ γ + δ1)

(σ + µ)(µ+ γ + δ1) + β̂4f ∗
c2

(σ + µ+ γ + δ1)
,

=
1

1 +Q∗
1

,

after some algebraic manipulation where Q∗
1 =

(σ+µ+γ+δ1)β̂4f∗c2
(µ+σ)(µ+γ+δ1)

.

Substituting s∗1 into (11) we have that

i∗1 =
β̂4f

∗
c2

(µ+ γ + δ1)

(
1

1 +Q∗
1

)
,

=
β̂4f

∗
c2

(µ+ γ + δ1) (1 +Q∗
1)
.

This results in the bacteria free state (BFS)

E∗
1 = (s∗1, i

∗
1, 0, f

∗
c2

),
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Case 2: If b∗2 = 1−Rb; then,

λ̂f =
β1b

∗
2

κ̂+ b∗2
+ β̂2f

∗
c3;

and λ̂h =
β3b

∗
2

κ̂+ b∗2
+ β̂4f

∗
c3
.

Similarly from the last equation of the system (10), we have that

g2f
∗2
c3

+ g1f
∗
c3

+ g0 = 0, (12)

after some algebraic simplification, where

g0 = − β1b
∗
2

κ̂+ b∗2

g1 =

(
δ2 +

β1b
∗
2

κ̂+ b∗2
− β̂2

)
g2 = β̂2

Solving equation (12) we have,

f ∗
c3

=
−g1 ±

√
g2

1 − 4 g2 g0

2g2

.

Since g0 < 0 and g2 > 0 then g2g0 < 0, and this implies that f ∗
c3

has one positive solution, say
f ∗+
c3

irrespective of the conditions imposed on g1.
Now from the second equation of the system (10), we have(

β3b
∗
2

κ̂+ b∗2
+ β̂4f

∗+
c3

)
s∗2 − (µ+ γ + δ1) i

∗
2 = 0,

which yields

i∗2 =
β3b

∗
2 + (κ̂+ b∗2)β̂4f

∗+
c3

(κ̂+ b∗2)(µ+ γ + δ1)
s∗2. (13)

Further, from the first equation of the system (10), we have

µ+ σ(1− s∗2 − i∗2)− µs∗2 − σ
β3b

∗
2 + (κ̂+ b∗2)β̂4f

∗+
c3

(κ̂+ b∗2)(µ+ γ + δ1)
s∗2 − µs∗2 −

β3b
∗
2 + (κ̂+ b∗2)β̂4f

∗+
c3

(κ̂+ b∗2)
s∗2 = 0.

This give

s∗2 =
(µ+ σ)(κ̂+ b∗2)(µ+ γ + δ1)

(κ̂+ b∗2)(µ+ γ + δ1)(σ + µ) + (κ̂+ b∗2)(σ + µ+ γ + δ1)β̂4f ∗+
c3

+ β3b∗2(σ + µ+ δ1)
,

=
1

1 +Q∗
2

.

where

Q∗
2 =

(κ̂+ b∗2)(σ + µ+ γ + δ1)β̂4f
∗+
c3

+ β3b
∗
2(σ + µ+ δ1)

(µ+ σ)(κ̂+ b∗2)(µ+ γ + δ1)
.

9
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Next, we substitute s∗2 into equation (13) and obtain

i∗2 =
β3b

∗
2 + (κ̂+ b∗2)β̂4f

∗+
c3

(κ̂+ b∗2)(µ+ γ + δ1)

(
1

1 +Q∗
2

)
,

=
β3b

∗
2 + (κ̂+ b∗2)β̂4f

∗+
c3

(κ̂+ b∗2)(µ+ γ + δ1)(1 +Q∗
2)
,

This results to endemic state (ES) given by

E∗
2 = (s∗2, i

∗
2, b

∗
2, f

∗+
c3

).

3 Stability Analyses

In this section we prove the local stability of the steady states by using the Jaccobian matrix
linearized at each steady state.

3.1 Local Stability of the DFS

Theorem 3. The disease free state E∗
0 , is locally asymptotically stable if Rf > 1 and rb < µb.

Proof. In order to determine the local stability of the disease free steady state we evaluate the
Jaccobian matrix at E∗

0 which gives

J(E∗
0) =



−(σ + µ) −σ −β̂4 −β3
κ̂

0 −(δ1 + γ + µ) β̂4
β3
κ̂

0 0 β̂2 − δ2 β1
κ̂

0 0 0 rb − µb


. (14)

Therefore, the eigenvalues are;

λ1 = −(σ + µ), λ2 = − (µ+ δ1 + γ) , λ3 = β̂2

(
1− δ2

β̂2

)
= β̂2 (1−Rf ) , and λ4 = rb − µb.

Since all parameters are positive, it is clear that λ1 and λ2 are negative. However, λ3 and λ4 are
negative if and only if Rf > 1 and rb < µb respectively. Therefore, E∗

0 , is locally asymptotically
stable if Rf > 1 and rb < µb.

Remark 2. The growth rate of food contamination must be less than its removal and the growth
rate of bacteria must be less than its removal (natural death rate of bacteria).
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3.2 Local Stability of the BFS

Theorem 4. The bacteria free state E∗
1 is locally asymptotically stable if rb < µb and Rf < 1.

Proof. We evaluate the Jacobian matrix at E∗
1 and obtain

J(E1) =

(
J1(E1) J2(E1)
02×2 J3(E1)

)
where

J1(E1) =

−(σ + µ)− β̂4f ∗
c2

−σ

β̂4f
∗
c2

−(µ+ γ + δ1)

 , J2(E1) =


−β̂4s∗2 −

κ̂β3s∗2
κ̂2

β̂4s
∗
2

κ̂β3s∗2
κ̂2

 ,

J3(E1) =

−(2β̂2f
∗
c2

+ δ2 − β̂2) −
κ̂β1(f∗c2−1)

κ̂2

0 rb − µb

 .

The eigenvalues from J3(E1) are;

λ1 = rb − µb =⇒ λ1 < 0 if rb < µb,

and λ2 = −β̂2 (1−Rf ) =⇒ λ2

{
< 0 if Rf < 1

> 0 otherwise.

Further, the eigenvalues from J1(E1) is given by the characteristic polynomial

λ2 + ρ1λ+ ρ0 = 0, (15)

where

ρ1 = (µ+ γ + δ1) + (µ+ σ) + β̂4f
∗
c2
> 0,

ρ0 = (µ+ σ)(µ+ γ + δ1) + (µ+ σ + γ + δ1)β̂4f
∗
c2
> 0.

Since ρ1 > 0 and ρ0 > 0, the eigenvalues of equation (15) have negative real parts by the
Routh–Hurwitz stability criterion.
Therefore, the bacteria free state is locally asymptotically stable if and only if µb > rb and
Rf < 1.

3.3 Local Stability of the ES

Theorem 5. The endemic state E∗
2 is locally asymptotically stable if rb < (2rbb

∗
2 + µb) and

β̂2
J∗ < 1, where

J∗ =
β1b

∗
2

κ̂+ b∗2
+ 2β̂2f

∗+
c3

+ δ2.
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Proof. We evaluate the Jacobian matrix at E∗
2 to obtain

J(E2) =

(
J1(E2) J2(E2)
02×2 J3(E2)

)
where

J1(E2) =

−(σ + µ)−
(
β3b∗2
κ̂+b∗2

+ β̂4f
∗+
c3

)
−σ

β3b∗2
κ̂+b∗2

+ β̂4f
∗+
c3

−(µ+ γ + δ1)

 , J2(E2) =


−β̂4s∗2 −

κ̂β3s∗2
(κ̂+b∗2)

2

β̂4s
∗
2

κ̂β3s∗2
(κ̂+b∗2)

2

 and

J3(E2) =

−(
β1b∗2
κ̂+b∗2

+ 2β̂2f
∗+
c3

+ δ2 − β̂2) − κ̂β1(f
∗+
c3

−1)

(κ̂+b∗2)
2

0 rb − 2rbb
∗
2 − µb

 .

The eigenvalues from J3(E2) are;

λ∗1 = rb − (2rbb
∗
2 + µb) ≤ 0 if rb < (2rbb

∗
2 + µb) ,

λ∗2 = J∗

(
β̂2
J∗ − 1

)
< 0 if

β̂2
J∗ < 1,

where

J∗ =
β1b

∗
2

κ̂+ b∗2
+ 2β̂2f

∗+
c3

+ δ2.

Further, the eigenvalues of matrix J1(E2) is given by the characteristic polynomial

η2λ
∗2 + η1λ

∗ + η0 = 0, (16)

where

η2 = κ̂+ b∗2 > 0,

η1 = β3b
∗
2 + (κ̂+ b∗2)

[
(µ+ σ) + (µ+ γ + δ1) + β̂4f

∗+
c3

]
> 0,

η0 = (µ+ γ + σ + δ1)
[
β3b

∗
2 + (κ̂+ b∗2)β̂4f

∗+
c3

+ (κ̂+ b∗2)(µ+ σ)(µ+ γ + δ1)
]
> 0.

So, equation (16) can be rewritten as

λ∗2 + φ1λ
∗ + φ0 = 0 (17)

where φ1 = η1
η2
> 0 and φ0 = η0

η2
> 0. Since φ1 > 0 and φ0 > 0, The eigenvalues of equation (17)

have negative real parts by the Routh-Hurwitz stability criterion. Therefore, the endemic state

is locally asymptotically stable if rb < (2rbb
∗
2 + µb) and β̂2

J∗ < 1.

4 Numerical Simulations

4.1 Parameter Values

In this section, we simulate our model for Listeriosis in order to determine the time series tra-
jectories of the disease in human population. The system of equations were solved by using
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Julia and Matlab software over a period of time using the estimated parameter values in Table
2. We hypothetically chose the parameter values in such a way that they yield the results of
the analyses of the steady states. The parameter values in Table 2 are all assumed since there
are very few mathematical models on human Listeriosis disease infection and in literature. A
summary descriptions of the parameters used in the model are shown in Table 2 at the endemic
state with initial conditions s(0) = 0.4, i(0) = 0.1, fc(0) = 0.2, b(0) = 0.0005.

Table 1: Parameter values for simulations.

Parameter Symbols Values(day−1) Ref.
Human natural death rate µ 0.02 Estimated
Human recovery rate γ 0.07 Estimated
Rate loss of immunity σ 0.99 Estimated
Growth rate of Listeria rb 0.32 [12]
Natural death rate of bacteria µb 0.2-0.3[0.2] [25]
Disease induced death rate δ1 0.004 Estimated
Rate of removal of food products δ2 0.017
Half saturation constant κ̂ 0.0002 Estimated
Rate at which non-contaminated food are contaminated
by bacteria

β1 0.004 Estimated

Rate of contamination of food products β̂2 0.006 Estimated
Infection rate of humans by bacteria from the environ-
ment

β3 0.03 Estimated

Infection rate of susceptible humans by contaminated
food products

β̂4 0.05 Estimated

4.2 Convergence of Steady State

Figure 2(a) depicts the graph of the equilibrium point E∗
0 in which all the infected compartments

tends to zero. Therefore this shows the stability of the disease free equilibrium point. We can
infer that this is due to the high death rate, µb = 0.4, of the bacteria as compared to their growth
rate rb = 0.18. So there are less infections caused by the bacteria. Moreover, the rate of removal
of contaminated food, δ2 = 0.5, is higher as compared to the growth rate of food contamination,
β̂2 = 0.006. Figure 2(b) depicts the graph of the equilibrium point E∗

1 . We can observe from this
graph that the bacteria population goes to extinct since their growth rate is less that their death
rate. However, Listeriosis infections exist in the population due to presence of contaminated
food. This can be attributed to the fact that the rate of removal of contaminated food, δ2 = 0.1,
is less as compared to the growth rate of food contamination, β̂2 = 0.16. Figure 2(c) shows the
graph of the endemic equilibrium point E∗

2 in which the contaminated products, the bacteria
in the environment and the human population are all non-zero. Hence we can observe that the
disease will persist.
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(a) (b)

(c)

Figure 2: (a) The steady state E∗
0 with parameter values µ = 0.028, σ = 0.1, γ = 0.08,

δ1 = 0.1, δ2 = 0.5, rb = 0.18, µb = 0.4, β1 = 0.004, β̂2 = 0.006, β3 = 0.03, β̂4 = 0.05, κ̂ = 0.0002
and initial conditions s(0) = 0.4, i(0) = 0.1, fc(0) = 0.2, b(0) = 0.4. (b) The steady state E∗

1 with
parameter values, µ = 0.028, σ = 0.6, γ = 0.004, δ1 = 0.0035, δ2 = 0.1, rb = 0.05,
µb = 0.089, β1 = 0.004, β̂2 = 0.16, β3 = 0.1, β̂4 = 0.07, κ̂ = 0.0002 and initial conditions
s(0) = 0.4, i(0) = 0.1, fc(0) = 0.2, b(0) = 0.1. (c) The steady state E∗

2 with parameter values in
Table 2

4.3 Sensitivity Analysis

Global sensitivity analysis is a statistical tool used to determine the sensitivity and uncertainly of
epidemiological parameters. Here, we employ the method of Latin-hyper cube sampling as in [24]
to determine model parameters driving Listeriosis subject to the model under investigation.
According to [24], for any modelling exercise, we can carry out sensitivity at a time point of
interest or over a range of time frames to determine the sensitivity of the model parameters.
Since humans can devolve fully Listeriosis infections between 1 to 90 days after consuming
contaminated food products contaminated by Listeria. We carry out the simulation implemented
in Matlab with a time step of 1 and between 1 to 90 days, [25], with a time average of 45 days as
it is assumed to be an average time an infected person with Listeria should have to develop the
symptom of the disease. The simulation result gives the partial Rank Correlation Coefficient’s
(PRCCC) and P-values shown in Table 2 with the Tornado plot showing different parameters
sensitivity values as shown in Figure 3. We observe in Figure 3, that, the parameters β̂3 and rb
are strongly positively correlated while µb is strongly negatively correlated.. Hence, the increase
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in the food contamination rate β̂3 and the bacteria growth rb will impact the disease variability
leading to more infected humans in the community affected by Listeriosis. An increase in the
removal rate of bacteria, µb, will certainly result in fewer human infections.

Figure 3: Tonardo plot showing different parameter PRCC values. Note that β̂1, β̂2, β̂3 and β̂4
are represented by β1, β2, β3 and β4 respectively as Matlab do not compile theˆcommand.

Table 2: PRCC and P-values.

Parameter P-values PRCC values
µ 0.0230 -0.1969
γ 0.0788 -0.2984
σ 0.9536 0.0927
rb 0.1848 0.7602
µb 0.2157 -0.6504
δ1 0.0040 -0.0504
δ2 0.0183 -0.0706
κ̂ 0.0001 -0.0798
β1 0.0042 0.1708

β̂2 0.0067 0.0663
β3 0.0177 0.5641

β̂4 0.0445 0.2388
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4.4 Effects of δ2 and β2 on Contamination Threshold Rf

Figure 4(a) depicts the behaviour of contamination threshold Rf against the rate of contamina-

tion of food products, β̂2, the graph shows that as the rate of contamination of food products,
β̂2, increase then the contamination threshold Rf decrease. Figure 4(b) depicts the behaviour
of contamination threshold, Rf , against the disposal rate δ2, the graph shows that as disposing
rate δ2 increase then the contamination threshold, Rf , also increase.

(a) (b)

Figure 4: (a) The contamination threshold Rf with parameter values, δ2 = 0.015,

β̂2 = 1.0, 1.1, 1.2, 1.3, 1.4, 1.5. (b) The contamination threshold Rf with parameter values,

β̂2 = 0.06, δ2 = 0.0, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5.

4.5 Effects of Varying Parameters δ2, β2, β3 and β4 on Infected Humans

Figure 5(a) shows how infectious human decrease as disposing (removal) rate increase (δ2). Figure
5(b) shows how infectious human decrease as the bacterial natural death (removal) rate µb
increases.

(a) (b)

Figure 5(c) shows how infectious humans decrease as Listeria bacteria infection rate from the
environment decrease. Figure 5(d) shows how infectious human decrease as the rate of food
contamination β4, decreases.
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(c) (d)

5 Conclusion

In this paper, we formulate a mathematical model to eludidate the contribution of contaminated
food products and bacteria in the environment on the spread of Listeriosis. The model steady
states were determined and their stabilities determined. The model has three steady states, the
disease free steady statesE0 in which their in only the susceptible population while the remaining
state variables are zeros. While this is mathematically plausible this steady state may not be
realistic as the bacteria will always be present in the environment. The second steady state is
bacteria free steady state E1 in which the is driven by only contaminated food products. This
steady state is driven by contamination within the food manufacturing environment. The third
steady is the endemic state in which all the state variable are no-zero. This steady state depicts a
scenario in which the environment, the human population and food products are active in spread
of Listeriosis.

The model simulation are carried out to investigate the role of interventions in the spread of
Listeriosis. The most important interventions in the removal of contaminated food product,
modelled by the parameters δ2. Sensitivity analysis is also carried to determine the most signifi-
cant parameters that influence the transmission dynamics. It is through these parameters that
interventions can be designed and quantified.
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