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Abstract 
 
Objective 
To identify and evaluate the evidence of the most relevant running-related risk factors (RRRFs) 
for running-related overuse injuries (ROIs) and to suggest future research directions. 
 
Design 
Systematic review considering prospective and retrospective studies. (PROSPERO_ID: 
236832) 
 
Data sources 
Pubmed. Connected Papers. The search was performed in February 2021.  
 
Eligibility criteria 
English language. Studies on participants whose primary sport is running addressing the risk 
for the seven most common ROIs and at least one kinematic, kinetic (including pressure 
measurements), or electromyographic RRRF. An RRRF needed to be identified in at least one 
prospective or two retrospective studies.  
 
Results  
Sixty-two articles fulfilled our eligibility criteria. Levels of evidence for specific ROIs ranged 
from conflicting to moderate evidence. Running populations and methods applied varied 
considerably between studies. While some RRRFs appeared for several ROIs, most RRRFs 
were specific for a particular ROI. The biomechanical measurements performed in many 
studies would have allowed for consideration of many more RRRFs than have been reported, 
highlighting a potential for more effective data usage in the future. 
 
Conclusion 
This study offers a comprehensive overview of RRRFs for the most common ROIs, which might 
serve as a starting point to develop ROI-specific risk profiles of individual runners. Future work 
should use macroscopic (big data) approaches involving long-term data collections in the real 
world and microscopic approaches involving precise stress calculations using recent 
developments in biomechanical modelling. However, consensus on data collection standards 
(including the quantification of workload and stress tolerance variables and the reporting of 
injuries) is warranted. 
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Introduction 
 
Overuse injuries in runners (ROIs) are widespread, with a reported overall incidence of 19.4 
to 79.3% [1]. Depending on the type of runner, definitions of injury, and follow-up periods, 
running-related injury incidence rates range between 2.5 to 33.0 injuries per 1000 hours of 
running [2]. The origins of ROIs are complex [3,4] but principally result from an accumulation 
of repetitive stress applied on the body without sufficient rest for tissue remodelling resulting 
in a degenerative response [5]. The stress response is a function of both tissue characteristics 
(influenced by lifestyle and genetic factors) and stress application characteristics (e.g., 
amplitude, frequency, duration) [6]. However, the non-invasive determination of these stresses 
is challenging as is the measurement of stress accumulation in everyday life and sports [7]. To 
determine structure specific stresses, computational models need to integrate precise 
anatomical information (e.g., biological tissues’ properties and geometry) and the potential 
neuromuscular control strategy that governs force and power production [8].  

 
Therefore, researchers and practitioners often try to predict injury risk based on less direct and 
less computational and information-expensive biomechanical parameters as surrogate 
variables to link running biomechanics and injury risk. Such biomechanical running-related risk 
factors (RRRFs) include kinematic and kinetic parameters derived from ground reaction force, 
pressure mapping, electromyographic, and motion capture data. Using this approach, runners 
at risk of an ROI can be identified, however, to prevent ROIs, further knowledge on cause-
effect relationships is needed [9].  

 
Within a framework of injury development [10,11], the most relevant RRRFs could serve as a 
source for the improvement of technical (e.g., running shoes or foot orthoses / insoles), training 
and/or feedback system interventions (e.g., in gait retraining or through “digital coaches” based 
on wearable sensor information) by targeting populations at risk. Research on RRRFs employs 
different research designs and populations. The wealth of information is challenging to 
oversee.  

 
Therefore, the aim of this review article is: (1) to identify the most relevant RRRFs and evaluate 
their evidence concerning the most prevalent ROIs; and (2) to suggest future directions of 
research to improve the understanding of the relationship between running biomechanics and 
overuse injury development while considering the interplay between RRRFs, workload 
characteristics and individual, structure-specific stress tolerances. 
 

 

 

Methods 

Search strategy and risk factor extraction 

The systematic review aimed to extract the evidence for RRRFs for the ROIs with the highest 

prevalence and incidence. Therefore, based on the work of Lopes et al. [12], we examined 

RRRFs for the following ROIs: Medial tibial stress syndrome (MTSS), Achilles tendinopathy 

(AT), plantar fasciitis (PF), patellar tendinopathy (PT), iliotibial band syndrome (ITBS), tibial 

stress fracture (TSF), hamstring tendinopathy (HT), and patello-femoral pain syndrome 

(PFPS). We followed the reporting items for Systematic Reviews and Meta-analyses 

(PRISMA) guidelines [13]. Before starting the literature review, we registered this study at 

PROSPERO (record ID 236832).  

We scanned the Pubmed database for articles comparing the running biomechanics of injured 

and uninjured individuals for the seven most common ROIs. For each ROI, we used an injury-

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.23.21261034doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.23.21261034


3 
 

specific search string (for details, please refer to the Supplementary Digital Content (SDC)). In 

short, each search string comprised combinations of runn* (i.e., the main activity), the injury 

location (e.g., femur*), multiple keywords to characterise injury-specific physical complaints 

(e.g., risk OR tend* OR pain), and the study design (e.g., prospective OR retrospective). We 

used an additional combination of keywords to obtain original English articles involving human 

participants (SDC). The initial search for ITBS, MTSS, and HT took place on February 4, 2021. 

One day after (February 5, 2021), the search strings for AT, PT, PFPS, PF, TSF were applied. 

Search results, including titles and abstracts, were uploaded to the web interface of 

rayyan.qcri.org [14]. We then screened titles and abstracts of the articles using the following 

criteria: 

Inclusion criteria: 

• Studies in the English language 

• Prospective or retrospective studies addressing at least one of the ROIs of interest and 

relating injury risk to at least one RRRF 

• Studies considering kinematic, kinetic (including pressure measurements), or 

electromyographic RRRFs 

• The primary sport of the investigated study sample was running 

 

Exclusion criteria: 

• No RRRF analysed 

• Studies that sampled from populations where distance running was not the primary 

sport 

• Studies addressing biomechanical risk factors during dynamic activities other than 
running (e.g., walking or stair climbing) 

• Studies addressing anthropometric factors (e.g., leg alignment, foot posture index) or 
strength measurements (e.g., toe strength or hip abduction strength) 

• Studies including military or physical education students due to the unknown effects of 
concurrent training 

• Studies (obviously) publishing results from the same subject sample as in a previous 
publication of the same group 

• Non-original articles (e.g., reviews or conference articles) or articles not written in 

English 

 

Two review team members independently selected titles and abstracts of studies found 
through the search strategy for potentially relevant studies after applying the inclusion and 
exclusion criteria. The selection of appropriate studies was discussed between the team 
members, and in the case of disagreements, they were resolved through consultation with 
another member of the review team. Subsequently, full texts were screened based on the 
same exclusion and inclusion criteria. 

Additional sources were identified through the reference list of the eligible articles from the 

initial search and a co-citation method using the bibliographic coupling concept 

(http://www.connectedpapers.com). 

 

Data on study characteristics were extracted from all included articles by members of the 

review team. Discrepancies were identified and resolved through discussion (with another 

reviewer if necessary). This data extraction included publication details (author and year), 

general information on injury type, specific running population, sample size, data collection 

method, running speed and footwear used during testing, and biomechanical outcome 
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variables. Furthermore, we determined whether potential risk factors found in other studies 

could have been calculated based on the reported data collection methods. We also collected 

data on participant characteristics (e.g., age, gender, height).  

Relevance criterion for considering running-related risk factors 

We considered an RRRF relevant if at least one prospective study or two retrospective studies 

from independent data collections found a significantly different value of an RRRF for a specific 

ROI.  

 

Quality rating and risk of bias assessment 

We followed the same procedure as in a previously published review [15] using selected 

components from the ‘Quality Index’ developed by Downs and Black [16]. The modified ‘Quality 

Index’ scale consists of 15 items. All points of the modified ‘Quality Index’ were summed to 

provide a quality score for each study. Studies scoring 11 or greater were considered to be of 

high quality, studies with scores of six to ten were considered to be of moderate quality and 

studies with scores of five or less were considered to be of low quality [17]. Outcomes were 

discussed in a team meeting, and discrepancies were resolved by consulting another reviewer.  

 

Due to poor reliability observed in items addressing external validity in the complete Downs 

and Black Quality Index [16], we performed a separate risk of bias assessment using a 10-

point checklist, previously described in a systematic review of RRIs [12]. Each item was rated 

with either 1, referring to a low risk of bias, or 0, referring to a high risk of bias. If certain items 

could not be categorised, we assigned them a value of 0. Overall, we summed up the ten 

items’ scores. When less than half of the maximum possible points (i.e., <= 5 of 10 possible 

points) were reached, we considered the study to have a high risk of bias.  

 

To determine the strength of evidence of an RRRF for a specific ROI, we followed the same 

approach as a previous review focussing on the role of RRRFs for running injuries in general 

[18]. These authors used the following categories described in detail by van Tulder et al. [19]: 

• Strong evidence: Consistent findings among three or more studies, including a 

minimum of two high-quality studies 

• Moderate evidence: Consistent findings among two or more studies, including at least 

one high-quality study 

• Limited evidence: Findings from at least one high-quality study or two low- or moderate-

quality studies 

• Very limited evidence Findings from one low- or moderate- quality study 

• Inconsistent evidence: Inconsistent findings among multiple studies (e.g., one or 

multiple studies reported a significant result, while one or multiple studies reported no 

significant result) 

• Conflicting evidence We defined conflicting as contradictory results between studies 

(e.g., one or multiple studies reported a significant result in one direction, while one or 

multiple studies reported a significant result in the other direction) 

• No evidence Results were insignificant and derived from multiple studies regardless of 

quality. 

 

Results 

After identification, screening, and applying the exclusion and inclusion criteria, 62 articles 

were included in the review (Fig. 1). 
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Figure 1: A FLOW-chart of the identification process. The numbers for articles per injury do not sum up to the total 
number of articles because some studies have addressed multiple running-related injuries. 

 

In the following, we report the findings independently for each ROI considered. The findings 

are summarised graphically in Figure 2. Detailed results on study details, quality assessment 

and risk of bias rating can be found in the Supplementary Digital Contents (SDCs). 
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Achilles tendinopathy (AT) 

We identified twelve studies (eleven retrospective, one prospective) that had analysed, in total, 

115 different potential RRRFs for AT (SDC) through our systematic screening of the literature 

[20–31]. Out of these parameters, five RRRFs were identified in either two independent 

retrospective studies or one prospective study, following our predefined relevance criterion. 

A high quality (B&D: 13) prospective study with low risk of bias (ROBS: 8) using a pressure 

plate found that novice runners who developed AT within a ten-week follow-up period showed 

three differences in their plantar pressure application during the stance phase compared to 

novice runners who remained injury-free. A reduced antero-posterior displacement of the 

centre of pressure during the stance phase, higher vertical forces applied through the lateral 

part of the foot at the instant of forefoot flat, and a reduced time to peak force at the medial 

heel. 

Further, two RRRFs related to the motion of the ankle joint in the frontal plane (rearfoot 

inversion-eversion relative to the tibia) were identified. Two medium quality retrospective 

studies (B&D: 7-10), one with a high risk of bias (ROBS: 4), identified increased ankle range 

of motion from TD to maximum rearfoot eversion during the stance phase as RRRF [22,30]. 

Furthermore, more pronounced ankle inversion at initial contact with the ground was 

retrospectively identified as RRRF for AT by two medium quality studies with a high risk of bias 

(B&D: 7-8; ROBSs: 4). Many additional parameters differed between runners suffering from 

AT compared to runners who did not. For a complete list of all parameters for all ROIs, please 

refer to the SDC. However, these results were only found in single retrospective studies and 

did not follow our predefined quality criterion.  

In summary, we identified limited evidence for a reduced anterior-posterior displacement of the 

centre of pressure, higher vertical forces applied through the lateral part of the foot at the 

instant of forefoot flat, and a reduced time to peak force at the medial heel during the stance 

phase as RRRFs for AT. We further found limited evidence for increased ankle inversion angle 

at initial contact and inconsistent evidence for ankle eversion range of motion from initial 

contact to peak rearfoot eversion during stance as RRRFs for AT (Fig. 3). 

 

Medial tibial stress syndrome (MTSS) 

Our search resulted in four (one prospective, three retrospective studies) studies addressing 

RRRFs for MTSS [20,32–34]. In these studies, 23 individual RRRFs were investigated (SDC). 

However, only three RRRFs matched our relevance criterion.  

In a high quality (B&D: 11; ROBS: 7) prospective study, competitive runners (NCAA Division 

1) developing MTSS during a two-year follow-up period ran with greater peak rearfoot eversion 

relative to the tibia, and their ankle joints remained in an everted position for a longer time 

during the stance phase compared to runners not suffering from MTSS [32]. Furthermore, in 

the same study, runners developing MTSS had a higher contralateral peak pelvis drop during 

the stance phase compared to runners not suffering from MTSS [32]. The finding that runners 

with MTSS spend more time in eversion during stance was replicated in a moderate quality 

retrospective study (B&D: 9; ROBS: 4) [20]. However, the finding that peak eversion is a risk 

factor for MTSS was not replicated in this study [20].  

In summary, we found moderate evidence for eversion time during stance, inconsistent 

evidence for peak eversion, and limited evidence for peak contralateral pelvis drop during 

stance as RRRFs for MTSS (Fig. 3). 
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Tibial stress fractures (TSF) 

We identified nine retrospective studies addressing RRRFs for TSF [31,35–42]. These studies 

considered 41 individual RRRFs (SDC). Three RRRFs followed our predefined relevance 

criterion. Two moderate quality studies (B&D: 9-10; ROBS: 4-5) found higher peak ankle 

eversion during stance for runners with a history of TSF [40,42]. These same studies also 

reported greater peak hip adduction angles during stance for runners with a history of TSF 

compared to runners without a history of TFS [40,42]. Further, two moderate quality studies 

(B&D: 9-10; ROBS: 4) found higher peak amplitudes of the free moment applied to the ground 

in runners with a history of TSF [39,42].   

In summary, we identified limited evidence for peak ankle eversion, peak hip adduction, and 

peak free moment amplitude as RRRF for TSF (Fig. 3). 

 

Plantar fasciitis (PF) 

Our search resulted in five retrospective studies considering 46 potential RRRFs for PF [31,43–

46]. Two out of these parameters matched with our predefined relevance criterion. Runners 

with a PF history created higher instantaneous vertical loading rates of the ground reaction 

force in two retrospective studies [31,45]. One study was of high quality (B&D: 11) but also a 

high risk of bias (ROBS: 3) [31], while the other study was of moderate quality (B&D: 10) and 

also a high risk of bias (ROBS: 4) [45]. Further, two high-quality (B&D: 11; ROBS: 3-5) studies 

found that runners with PF history applied vertical forces at a higher average loading rate to 

the ground [31,43].  

In summary, we found limited evidence for average and instantaneous vertical loading rates 

of the ground reaction force as RRRFs for PF (Fig. 3). 

 

Iliotibial band syndrome (ITBS) 

We found 13 studies (three prospective and ten retrospective) considering 71 potential RRRFs 

for ITBS [31,46–57]. Of these parameters, seven followed our relevance criterion. At the hip, 

conflicting evidence was found for the peak hip adduction angle. While one moderate quality 

retrospective study (B&D: 10; ROBS: 4) [53] and one moderate quality  prospective study 

(B&D: 10; ROBS: 5%) [56] found significantly higher peak hip adduction angles in runners with 

ITBS, three moderate (B&D: 9-10; ROBS: 5) and two high quality (B&D: 12; ROBS: 4-5) 

retrospective studies found reduced peak hip adduction angles during the stance phase in 

runners with ITBS compared to non-injured runners (Fig. 2). 

A moderate quality (B&D: 10; ROBS: 5) prospective study found higher peak external rotation 

during stance in runners who developed ITBS compared to their control group [56] (Fig. 2). At 

the knee, a moderate quality retrospective study (B&D: 10; ROBS: 4) [53] and one moderate 

quality  prospective study (B&D: 10; ROBS: 5) [56] found significantly higher peak internal 

rotation angles during the stance phase in runners with ITBS compared to non-injured runners. 

Further, two high-quality  retrospective studies (B&D: 12-13; ROBS: 6) reported significantly 

higher peak knee adduction angles in runners with compared to runners without a history of 

ITBS [49,52]. When applying a computer model which calculates the kinematics of the ITB, 

Hamill et al. [55] identified increased ITB strain and strain rates in runners with compared to 

runners without a history of ITBS (Fig. 2). 
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In summary, our systematic review established moderate evidence for increased peak knee 

adduction angle, limited evidence for increased ITB strain, increased ITB strain rate and 

increased peak femur external rotation. Further, we found inconsistent evidence for increased 

peak knee internal rotation angle and conflicting evidence for peak hip adduction as an RRRF 

for ITBS (Fig. 3). 

 

Patello-femoral pain syndrome (PFPS) 

Twenty-three studies (four prospective and 19 retrospective) were included in the systematic 

review [31,58–61,61–78]. These studies analysed in total 114 potential RRRFs (SDC). Of 

these, eleven RRRFs matched our predefined relevance criterion. Longer contact time was 

identified as an RRRF for PFPS in two high-quality (B&D: 11) retrospective studies with a low 

risk of bias (ROBS: 5-6)[71,74]. Several plantar pressure-related variables were identified by 

one high-quality (B&D: 11) prospective study with a low risk of bias (ROBS: 7) [70]. These 

were an increased peak vertical force at the lateral heel (i.e., initial contact), as well as at the 

2nd and 3rd metatarsal heads. Further, a reduced time to peak force at the medial and lateral 

heel were found. Two retrospective studies (B&D: 10-11; ROBS: 5-6) related a reduced braking 

impulse of the horizontal ground reaction force with an increased risk for PFPS [71,74] (Fig. 

2). 

One high-quality (B&D: 11) prospective study with low risk of bias (ROBS: 70%) found greater 

internal knee abduction angular impulses in runners developing PFPS compared to non-

injured controls [67] (Fig. 2). At the hip, higher peak adduction angles were identified as risk 

factors by one high quality  prospective study with low risk of bias (D&B: 11; ROBS: 8) [62] and 

two retrospective studies (D&B: 10; ROBS: 5-6) [69,72]. Further, three moderate quality  

retrospective studies (B&D: 10, ROBS: 4-6) suggested that an increased peak hip internal 

rotation angle was associated with PFPS [60,69,72]. A moderate quality prospective study with 

low risk of bias (B&D: 8; ROBS: 7) found increased average internal hip abduction moments 

in runners who developed PFPS compared to runners who did not [63] (Fig. 2). 

In summary, we found limited evidence for above mentioned plantar pressure-related 

parameters, increased internal knee abduction angular impulse, and increased average hip 

internal abduction moments during stance. Further, moderate evidence for reduced braking 

impulse of the ground reaction force and longer ground contact times, and inconsistent 

evidence for increased peak hip adduction and internal rotation angles during stance were 

found (Fig. 3). 

 

Patellar and hamstring tendinopathy (PHT) 

A moderate quality study with a high risk of bias (B&D: 7; ROBS: 3) analysed 42 potential 

RRRFs for PHT [79]. However, since this was the only study, our predefined relevance criterion 

was not met. We could not identify a study focussing on RRRFs for hamstring tendinopathy.  
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Figure 2: Graphical representation of the evidence associated with running-related risk factors that have passed 
our predefined relevance criterion (at least a significant difference in one prospective study or two retrospective 
studies). The green color represents a study that had found a significant difference between a group of injured 
runners compared to control. Red colors represent a study that could not find a significant difference between 
groups. Yellow colors represent studies that could have analysed a certain running-related risk factor based on the 
methodology they have used, but they did not consider the risk factor in their analysis. Black circles around dots 
indicate a prospective study design (no circles = retrospective study design). Dot size scales with Black & Down 

quality rating of the studies. The number in the dots is the Risk of Bias Score of the study. 
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Figure 3: Overview of the evidence associated with running-related risk factors that have passed our predefined 
relevance criterion (at least a significant difference in one prospective study or two retrospective studies). 

 

Discussion 

This systematic review aimed to extract the evidence for RRRFs for specific ROISs from the 
existing literature. While there are several important previous reviews on the role of RRRFs for 
the development of running-related injuries, our work adds several relevant pieces to the 
complex puzzle of ROI development. It is the first systematic review that focuses on RRRFs 
for the most prevalent ROIs while using the same inclusion and exclusion criteria for all 
considered injuries. Previous reviews either did not report overuse injuries for specific types of 
injuries [18] or focus on a single overuse injury [15,80–88]. Further, some reviews did only 
focus on prospective studies [18]. While these studies are superior in their strength of evidence 
to retrospective studies, the majority of research on RRRFs for ROIs have used retrospective 
designs. By applying our relevance criterion (potential RRRFs identified from at least two 
retrospective studies or one prospective study), we acknowledged the superior evidence of the 
prospective study design while at the same time including insight gained from retrospective 
studies. 
 
A list of relevant RRRFs can be used to establish an individual risk profile of an individual’s 

running biomechanics. Based on this risk profile, individualised footwear could be developed, 

or footwear might be reconsidered to change the running biomechanics towards a less risky 

profile. Considering specific injuries is significant progress for injury profiling since running 

shoes can be designed to shift loading between musculoskeletal structures in the lower 

extremity and hence specifically address injury-specific risk factors [5]. A running injury risk 

profile can also inform prevention training programs to strengthen biological tissues at risk or 

help to develop feedback tools that facilitate running gait retraining towards a less pronounced 

risk profile. More sophisticated, while at the same time easy-to-use (maybe integrated with 

running apparel), tools for gait retraining may be available in the future [89]. 
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Since a previous injury is an essential non-running related injury risk factor [90], it seems logical 

that individualised running shoe design, prevention training protocols, or running gait feedback 

tools should weigh specific RRRFs based on injury history. 

Further, it has to be clearly mentioned that RRRFs should be viewed in interaction with 

workload characteristics of training protocols and individual, structure specific load tolerance 

levels. This means that an individual risk profile based on RRRFs and potentially other risk 

factors can only inform interventions for runners if workload characteristics and stress 

tolerance levels are considered. Clearly more research is needed to improve our 

understanding on these different aspects of ROI development.  

Limitations 

One of the strengths of our review is that it systematically assessed the current evidence for 

biomechanical RRRFs specifically for the most prevalent ROIs using the same methodology. 

Further, it includes work from both, propsepective and retrospective studies while 

acknowledging the superior level of evidence of prospective studies by applying a relevance 

criterion for retrospective study inclusion. Finally it highlights the potential for a more effective 

data usage by identying how additional RRRFs could have been analysed already in previous 

studies in the past.  

Despite the several strengths of this work, we need to also highlight several limitations: Due to 

the lack of results reported or analysed in the considered studies, we could not differentiate 

our findings for different groups of runners. Since different groups of runners likely vary in their 

structure specific stress tolerance levels and their adaptations we recommend that future work 

on RRRFs should always report as many details of the running population as possible.  

Further, different studies used heterogeneous definitions of injury, the definition of types of 

runners (e.g., competitive vs. recreational), and outcome measures in the included full-text 

articles challenged comparison across studies. Also, most studies did not consider running 

volume in their assessment of injury risk between groups (e.g., Incidence per 1000h of running 

[2]) or tried to quantify workload characteristics by other means. 

Outlook 

Based on the findings of this review and when considering recent injury development 
frameworks, we propose the following directions for future research. These directions can be 
broadly categorised by either using larger datasets with lower data precision or smaller 
datasets with higher precision.  

The big data macroscopic approach can leverage the recent developments in wearable sensor 
technology and artificial intelligence. At this time, running movement data can be captured 
during every training session and uploaded to large databases. The insight gained from the 
big data approach relies on the ability to determine relevant features (i.e., functional or discrete 
features related to injury risk) from these sensor signals, with the assistance of artificial 
intelligence. The parameters identified from this review can serve as a starting point for such 
a data exploration. Future studies need to explore the potential to identify new RRRFs using 
wearable, inexpensive sensor technology outside the laboratory setting. Further, tools to 
collect and store data on large scales while using user feedback to label the occurrence of 
running-related pain or injuries will allow further insight by considering not only single data 
collection sessions but, in principle, the entire training history of an individual (e.g., changes 
associated with fatigue) [91–93]. International research collaborations that use the same 
methodology for data capturing and labeling seem ideally suited to solve this task.  

The current review findings also highlight that there already exists a “data treasure” from 
research performed over the last few decades which could be reanalysed by considering 
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recent findings. Figure 2 highlights that several RRRFs could be analysed from existing 
datasets. A statistical reanalysis of the differences between injured and non-injured groups for 
these RRRFs from previous studies would help paint a clearer picture of the relationship 
between RRRFs and specific running injuries.  

The small data microscopic approach relies on improvements in biomechanical modeling 
approaches that can improve our understanding of how running biomechanics are linked to 
the stress of the tissues involved in ROIs. Here, the combination of individualised 
musculoskeletal models with,  for example, finite element models of the tissues under 
consideration seems to offer enormous potential for not only improved targeting of runner 
populations at risk but also increased understanding of cause effect relationships in ROI 
development. Single subjects study designs applying very detailed modelling techniques might 
further improve our understanding of injury development since the etiology of an injury is not 
the same for all patients diagnosed with the same injury. However, currently, these techniques 
are time-consuming and rely on many assumptions that challenge the validity of the calculated 
stress characteristics. Therefore, the discipline of biomechanics should also target a more 
efficient yet precise quantification of input variables for these model calculations.  

Independent of the scale and precision, running-related risk factors should not be considered 
in isolation but need to be analysed while considering the complex framework of running injury 
aetiology [11]. Therefore, the interplay of RRRFs with other modifiable and non-modifiable risk 
factors, workload characteristics [7], and estimators of structure-specific stress tolerance levels 
should be included in data collections and statistical analyses. A consensus on the minimum 
number and type of such framework variables for running injury research seems urgently 
needed to face this challenge. 

In summary, this is the first systematic review that summarises the evidence for RRRFs for 
specific ROIs using the same search strategy and exclusion and inclusion criteria. We hope 
that this work can serve as the basis to identify runners at risk for specific ROIs and and from 
this basis improve decisions on footwear design or use, training and rehabilitation programs, 
and sensor-based devices to monitor and improve individual running biomechanics. 
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