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ABSTRACT  25 

Patients treated with anti-CD20 therapy are particularly at risk of developing severe COVID-26 

19, however little is known regarding COVID-19 vaccine effectiveness in this population. 27 

This study assesses humoral and T-cell responses to mRNA-based COVID-19 vaccines in 28 

patients treated with rituximab for rheumatic diseases or ocrelizumab for multiple sclerosis 29 

(n=37), compared to immunocompetent individuals (n=22). SARS-CoV-2-specific antibodies 30 

were detectable in only 69.4% of patients and at levels that were significantly lower compared 31 

to controls who all seroconverted. In contrast to antibodies, Spike (S)-specific CD4+ T cells 32 

were equally detected in immunocompetent and anti-CD20 treated patients (85-90%) and 33 

mostly of a Th1 phenotype. Response rates of S-specific CD8+ T cells were higher in 34 

ocrelizumab (96.2%) and rituximab-treated patients (81.8%) as compared to controls (66.7%). 35 

Vaccine-specific CD4+ and CD8+ T cells were polyfunctional but expressed more IL-2 in 36 

patients than in controls. In summary, our study suggests that patients on anti-CD20 treatment 37 

are able to mount potent T-cell responses to mRNA COVID-19 vaccines, despite impaired 38 

humoral responses. This could play an important role in the prevention of severe COVID-19.  39 
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INTRODUCTION 41 

In patients with immune-mediated rheumatic diseases (RD) and multiple sclerosis (MS), 42 

immunosuppressive drugs and in particular anti-CD20 therapy are associated with an 43 

increased risk of severe COVID-19 [1-3]. Although generally identified as priority groups for 44 

vaccination, these patients were not included in pivotal studies evaluating the efficacy of 45 

COVID-19 vaccines and their effectiveness in this population is still unknown. Anti-CD20 46 

treatment depletes B cells and impairs antibody responses to classical vaccines [4-6]. Several 47 

studies have now confirmed reduced antibody levels and seroconversion rates in anti-CD20 48 

treated patients following SARS-CoV-2 infection [7] and COVID-19 vaccination, irrespective 49 

of the underlying disease [8-11]. Although antibodies are likely to play a critical role in 50 

preventing infection, recovery from COVID-19 in patients with X-linked 51 

agammaglobulinemia suggests that antibodies are not mandatory to overcome disease [12]. T 52 

cells may also be involved in protection against COVID-19 [12-14] and memory T cells are 53 

readily detectable several months after infection [15]. As B cell could play a role as antigen-54 

presenting cells to naïve T cells, the question remains as whether B-cell depleted patients 55 

could still mount a functional T cell response to COVID-19 vaccines, which may provide 56 

some level of protection against severe disease.  57 

The aim of our study was thus to characterise and compare T-cell response to mRNA-based 58 

COVID-19 vaccines between patients with rheumatic diseases and multiple sclerosis treated 59 

with anti-CD20 therapy and immunocompetent controls.   60 
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RESULTS AND DISCUSSION 61 

 62 

In order to assess the effect of B cell depletion on vaccine-induced T cell response, we 63 

studied a total of 37 patients treated with either ocrelizumab (n=26) for multiple sclerosis 64 

(MS) or rituximab (n=11) for rheumatic diseases (RD) compared to 22 age-matched 65 

immunocompetent controls (details see Table 1). Most patients with RD were treated for 66 

rheumatoid arthritis (n=7) and had more co-morbidities compared to MS patients or controls. 67 

Mean age was balanced between groups. Regarding concomitant medication, 5/11 RD 68 

patients received another immunosuppressor (mainly methotrexate or corticosteroids), while 69 

all MS patients were treated with ocrelizumab only. Hence, this cohort is likely to reflect the 70 

effect of short- to long-term treatment with anti-CD20 on vaccine response in the absence of 71 

other major confounding factors, in particular age and concomitant immunosuppressive drugs. 72 

The interval between last anti-CD20 treatment and 1st vaccine dose was shorter in patients 73 

under ocrelizumab (median 24.9 weeks) than in patients treated with rituximab (median 42 74 

weeks), which explained the absence or low (<2 %) percentage of CD19+ B cells at time of 75 

vaccination, especially in ocrelizumab-treated patients (Sup Fig 1). Most patients (34/37, 76 

91.9%) and a majority of controls (15/22, 68.2%) had no history of SARS-COV-2 RT-PCR-77 

confirmed infection (review of medical record) prior to vaccination (Table 1) nor a positive 78 

anti-nucleoprotein serology (measured 30 days after vaccination, Fig 1A). 79 

Participants were vaccinated either with 2 doses of BNT162b2 (Pfizer/BioNTech; n= 80 

13) or mRNA-1273 (Moderna, n=46) COVID-19 mRNA vaccine at 28 days interval (median 81 

28 days, IQR=0). Immune responses were measured 30 days after the second dose and in a 82 

subset of participants (n=20) at time of first vaccination (Sup Fig 2). Both mRNA vaccines 83 

are able to elicit antibody and T cell responses in healthy individuals [16, 17]. As recently 84 

reported by others [10, 11, 18] and as expected from experience with other vaccines, the level 85 

of antibodies specific to the anti-receptor binding domain (RBD) of the SARS-CoV-2 spike 86 

(S) protein was significantly lower in both anti-CD20 treated patient populations as compared 87 

to controls, irrespective of the vaccine used (geometric mean: 5371 U/ml in controls, 69.3 88 

U/ml in rituximab- and  8.3 U/ml in ocrelizumab-treated patient, Fig 1A). While all controls 89 

had seroconverted 30 days after vaccination and regardless of their history of COVID-19, 90 

significantly less anti-CD20 treated patients had detectable anti-RBD antibodies (p=001), 91 

with a higher seropositivity rate in patients treated with rituximab (8/11; 72.7%) compared to 92 

ocrelizumab (16/26; 61.5%). Those RD patients who did not have detectable antibody all 93 
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received concomitant treatment with methotrexate or corticosteroids. As expected, antibody 94 

levels in patients correlated with level of circulating CD19+ B cells (measured at day 30 after 95 

vaccination, Fig 1B), which were lower in patients on ocrelizumab due to a more recent 96 

treatment. There was no correlation between age and antibody response. The three patients 97 

with a known history of COVID-19 or with detectable anti-N antibodies did not have higher 98 

antibody responses as compared to those unexposed (Fig 1A, Sup Fig 2A). This suggests that 99 

on anti-CD20 treatment, previous exposure to SARS-CoV-2 does not provide an advantage in 100 

terms of humoral vaccine response, in contrast to what we (Fig 1A) and others [19] observed 101 

in immunocompetent individuals. 102 

T-cell immunity against SARS-CoV-2 is thought to play a role in protection against severe 103 

disease[14] and may thus provide for patients under anti-CD20 treatment some level of 104 

protection despite their limited antibody response. The number and functionality of T cells is 105 

generally maintained after treatment with B-cell targeting drugs, although depletion of some 106 

CD20+ T cells, an increase in memory and loss of terminally differentiated CD4+ T cells 107 

have been reported [20, 21]. To assess if mRNA vaccines could elicit T cell responses in our 108 

patient cohort, we stimulated PBMC collected 30 days after the second vaccine dose with a 109 

pool of peptides covering the S-protein [22] and identified S-specific T cells using the 110 

activation-induced marker (AIM) assay. S-specific OX40+ 41-BB+ CD4+ T cells were 111 

equally induced in immunocompetent and anti-CD20 treated patients (Fig 2C), with a high 112 

frequency of responders (85-91%). S-specific CD69+ 41BB+ CD8+ T cells were detectable at 113 

similar level in all groups, however there was a statistically significant higher response rate 114 

found in ocrelizumab- (96.2%; 25/26) and rituximab-treated patients (81.8%; 9/11) compared 115 

to controls (66.7%; 14/21, p=0.02, Fig 2E). Previous history of COVID-19 and the type of 116 

mRNA vaccine had no impact on the level of vaccine-specific T-cells. Interestingly, the 117 

magnitude of S-specific CD8+ T cells correlated inversely with anti-RBD antibody responses 118 

considering all participants (Fig 2F, not significant for CD4+ T cells, Fig 2D). Lastly, the 119 

higher frequency of patients with AIM+ CD8+ T cells compared to controls was probably not 120 

due to higher levels of pre-existing cross-reactive T cells: in a subset of previously uninfected 121 

patients (n=13), S-specific AIM+ CD4+ and CD8+ T cells were undetectable at time of first 122 

vaccination (Sup Fig 2B, C).  123 

This suggests that the benefit of vaccination in terms of T cell responses might be higher in 124 

patients with anti-CD20 treatment than in the general population. 125 
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We then assessed the functionality of antigen-specific T cells to understand if the quality of T 126 

cell responses is altered in the absence of B cells. mRNA COVID-19 vaccines are known to 127 

predominantly induced Th1 CD4+ T cells expressing IL-2, IFN-gamma and the transcription 128 

factor Tbet rather than Th2 (IL-13+, GATA3+) or Th17 (IL-17+, RORgammaT+) cells [17]. 129 

First, we confirmed that a majority of S-specific AIM+ CD4+ T cells expressed Tbet in all 130 

patients and controls and found that some ocrelizumab-treated patients had a higher 131 

percentage of GATA-3+ T cells, however not reaching statistical significance at the group 132 

level (Fig 2A).  133 

Next, we used intracellular cytokine staining to evaluate if vaccine-specific T cells express 134 

several cytokines, given that polyfunctional T cells are often associated with improved 135 

vaccine-induced protection to viral infection. We found anti-CD20 treated patients had similar 136 

level of S-specific CD4+ T cells expressing at least 2 of the markers IL-2, TNF-alpha, IFN-137 

gamma or granzyme B as compared to controls, suggesting a similar polyfunctionality (Fig 138 

2B). The frequency of S-specific CD4+ T cells producing IL-2 and IL-2+TNF-alpha+ in both 139 

ocrelizumab and rituximab-treated patients was however higher as compared to 140 

immunocompetent controls, while the percentage of CD4+ T cells expressing IFN-gamma 141 

alone or in combination with other cytokines was similar (Fig 2C and Sup Fig 3A). There 142 

were no detectable IL-13 or IL-17-expressing CD4+ T cells (Sup Fig 3A). Some cytokine-143 

expressing CD4+ T cells co-expressed granzyme B, suggesting that those cells could also 144 

have cytotoxic capacity.   145 

In general, S-specific CD8+ T cells expressing either IL-2 or IFN-gamma were detected in 146 

more patients treated with anti-CD20 than in controls (Fig 3A). The percentage of IL-2-147 

expressing cells was significantly higher (p=0.013) in Ocrelizumab-treated patient as 148 

compared to controls while only a trend was observed for IFN-gamma (p=0.07) and for 149 

rituximab-treated patients for all two cytokines. Similar to CD4+ T cells, patients on anti-150 

CD20 had polyfunctional vaccine-specific CD8+ T cells, with a trend for more cells 151 

expressing at least 3 markers and significantly more single IL2+ than controls (Fig 3B, C). In 152 

general, a higher frequency of S-specific CD8+ T cells co-expressing granzyme and cytokines 153 

were found in patients as compared to controls.  154 

Altogether, our data suggest that S-specific T cells induced by mRNA vaccines have a similar 155 

functional profile but a more activated phenotype in anti-CD20 treated patients as compared 156 

to controls. Our finding is consistent with preserved T cell function in these patients and 157 

earlier report of cellular responses induced by other vaccines [23]. One hypothesis to explain 158 
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higher T cell activation in those patients could be the presence of more activated APCs (eg. 159 

monocytes) at time of vaccination as a result of B cell depletion [24].  160 

Finally, we assessed the memory phenotype of S-specific AIM+ CD4+ and CD8+ T cells and 161 

did not find any difference between groups (Sup Fig 3 and 4). CD8+ T cells had 162 

predominantly an effector memory phenotype (CD45RA- CCR7-) while CD4+ T cell 163 

phenotypes were equally effector (CD45RA- CCR7-) and central memory (CD45RA- 164 

CCR7+). This suggest that in addition to generating polyfunctional T cells, it is likely that 165 

mRNA vaccines can generate long-lasting memory T cells in patients treated with anti-CD20. 166 

This will be confirmed in follow-up studies looking at the persistence of the cellular response 167 

in these patients at 6- and 12-months post vaccination. Interestingly, in hematologic cancer 168 

patients treated with anti-CD20, a greater number of CD8 T cells is associated with improved 169 

survival to COVID-19, despite impairment in humoral immunity, and 77% of patients had 170 

detectable SARS-CoV-2-specific T cell responses [25].  171 

Limitations of our study include the small sample size and the short follow-up after 172 

vaccination.  We also were not able to correlate T cell findings with clinical protection as the 173 

study was not designed to measure efficacy, which is pivotal in the identification of vaccine-174 

responders and the indication for a potential third vaccine dose. Strengths of our study is the 175 

prospective design and the ability to evaluate two patient populations under anti-CD20 176 

therapy who have different underlying conditions that do both not greatly affect other axes of 177 

immune responses, such as in poly-immunosuppressed patients, or those suffering from 178 

lymphoma or leukemia. 179 

In summary, our study suggests that patients with anti-CD20 treatment are able to mount 180 

potent T-cell responses to mRNA COVID-19 vaccines similar to immunocompetent controls. 181 

Although patients treated with anti-CD20 treatment have decreased humoral responses to 182 

mRNA COVID-19 vaccines, elicited T-cell memory response could reduce complications of 183 

SARS-CoV-2 infection in this vulnerable population.  184 

  185 
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METHODS 186 

Study participants 187 

We included subjects that were ≥ 18 years of age scheduled to receive the COVID-19 vaccine 188 

or having received ≤ 2 COVID-19 vaccine doses in the last 5 weeks. Subjects with SARS-189 

CoV-2 documented infection less than 3 months previous inclusion or ongoing signs of febrile 190 

or non-febrile infection were excluded. Further details on the study are in supplementary 191 

methods. 192 

 193 

Immunological read-outs  194 

Antibodies were measured using the Elecsys platform (Roche Diagnostics) and 195 

seroconversion was defined as > 0.8 IU/ml. For the AIM assay, cells were stimulated 196 

overnight with SARS-CoV-2 megapool peptides (by 10 overlapping 15 mers [22]) or in 197 

DMSO (negative controls). For intracellular cytokine production, Brefeldin A (Golgiplug, 198 

BD) was added to the culture overnight. Cells were stained with specific antibodies and 199 

analysed by flow cytometry (see supplementary methods for further details). Percentage of S-200 

specific T cells, AIM+, cytokines+ or granzyme B + cells were calculated by subtracting the 201 

value of the corresponding DMSO stimulation control samples.  202 

 203 

Statistics 204 

Clinical data are presented as medians with IQRs for continuous variables and frequency with 205 

percentage for categorical variables. For comparison of immune responses between groups, 206 

Kruskal-Wallis one-way ANOVA with Dunn’s multiple comparisons was used. Categorical 207 

variables were compared using Fisher’s exact test. Correlation analyses were performed using 208 

Spearman test. P values from correlations were corrected for multiple comparisons using the 209 

False Discovery Rate method.  210 

 211 

Study approval 212 

This prospective observational study was conducted at the Geneva University Hospitals 213 

(HUG), Switzerland according to the principles of Good Clinical Practice and was approved 214 

by the Geneva Cantonal Ethics Commission (2021-00430). Informed consent was obtained 215 

from all participants.  216 

 217 
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FIGURES LEGENDS 302 

 303 

Figure 1. SARS-Cov2 mRNA vaccination induces antigen-specific CD4+ and CD8+ T-304 

cells in Rituximab and Ocrelizumab-treated patients. 305 

(A) Levels of anti-SARS-CoV-2 N and RBD total Ig measured in sera of healthy controls 306 

(n=22), rituximab (n=11) and ocrelizumab-treated patients (n=26) 30 days after the second 307 

dose of BNT162b2 (open symbol) or mRNA-1273 (closed symbol) COVID-19 mRNA 308 

vaccines. Dotted line indicates cut-off for seropositivity: anti-RBD; 0.8 U/ml; anti-N: 1 COI. 309 

(B) Spearman correlations of anti-RBD antibodies and frequency of CD19+ B-cells in all 310 

patients (n=58) (C,E) Representative flow cytometry plots of CD4+ (C) and CD8+ (E) T-cells 311 

after PBMC stimulation with DMSO (negative control) and S-peptide pool 30 days after the 312 

second vaccination. S-specific AIM+ T-cells are gated as OX40+ 41-BB+ for CD4+ T cells 313 

(C) or CD69+ 41-BB+ for CD8+ T-cells (E).  Individual data are represented on the right-314 

hand panel with geometric mean. The dotted line represents the limit of detection. Percentages 315 

of responders (those with level above limit of detection) are indicated. (D,F) Correlation of 316 

anti-RBD total antibodies and AIM+ CD4+ (D) and CD8+ (F) T-cells in all patients (n=58).  317 

 318 

Figure 2. S-specific CD4+ T cell vaccine response is polyfunctional in patients treated 319 

with anti-CD20 and produce more IL-2 compared to controls.   320 

(A) Expression of Tbet, GATA3, and RORgt in non-specific CD4+ T-cells (“bulk”) and 321 

AIM+ S-specific CD4+ T-cells of healthy controls (n=14-18), rituximab-treated patients 322 

(n=7-10), and ocrelizumab-treated patients (n=13-22) after stimulation with peptide pool. 323 

Analyses were restricted to individuals with detectable AIM+ CD4+ T-cells. (B) Pie chart 324 

showing polyfunctionality of S-specific CD4+ T cells of healthy controls (n=21), rituximab-325 

treated patients (n=11) and ocrelizumab-treated patients (n=26). The proportions of CD4+ T-326 

cells expressing 1, 2, 3, or 4 of the activation markers IL2, TNF-a, IFN-gamma or Granzyme 327 

B after peptide pool stimulation are shown. (C) Individual data of S-specific CD4+ T-cells 328 

expressing different combination of markers (in % of total CD4+ T cells, background 329 

subtracted).  330 

 331 

Figure 3. S-specific CD8+ T cell vaccine response are more activated in patients treated 332 

with anti-CD20 as compared to controls.  333 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2021. ; https://doi.org/10.1101/2021.07.21.21260928doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.21.21260928
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

(A) Expression of S-specific CD8+ T-cells expressing IFNg, IL-2 or Granzyme B in healthy 334 

controls (n=21), rituximab-treated patients (n=11) and ocrelizumab-treated patients (n=26) 335 

upon stimulation with peptide pool (background subtracted). (B) Pie chart showing 336 

polyfunctionality of S-specific CD8+ T cells shown as proportions of CD8+ T-cells 337 

expressing 1, 2, 3, or 4 of the activation markers IL2, TNFa, IFNg or Granzyme B after 338 

peptide pool stimulation (C) Individual data of S-specific CD8+ T-cells expressing different 339 

combination of markers (in % of total CD8+ T cells, background subtracted).   340 
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TABLE 1 341 

 Healthy 

controls 

MS patients RD patients 

n 22 26 11 

Female, n(%) 15 (68.2)  14 ( 53.8)  7 ( 63.6) 

Age, median[IQR] 54.5 [43.5, 58.8] 45.6 [39.8, 52.7] 58.0 [46.4, 64.6] 

Comorbitities*, n(%) 3 (13.6)  6 ( 23.1)  

 

7 ( 63.6)  

 

History COVID-19 (RT-PCR), n (%) 

Positive anti-N serology, n(%) 

 

3 (13.6)  

4 (18.2) 

0 

1 (3.8) 

2 ( 18.2)  

0 (0) 

Vaccine, n(%) 

     BNT162b2 5 (22.7) 

 

3 ( 11.5)  

 

5 ( 45.5) 

     mRNA-1273 17 (77.3) 23 ( 88.5) 6 ( 54.5) 

Neurologic disease, n(%) 

     PPMS 

- 

3 ( 11.5)  

- 

     RRMS - 21 ( 80.8)  - 

     SPMS - 2 (  7.7)  - 

Rheumatologic disease, n(%) - -  

    Rheumatoid arthritis - - 7 ( 63.6)  

    CTD - - 3 ( 27.3)  

    Vasculitis - - 1 (  9.1)  

Anti-CD20 therapy, n(%)
1
 

     Ocrelizumab  (600 mg) 

 

- 

 

26 (100) 

 

- 

     Rituximab - - 11 (100) 

         500 mg - - 1 (  9.1)  

         1000 mg - - 5 ( 45.5)  

         1500 mg - - 1 (  9.1)  

         2000 mg - - 4 ( 36.4)  

Time between last treatment 

and 1
st

 vaccine dose, weeks [IQR] 

- 24.9 [17.3, 26.4] 42.0 [30.6, 58.7] 

 

Other treatment, n(%) 

    Glucocorticoid 

-  

0 

 

2 (18.2) 

    Methotrexate - 0 4 (36.4) 

    Leflunomide - 0 1 (9.1) 

PPMS: primary progressive multiple sclerosis, RRMS: relapsing remitting multiple sclerosis, 

SPMS: secondary progressive multiple sclerosis, CTD: connective tissue disease, IS: 

immunosuppressive treatment 

*Comorbidities: chronic lung disease, diabetes, hypertension, obesity, depression, 

cardiovascular disease 
1
The dose mentioned is the total dose that the subject received in around 2 weeks.  
2
Measured between D0 and D60, if not available between the last dose and D0 and if not 

available, considered as missing 

 342 
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