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MIXTURE of human expertise and deep learning — Developing an explainable
model for predicting pathological diagnosis and survival in patients with interstitial
lung disease
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Abstract

Interstitial pneumonia is a heterogeneous disease with a progressive course and poor prognosis, at times even worse than those
in the main cancer types. Histopathological examination is crucial for its diagnosis and estimation of prognosis. However, the
evaluation strongly depends on the experience of pathologists, and the reproducibility of diagnosis is low.

Herein, we propose MIXTURE (huMan-In-the-loop eXplainable artificial intelligence Through the Use of REcurrent training),
a method to develop deep learning models for extracting pathologically significant findings based on an expert pathologist’s per-
spective with a small annotation effort. The procedure of MIXTURE consists of three steps as follows. First, we created feature
extractors for tiles from whole slide images using self-supervised learning. The similar looking tiles were clustered based on the
output features and then pathologists integrated the pathologically synonymous clusters. Using the integrated clusters as labeled
data, deep learning models to classify the tiles into pathological findings were created by transfer-learning the feature extractors.
We developed three models for different magnifications.

Using these extracted findings, our model was able to predict the diagnosis of usual interstitial pneumonia, a finding suggestive
of progressive disease, with high accuracy (AUC 0.90). This high accuracy could not be achieved without the integration of findings
by pathologists. The patients predicted as UIP had significantly poorer prognosis (five-year overall survival [OS]: 55.4%) than those
predicted as non-UIP (OS: 95.2%). The Cox proportional hazards model for each microscopic finding and prognosis pointed out
dense fibrosis, fibroblastic foci, elastosis, and lymphocyte aggregation as independent risk factors. We suggest that MIXTURE
may serve as a model approach to different diseases evaluated by medical imaging, including pathology and radiology, and be the
prototype for artificial intelligence that can collaborate with humans.

Keywords: deep learning, artificial intelligence, explainable Al (xAlI), machine learning, interstitial pneumonia, pulmonary
fibrosis

1. Introduction other types of interstitial pneumonia. Histologically, it is char-
acterized by heterogeneously distributed destructive dense fi-
Interstitial pneumonia is a heterogenous benign disease that o predominating at the periphery and fibroblastic foci, which
is subclassified based on histological features[l]. Idiopathic is known as the usual interstitial pneumonia (UIP) pattern[6].

pulmonary fibrosis (IPF), for example, is a progressive con- Also in the interstitial pneumonia family, connective tissue
dition with a S-year survival probability of 45%[2], which is  gjsease-interstitial lung disease (CTD-ILD) represents one of
worse than that of major malignancies such as breast carci- the systemic manifestations of connective tissue disease, which
noma, colorectal carcinoma, and cancers of the kidney and uterus[3].include rheumatoid arthritis[[7], Sjdgren’s syndrome, systemic
Itis treated with antifibrotic drugs to alleviate its progression[4,  g¢lerosis[8]], etc. It is known to have nonspecific interstitial

3], and the treatments and outcomes are largely different from  ,peymonia (NSIP) patterns as well as UIP patterns and is char-
acterized by a variety of findings, including lymphoplasmacytic

- inflammation. Corticosteroids and immunosuppressive agents
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Biogledical Sciences, Nagasaki, Japan and hypersensitivity pneumonia[[11l [12]] require different treat-
,Department of Pathology, Kameda Medical Center, Kamogawa, Japan ment protocols. In order to make an appropriate diagnosis, de-
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uation has a low concordance rate and reproducibility, which
hinders the determination of treatment strategies and the under-
standing of pathogenesis[15H17]].

Recent advances in whole slide imaging (WSI) and artificial
intelligence (AI) technology, such as deep learning-based im-
age processing, have opened the door to quantitatively evaluate
histopathological findings[18]]. Interestingly, WSI has added
value in the pathological diagnosis of interstitial pneumonia be-
cause it allows easy observation of specimens on low-power
magnifications (including those not available using a conven-
tional microscope), which is important to recognize certain mor-
phologic patterns with diagnostic significance[19].

The traditional pathological approach to diagnosis is to iden-
tify different microscopic findings, analyze the relationship be-
tween them, integrate data based on their professional experi-
ence, and eventually reach to the appropriate diagnosis regarded
as a ground truth. Since pathology is critical for understanding
pathogenesis and determining treatment strategies, recent re-
ports have emphasized the importance of mechanisms that pro-
vide the explanation of the model’s outputs. Grad-CAM[20]]
and attention are typical mechanisms to visualize the regions
of interest used in many fields, and there have been several re-
ports of their application to pathological tissues[21H24]]. These
models often provide a heatmap, highlighting the areas that in-
fluenced the outputs, or extract representative areas for explain-
ability. Among other advantages of such approaches are that it
is easy to generalize, and the output is not restricted by existing
cognitive frameworks, such as cancer cell, mitosis, and necro-
sis, etc. At the same time, there are significant gaps in out-
puts highlighted by Al-generated heatmaps and the traditional
pathological approach which is the intuitive process to find out
diagnostic clue in the tissue.

Here, we present a new strategy, MIXTURE (huMan-In-
the-loop eXplainable artificial intelligence Through the Use of
REcurrent training), to easily extract microscopic findings rec-
ognized by expert pathologists assisted by deep learning, using
the histopathology of interstitial pneumonia as an example. We
also show that these extracted findings can be used for practi-
cal tasks such as predicting diagnosis and analyzing prognostic
factors. In this way, we are able to take advantage of com-
putational pathology to perform quantitative studies based on
well-documented pathological concepts rather than the fully au-
tomated heatmap, which leaves room for interpretation.

2. Materials and Methods

2.1. Study cohort

This is a retrospective study using a series of consulted cases
(2009-2020) from a single institute. Ethical approval of this
study was granted by the Ethics Committee of Nagasaki Uni-
versity Hospital (protocol 19012107). Three non-overlapping
datasets were created from these cases, including two pretrain-
ing sets and one utility set (Figure 1). The patient characteristics
in each cohort are shown in Table 1.

The principal pretraining set was a cohort established for
the purpose of building a model to classify tiles; cases were ar-
bitrarily selected from those sampled between 2015 and 2020
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Figure 1: Flow diagram of the study
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Table 1: Patient characteristics of each cohort
Pretraining set

Utility set

Principal Supplemental Training Validation
(n=53) (n=15) (n=126) (n=54)
Age (SD) 59.57 (11.91)  66.2 (7.55) 63.27 (7.15) 60.30 (11.18)
Sex
Male (%) 31(58.5) 14 (93.3) 74 (58.7) 34 (55.6)
Female (%) 22 (41.5) 1(6.7) 52 (41.3) 20 (37.0)
Sampling modality
SLB 49 15 126 54
TBLC 3 0 0 0
TBLB 1 0 0 0
UIP cases, n (%) n/a n/a 78 (61.9) 27 (50)
Follow up time, days (SD) n/a n/a 1430.9 (469.1) 1267.9 (461.7)
Event, death (%) n/a n/a 29 (23.2%) 12 (23.1%)

SD, standard deviation; SLB, surgical lung biopsy; TBLC, transbronchial lung cryobiopsy;
TBLB, transbronchial lung biopsy; UIP, usual interstitial pneumonia; n/a, not applicable

with the aim of covering a variety of histological patterns im-
portant in diagnosis and differential diagnosis of interstitial pneu-
monia. This set consisted of 53 cases (151 WSIs), mainly from
the five most frequent diseases belonging to the interstitial pneu-
monia family (IPF/UIP, rheumatoid arthritis, systemic sclerosis,
diffuse alveolar damage, pleuroparenchymal fibroelastosis, or-
ganizing pneumonia, and sarcoidosis).

The supplemental pretraining set (15 cases, 30 WSIs) was
a cohort selected to extract rare but important histopathological
findings such as fibroblastic foci[15,125H28]]. This set consisted
of surgical lung biopsy specimens consulted between 2015 and
2020 in which fibroblastic foci were prominent.

The utility set consisted of 180 consecutive surgical lung
biopsy cases (535 slides) sampled between 2009 and 2014 for
which follow-up data was available. WSIs that were not suit-
able for analysis, such as those with faded staining, were ex-
cluded. All cases were diagnosed by an expert pulmonary pathol-
ogist (J.F.) and thoroughly reviewed in multidisciplinary discus-
sion with clinicians and radiologists (supervised by T. J. and Y.
K. as senior experts).

2.2. Image preparation

Glass slides were scanned at 20x magnification into digi-
tal slides using an Aperio ScanScope CS2 digital slide scanner
(Leica Biosystems, Buffalo Grove, IL).

Figure 2 shows the overview of the following procedures
of MIXTURE. In the principal pretraining set WSIs were tiled
into non-overlapping 280 x 280 pixel images at magnifications
of 2.5x, 5x, and 20x, respectively. Three different magnifica-
tions were studied because they provide access to different and
sometimes non-overlapping morphological findings (described
below in a section about labelling/clustering) having important
diagnostic significance for evaluation of interstitial pneumonia.
Background was defined as pixels with all values above 220
in the 24-bit RGB color space, and tiles with more than 90%
of this coverage were excluded. If more than 300 tiles were
obtained from a single slide, 300 tiles were randomly selected.

Finally, we collected 36,978 tiles for 2.5x magnification, 44,066
tiles for 5x magnification, and 45,300 tiles for 20x magnifica-
tions.

In the supplemental pretraining set, WSIs were tiled into
280 x 280 pixel images with 50% overlap at 20x magnifica-
tion. Tiles over 70% background were excluded; all images
were used, regardless of the number of tiles generated from a
single WSI.

In the utility set, WSIs were tiled into non-overlapping 224
x 224 pixel images. Tiles over 70% background were excluded;
all images were used, regardless of the number of tiles gener-
ated from a single WSI.

2.3. Development of elementary feature extractor (EIEx) by self-
supervised learning

We first used the tiles from the principal pretraining cohort
to create an elementary feature extractor (EIEx), which will be
the basis for clustering similar tiles and for later transfer learn-
ing.

We trained a CNN (ResNet18) that outputs features consist-
ing of 128 vectors by self-supervised learning (MoCo [29]) for
each of three magnifications (2.5x, 5x, 20x). The original algo-
rithm uses multiple GPUs, but due to the limitations of our com-
putational resources, we modified a single GPU version[30]
available for Google Colab[31]. The number of negative keys
(moco-k) was set to 4096, moco momentum of updating key
encoder (moco-m) was set to 0.99, and softmax temperature
(moco-t) was set to 0.1.

During training, each image was randomly flipped and ro-
tated between -20° and 20°, and central 224 x 224 pixels were
cropped to make it compatible with the original dimensions of
ResNet18. We used Adam as the optimizer with a global learn-
ing rate of 0.0001.

2.4. Clustering of tiles

The tiles in the principal pretraining set were converted into
feature vectors comprised of 128 values by the EIEx we devel-
oped in the previous step. To aggregate similar images, these
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Figure 2: Pipeline overview of MIXTURE. For each magnification, elemental feature extractors (EIEx) were trained using self-supervised learning. This feature
extractor consists of a ResNet18 CNN which outputs features consisting of 128 vectors. The extracted features were clustered throughout the principal pretraining
set. The pathologists viewed a montage of each cluster tiles and reclassified them into pathologically meaningful findings. Finally, the reclassified findings were
used as labels of training data for the transfer learning of feature extractor to obtain a classifier to classify the findings from the tiles.
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feature vectors were clustered using the K-means algorithm for
each magnification. To provide a comprehensive view of the
pathological findings that characterize each cluster, a montage
(Figure S1) was created by randomly selecting 120 tiles from
each cluster. We tested various numbers of clusters: 5, 8, 10,
30, 50, 80, 100, and 120 clusters. A small number of clusters
tended to contain multiple findings within a single cluster, while
a large number of clusters tended to contain the same findings
in multiple clusters. In other words, using too few clusters was
overly broad, and using too many clusters became redundant.
The pathologist used the generated montage as a reference to
determine the findings to be classified by each magnification
and selected the optimal number of clusters.

2.5. Cluster integration and transfer learning

Two pathologists (J.F. and W.U.) reviewed the montages
and grouped clusters characterized by pathologically synony-
mous findings into separate classes. The morphological find-
ings we categorized were the following (Figure S2): for 2.5x
magnification, acellular fibrosis, cellular fibrosis, near normal,
and other; for 5x magnification, acellular fibrosis, edge, cel-
lular and fibrotic IP, cellular interstitial pneumonia/NSIP, lym-
phoid follicle, complete normal, and other; for 20x magnifica-
tion, dense fibrosis, elastosis, fibroblastic foci, fat, mucin, bron-
chiolar epithelium, lymphocyte aggregation, and other. The
“edge” in 5x means the sharp structural contrast to airspace
and the “pale” in 5x includes tiles with faded staining or struc-
tures refractory to H&E staining (e.g. elastic fibers). In order to
comprehensively investigate the relationship between findings,
morphologically recognizable findings were adopted as inde-
pendent findings, even when their significance was unknown.
Clusters that did not fit into any of the findings or were difficult
to explain as morphological findings were grouped into a single
class, “other”. Clusters that characterized more than one mor-
phological finding (e.g., a cluster which had both “acellular fi-
brosis” and “cellular fibrotic IP”’) were excluded. Thus, labeled
data was constructed with the aid of EIEx clustering. We term
this process “cluster integration”, meaning the merging of syn-
onymous clusters together and the cleaning up of cluster data
by pathologists.

Although the 20x resolution tiles could be labeled “dense
fibrosis”, “bronchiolar epithelium”, or “lymphocyte aggrega-
tion” by this procedure, clusters consisting purely of fibroblas-
tic foci, one of the most important findings, could not be ob-
tained, even when the number of clusters was quite large. In
order to collect these important findings, we clustered the tiles
of the supplemental pretraining set, which was enriched with
a large number of fibroblastic foci, by case. In this way, we
obtained clusters of purer findings, and we added these to the
labeled data. In addition, we checked the labeled data only at
20x resolution and manually corrected the mislabeled data.

We added a fully connected layer on top of the EIEx and
created CNN classifiers of morphological findings by transfer
learning, in which the integrated classes were used as labels of
training data (Figure 3). The loss function was defined as the
cross entropy between predicted probability and the true class
labels, and we used Adam optimization with a learning rate of

0.0001. In this step, instead of only optimizing the weights of
the fully connected layer, we also optimized the parameters of
previous layers, including all convolution filters of each layer.

2.6. Tile classification and mapping of findings on WSlIs

The tiles obtained from the utility set were classified using
the CNN classifier created in the previous step. The results were
mapped and compared with the original WSIs by two pathol-
ogists (J.F. and W.U.). In order to use the classifications for
subsequent analysis, the results obtained for each case were ag-
gregated, and the number of tiles predicted as each finding was
totaled. When there was more than one WSI in a case, all tiles
collected were added together. Considering the possibility that
the size of the normal lung area in a surgical specimen may
vary depending on the sampling procedure, tiles classified as
“complete normal” were excluded at 5x magnification, and the
frequency of other findings was calculated. (Note that many
tiles originating from normal lungs have already been excluded
because tiles containing more than 70% background were ex-
cluded at the time of the image preprocessing.)

2.7. UIP prediction

The UIP pattern is known as a histological pattern which
characterizes IPF, furthermore, it indicates a progressive clin-
ical course and poor prognosis with short overall survival in
other interstitial lung diseases[32}33]]. Based on the well-known
fact that UIP pattern is a key predictor of adverse outcome in
IPF[116, 34}, 35]], our cases were dichotomized into UIP and non-
UIP groups. We considered that this binary classification cou-
pled with an overall survival as an endpoint may reliably esti-
mate the performance of our Al model from a clinical point of
view. We defined UIP as cases diagnosed with “definite UIP”
or “probable UIP” in the pathology report and non-UIP as all
other cases according to the international 2011 guidelines[36].
The 180 patients in the utility set were randomly assigned into
a training set of 126 cases and a validation set of 54 cases. UIP
prevalence was balanced between the training and validation
set.

We developed both random forest and support vector ma-
chine models to predict UIP/non-UIP based on the frequency of
each finding. In the validation set, these models were applied to
predict UIP/non-UIP, and the area under the receiver operating
characteristic curve was calculated to evaluate the performance
for actual diagnosis. We tested whether the diagnosis of UIP
predicted by the proposed model could predict the overall sur-
vival by using the log-rank test.

2.8. Comparison of non-integrated model and MIXTURE

To assess the effects of cluster integration by pathologists
and subsequent transfer learning, we created a model without
these steps (non-integrated model). The tiles from the principal
pretraining set were divided into 4, 8, 10, 20, 50, and 80 clusters
based on the feature vector generated by EIEx. Tiles derived
from the utility sets were also converted into feature vector and
the nearest cluster was predicted referring the centroid of each
cluster in the previous step. As in the original models, maps of
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Figure 3: Identification of findings at each magnification. From the whole slide image, tiles were created at 2.5x, 5x, and 20x magnifications. For each
magnification, a CNN classifier was constructed to classify each tile into multiple findings. Based on the classification, maps that can be compared with WSI were

synthesized.
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findings associated with WSIs were created, and the frequency
of each finding at each magnification was calculated.

We also developed both random forest and support vector
machine models to predict pathological diagnosis of UIP us-
ing this frequency of the clusters. We evaluated how the re-
ceiver operating characteristic (ROC) curve and its area under
the curve (AUC) were affected when we used non-integrated
model instead of MIXTURE based proposed model. The statis-
tical significance between the AUCs from the different models
was estimated by 5,000 iterations of the bootstrap method.

2.9. Analysis of factors associated with survival

We examined the histological risk factors for short overall
survival using all cases in the whole utility set with the Cox
proportional hazard model. Similarly, the histological risk fac-
tors were also estimated in the subgroups, which pathologist
diagnosed as UIP and non-UIP.

2.10. Environment

All of the analysis in this study was executed on a Ubuntu
20.04 Linux system with a single GPU (NVIDIA RTX 3090).
WSIs was tiled using the OpenSlide[37] library. Deep learn-
ing was performed using Pytorch[38]], python library version
1.7.1 with CUDA 11 and cuDNN 8.0.2. K-means clustering
was performed in scikit-learn version 0.24.0. The analysis for
the extracted morphological findings was performed in R ver-
sion 3.6.3[39]]. We used the randomForest 4.6.14 package for
the random forest algorithm, the pROC[40] 1.6.12 package for
ROC analysis, and the survival 3.1.8 package for survival anal-
ysis.

3. Results

3.1. Tile classification and visualization

By the observation of clustered images by pathologists, the
numbers of clustering were set as 30, 80, and 80 for 2.5x, 5x
and 20x magnification, respectively. Using the CNN classifier
we built by transfer learning, all tiles were categorized into sev-
eral findings. Figure 4 shows the original WSIs and the finding
maps at magnifications of 2.5x, 5x, and 20x. Additional exam-
ples are given in the Figure S3.

The histological findings observed in characteristic tissue
patterns such as UIP and NSIP were displayed with good con-
trast, and a side-by-side comparison between WSIs and the maps
were made to confirm that these findings were appropriately de-
tected.

3.2. UIP prediction by MIXTURE

We developed a random forest model to predict the diag-
nosis of UIP by pathologists using the findings extracted at 5x
magnification, and the model was able to predict the diagno-
sis with AUC 0.90 in the validation cohort (Table 2). Simi-
larly, the models based on the findings of 20x magnification,
and the combination of 20x with other studied magnifications
also predicted the diagnosis of UIP with high accuracy. The
ROC curves are shown in Figure 5a and Figure 5b, and the

relationship between the score of the random forest regressor
and the actual pathology diagnosis is shown in Figure S4. The
most important findings in the random forest model were cellu-
lar interstitial pneumonia/NSIP and acellular fibrosis (Table 3).
Feature importance in the models on other magnifications are
shown in Table S1-S4. There were no significant differences
in performance between models using only findings extracted
at 5x magnification, findings extracted at 20x magnification, or
a combination of these findings from different magnifications.
However, it was difficult to predict UIP using only the findings
extracted at 2.5x magnification. When the threshold for judging
UIP was set to 0.5 for the output of the random forest regressor
in 5x model, cases predicted to be UIP had a poorer progno-
sis than those predicted to be non-UIP (Figure 5d): five-year
overall survival was 55.4% in cases predicted as UIP whereas
95.2% in cases predicted as non-UIP.

Instead of the random forest, support vector machines were
used to predict the diagnosis of UIP. The results are shown in
Table S5. As in the case of the random forest, the diagnosis of
UIP could be predicted with high accuracy.

3.3. UIP prediction by non-integrated model

In order to test the effectiveness of the pathologist’s inte-
gration of the clusters and subsequent transfer learning, we de-
veloped another model without cluster integration by a human
pathologist (non-integrated model) and the performance of UIP
prediction was compared. The original WSI and the maps of the
tile classifications were compared, and pathologists (J.F. and
W.U.) confirmed that tiles characterized by similar pathologi-
cal findings were categorized in the same cluster. In addition,
we examined whether UIPs could be predicted from the dis-
tribution of the predicted clusters. The number of clusters we
evaluated ranged between 4 and 80; we found that the best re-
sults were obtained when assorting into 8 clusters on 5x mag-
nification, but the AUC only reached 0.65 (Table 2). ROC of
non-integrated model is shown in Figure 5c. There was a sig-
nificant difference (p = 0.0002) in performance compared to the
MIXTURE-based model.

Similar results were obtained when we used support vec-
tor machine instead of random forest (Table S5). Eventually,
non-integrated model could not achieve high accuracy in UIP
diagnosis irrespective of the type of prediction algorithm (ran-
dom forest or support vector machine) and number of clusters.

3.4. Factors associated with patient survival

Next, to identify histological risk factors for survival, all
cases in the utility cohort were examined by the Cox propor-
tional hazards model. Since we extracted similar findings at dif-
ferent magnifications, we observed pairs of findings that were
highly correlated in frequency within a case (Figure S5). To
avoid multicollinearity, variables with high correlation, such as
acellular fibrosis (2.5x), near normal (2.5x), acellular fibrosis
(5x), and lymphoid follicle (20x) were excluded prior to analy-
sis.

The independent prognostic factors identified in this anal-
ysis were fibroblastic foci, dense fibrosis, elastosis, and dense
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Figure 4: Classification of findings in the representative entities. a-d. UIP/IPF case. The entire specimen consists of dense fibrosis with minimal inflammatory
cell infiltration, and is highlighted in yellow, red, and orange at 2.5x, 5x, and 20x magnification, respectively. Elastosis and bronchial metaplasia at the margins of
the specimen are appropriately highlighted at 20x. e-h. Idiopathic pleuroparenchymal fibroelastosis (PPFE) case. A subpleural band of elastosis is clearly visualized
by the 20x feature extractor. The same finding is recognized as “pale” tissue in 5x. i-1. A case of NSIP in systemic sclerosis. The pathology shows cellular and
fibrotic NSIP, which is clearly differentiated from UIP lesions by blue highlighting on 5x feature extractor.
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Table 2: AUC for each model

AUC 95% C1

Proposed model

2.5x 0.68 0.54 - 0.83
5x 0.90 0.81 -0.99
20x 0.90 0.81-0.99
2.5x + 5x 0.88 0.78 - 0.98
5x + 20x 0.92 0.85-1.00
2.5x + 20x 0.89 0.80 - 0.98
2.5x +5x +20x  0.92 0.84 - 1.00
Non-integrated model (5x)

k=4 0.52 0.37-0.68
k=8 0.65 0.50-0.81
k=10 0.49 0.33-0.65
k=20 0.47 0.31-0.63
k=30 0.61 0.46 - 0.76
k=50 0.56 0.40-0.72
k=80 0.52 0.36 - 0.68

AUC, area under the receiver operator characteristic
curve; CI, confidence interval; k, number of clusters

Table 3: Feature importance (node purity) of each finding in 5x model with

random forest algorithm

Findings Importance
Acellular fibrosis 4.80
Cellular and fibrotic IP 3.80
Cellular IP/NSIP 7.54
Lymphoid follicle 2.82
Edge 4.68
Pale 3.24

IP, interstitial pneumonia; NSIP, non-specific intersti-

tial pneumonia
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Figure 5: Receiver operating characteristic curves for our model’s classifi-
cations on the independent validation set. a. ROC curve when the findings
obtained at 5x are used to predict the presence of UIP. b. ROC curve when all
findings obtained at 2.5x, 5x, and 20x are used. c. ROC curve without pathol-
ogist integration of findings and subsequent transfer learning (non-integrated
model). The case with the best AUC (k = 8) is presented. d. Model created
using tiles extracted at 5x magnification. Cases predicted as UIP had a signifi-
cantly worse prognosis than those predicted as non-UIP.

lymphocyte aggregation (Table 4). In a subgroup analysis of
cases diagnosed with UIP by pathologists, only fibroblastic foci
were a poor prognostic factor (Table S6). Interestingly, lym-
phocyte aggregation was identified as a poor prognostic factor
in patients diagnosed as non-UIP by pathologists (Table S7),
which is not usually well acknowledged.

4. Discussion

In this study, we proposed a method, MIXTURE, to build
a deep learning model without laborious direct annotations and
showed this model working effectively in the pathology field.
In this method, the encoder specialized in pathological images
was developed by self-supervised learning and used to cluster
the tiles which have similar morphological findings. Patholo-
gists integrated the morphologically synonymous clusters into
several classes, which were used as training data for subsequent
transfer learning. The model illustrates the amount and the
distribution of each morphological finding compared with the
original WSI, which was utilized to build an explainable Al to
predict UIP diagnosis for subsequent analysis.

The unique point of this method is that the images that are
clustered based on similarity are further integrated by experts
and used as training data. There are three advantages to us-
ing this method. The first is that it leaves room for the ex-
pert’s judgment in model creation. In reality, K-means clus-
tering alone does not always form pathologically meaningful
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Table 4: Analysis of prognostic factors by Cox proportional hazards model

Hazard ratio 95% CI p value
Cellular fibrosis 0.83 0.57-1.22 n.s.
Cellular IP/ NSIP 0.84 0.48 —1.47 n.s.
Edge 1.10 0.78 — 1.55 n.s.
Dense fibrosis 1.57 1.04 -2.40 0.034
Fibroblastic focus 1.47 1.11-1.96 0.008
Elastosis 1.48 1.02 -2.15 0.040
Fat 1.15 0.85-1.57 n.s.
Lymphocyte aggregation 1.35 1.03-1.77 0.030
Mucin 1.17 0.81 -1.69 n.s.
Bronchiolar epithelium 0.74 0.50-1.10 n.s.

IP, interstitial pneumonia; NSIP, non-specific interstitial pneumonia; n.s.,

non-significant

clusters, and may form clusters based on non-essential charac-
teristics such as differences in staining or specimen condition.
It is considered that the integration of the clusters may exten-
uate these non-essential differences. The method to integrate
the clusters depends on the insights of the experts, which may
affect the final model. In fact, the result that the UIP could not
be predicted without the integration process suggests that the
performance of the final model could be greatly affected by this
step. The second advantage is that clustering reduces the huge
cost of labeling for each tile. Tile labeling requires expertise
and needs to be optimized for each application. Thus, annota-
tion of pathological tissues costs a lot of time and money. How-
ever, there is a chronic shortage of pathologists[41},42], making
it almost impossible to obtain a large number of annotations
in reality, i.e. in clinical settings. The third advantage is that
clustering over the entire dataset makes it easier to maintain the
consistency of the training data. Many pathological findings are
essentially continuous and change without a distinct boundary,
especially in benign diseases such as interstitial pneumonia, and
judgments are often not consistent between evaluators[15H17]].
Therefore, elaborate annotation of such findings is difficult, and
even if it were possible, there is concern that these differences
between the individuals and the timing of the annotations will
result in inconsistent training data.

There are several points that should be considered concern-
ing clustering. The histological findings that characterize the
clusters depend on the size and resolution of each tile. There-
fore, we need to set the appropriate magnification and tile size
according to the required findings. In addition, there are find-
ings such as adipocytes and loose stromal tissue that are eas-
ily recognized by pathologists but tend to be classified into the
same cluster. In this case, manual labeling was more effective
to create training data. This was often true for well-defined
findings that could be identified with high magnification. Even
when the tiles were manually labeled, clustering improved the
efficiency of the task.

The proposed approach does not adopt an end-to-end learn-
ing structure, which is common in state-of-the-art research[22}
43]). End-to-end learning directly outputs the result, bypassing
the feature extraction steps. The performance of the system is
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generally high because it is relatively free from potential human
cognitive biases, but the decision-making mechanism is a black
box. Although recent models are designed to highlight the ar-
eas that contribute to the output[22] 44]], it is still necessary to
reinterpret the output from an expert perspective. In reality, the
cases in which pathologically useful findings have been discov-
ered from these explanations are quite limited.

In contrast to these approaches, we designed a model that
outputs findings. In conventional pathological observational
studies, these findings are implicitly identified by experienced
pathologists. This process can be naturally replaced by deep
learning. Additionally, the output is easily interpretable by pathol-
ogists without any Al background for use in subsequent analy-
sis, and it is uniquely compatible with conventional patholog-
ical knowledge. This explainability is essential in introducing
in clinical setting. Our model can be integrated in the daily
practice and supports pathologists by highlighting the impor-
tant findings or by suggesting potential diagnoses.

When searching for certain target findings, there is a com-
mon need to quantitatively analyze histological findings. Our
model seeks to serve that purpose. At present, we do not take
into account the spatial relationship of each finding, but once
this is implemented, more detailed analysis will be possible.

Another feature of our model is that it is composed of three
independent modules. Each of them is a simple CNN that can
be interpreted by itself and can be used for other tasks such as
predicting treatment response. In this use case, we assigned
three modules with different magnifications of 2.5x, 5x, and
20x, which simulates the actual pathological evaluation process
and is intuitive for pathologists. Furthermore, if these modules
are augmented with those for interpreting radiological images
and genetic data instead of WSIs, it will open the door to the
realization of explainable multimodal models[45], which will
allow for new analytical opportunities such as interdisciplinary
relationships between findings.

From a medical point of view, it is the first model known
to predict the diagnosis of UIP from histopathological images.
While not directly addressed in this study, other interstitial pneu-
monias, such as pleuroparenchymal fibroelastosis or NSIP, can
be predicted in a similar way, since the characteristic spatial
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distributions of the findings for each disease are handled deftly
by our EIEx. The random forest algorithm can estimate the
importance of each finding, and our model showed that the
presence of NSIP and dense fibrosis were important. This is
consistent with the existing literature and actual practice[l]. In
the prognostic analysis, fibroblastic foci, dense fibrosis, elas-
tosis, and lymphocyte aggregation were identified as risk fac-
tors. Although the conclusions are controversial, some studies
have mentioned the relationship between excessive fibroblastic
foci and prognosis|15), 25H28]]. The amount of dense fibrosis
is also a diagnostic factor for UIP[L], which makes sense from
a pathological point of view, and there have been reports that
increased fibroelastosis is associated with poor prognosis[46].
In our data, dense inflammatory cell infiltration was identified
as an independent risk factor; a similar result was obtained in
the subgroup analysis of the non-UIP cohort, but it was not an
independent risk factor in the UIP cohort. Related previous lit-
erature has linked interstitial mononuclear cell infiltration to
respiratory function decline at 6 months in IPF patients[26].
Another group has discussed the relationship between CD3-
positive T cell infiltration and poor prognosis in idiopathic in-
terstitial pneumonia[47]. To the best of our knowledge, there
are no studies that have examined the relationship between in-
flammatory cell infiltration and poor prognosis, especially in
non-UIP patients; more studies are needed in the future.

There are some limitations in this study. First, the data used
in this study were specimens collected and processed at a sin-
gle institution and scanned with a single model of WSI scanner.
Therefore, external validation is necessary. In addition, most
of the specimens were surgical lung biopsies sampled by a rel-
atively invasive procedure, which is currently being replaced
by the less invasive transbronchial lung cryobiopsy in some in-
stitutions. Regarding the technical pipeline of MIXTURE, the
findings that can be extracted are limited to those that are clus-
tered coincidentally, so that this method is not suitable for creat-
ing training data for findings that are extremely similar or very
rare. In addition, it is difficult to incorporate findings that are
not recognized by the pathologist into the model. The inte-
gration of clustering strongly depends on the judgment of the
pathologists. In the present study, only two pathologists dis-
cussed and made decisions, and this may be biased. We plan
to validate the model by prospectively applying it to incoming
cases, including those sampled by cryobiopsy. Furthermore,
we see great potential for MIXTURE to be trained and tested
on entities other than interstitial pneumonia, such as tumors.

In summary, we proposed an original approach to extract
multiple features that can be interpreted by pathologists with
minimum annotation effort by experts. The model not only ef-
fectively describes the quantity and distribution of features for
different IPF entities but is also effective in explainably predict-
ing progressive disease and quantitatively analyzing histologi-
cal features. The same approach could be applied to other areas
of pathology or radiology, and represents a new direction for
explanatory analytical models.
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