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ABSTRACT (150 words) 
 
A set of 20 short tandem repeats (STRs) is used by the United States criminal justice system to identify 
suspects, and to maintain a database of genetic profiles for individuals who have been previously 
convicted or arrested.  Some of these STRs were identified in the 1990s, with a preference for markers in 
putative gene deserts to avoid forensic profiles revealing protected medical information.  We revisit that 
assumption, investigating whether forensic genetic profiles reveal information about gene expression 
variation, or potential medical information.  We find six significant correlations (FDR = 0.23) between 
the forensic STRs and the expression levels of neighboring genes in lymphoblastoid cell lines.  We 
explore possible mechanisms for these associations, with evidence compatible with forensic STRs 
causing expression variation, or being in LD with a causal locus in three cases, and weaker or potentially 
spurious associations in the other three cases.  Together, these results suggest that forensic genetic loci 
may reveal expression level and, perhaps, medical information.   
	
 
INTRODUCTION 
 
Forensic genetic identification in the United States is typically performed using genotype data from 20 
short tandem repeats (STRs), known as the Combined DNA Index System (CODIS) core loci.  Because 
these markers are highly polymorphic, even just 20 loci provide an immense amount of identifying 
information regarding a specific individual (Evett and Weir 1998).  Thirteen of these CODIS core loci 
were established by the Federal Bureau of Investigation (FBI) in 1998.  These loci were selected for 
efficient PCR multiplexing, while maximizing identifying information, and minimizing ancestry-based 
population differences and medically relevant information (J. M. Butler 2006).  In 2017, seven additional 
STRs were added to the CODIS core loci, selected for similar criteria, particularly no known associations 
with medical conditions (Hares 2012).   
 
It is important from a legal standpoint that CODIS genotypes do not reveal medical information.  Laws 
authorizing the compulsory collection of DNA from certain persons may come into conflict with state 
privacy statutes or the U.S. Constitution if medical information is embedded (Murphy 2015).  In fact, 
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hundreds of court cases rely on the premise that the CODIS variants are uninformative, often citing this 
quote relating to the DNA Analysis Backlog Elimination Act of 2000, which states that the CODIS loci 
“were purposefully selected because they are not associated with any known physical or medical 
characteristics” (Letter from Robert Raben, Assistant Attorney General, to Judiciary Committee 
Chairman Henry Hyde).  Yet, some of the CODIS loci, particularly those selected before the human 
genome was sequenced, are very close to genes.  In fact, 11 of the CODIS loci are intronic (Katsanis and 
Wagner 2013).  Any trait information conveyed by CODIS genotypes would raise questions regarding the 
medical privacy of individuals whose CODIS profiles are compelled by the government (including non-
suspects, arrestees, and convicted individuals), as well as their genetic relatives.  In particular, the 
historical and current treatment of arrested and convicted individuals is rife with rights unjustly 
curtailed, raising even more concern about a potentially lax approach to medical privacy for this 
population (Roth and Ainsworth 2015; Bauer 2016; Chesney-Lind and Mauer 2003).  In this study, we re-
examine the assumption that CODIS genotypes have no functional or medical impact.   
 
It has long been known that variation in STR repeat number can alter gene function and regulation, 
sometimes resulting in dramatic phenotypes.  A classic example is the coding STR expansion in the HD 
gene, which causes increasingly severe Huntington’s Disease (Mirkin 2007).  Non-coding STRs have also 
been found to impact gene expression, resulting in trait variation.  For instance, large numbers of 
repeats in an STR in the 5’ UTR of FRAXA impacts local methylation and gene regulation, causing Fragile 
X syndrome (Mirkin 2007).  
 
More recent studies genome-wide surveys have found thousands of replicable associations between STR 
length and gene expression level (Gymrek et al. 2016; Quilez et al. 2016; Fotsing et al. 2019). STR length 
variation can impact methylation as well as histone modifications, causing evolutionarily conserved 
changes in gene expression (Gymrek et al. 2016; Quilez et al. 2016).  Some of these STR-associated 
expression changes were associated with clinical traits (Gymrek et al. 2016). Somatic STR mutations 
have been implicated in the development of cancer (Fujimoto et al. 2020).  One recent analysis showed 
that individuals with Autism have significantly more de novo STR mutations (particularly in introns) as 
compared with their neurotypical siblings (Mitra et al. 2021).  This growing body of evidence suggests 
that STR length variation is causally responsible for a range of complex trait variation, including 
pathogenic conditions (Hannan 2018).  
 
These results raise questions about whether the CODIS loci could impact medically relevant traits. Based 
on data available in 2011, a review of phenotypic associations with genetic loci concluded that there 
were no significant associations with the CODIS STRs (Katsanis and Wagner 2013).  However, the study 
did report that some CODIS loci fall within predicted sites for genomic regulation, and all CODIS loci are 
within 1kb of at least one genetic variant associated with a phenotype (Katsanis and Wagner 2013).  
Because the LD surrounding the CODIS loci is strong enough to infer the genotypes of surrounding SNPs 
(Edge et al. 2017; Kim et al. 2018), phenotype information may be inferable through the CODIS 
genotypes.  A more recent review of literature has identified 84 significant published associations 
between traits and STRs for 18 of the 20 CODIS loci (Wyner, Barash, and McNevin 2020).   
 
Here we investigate whether genotypes at the CODIS loci could directly reveal information about a 
fundamental trait: the expression levels of neighboring genes.  We identify CODIS loci significantly 
correlated with the expression of nearby genes (CODISeSTRs).  We shed light on the mechanisms 
underlying these associations.  First, we consider the possibility that the associations are caused by 
population structure as a confounding factor by testing for expression-genotype associations within 
subpopulations. With population stratification ruled out, we explore the possibility of CODISeSTRs 
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causing expression variation by both comparing their genomic features to a panel of STRs with strong 
evidence of expression impact (Fotsing et al. 2019), and using a fine-mapping framework (CAVIAR) to 
identify putative causal loci (Hormozdiari et al. 2014).  Finally, we investigate the hypothesis that 
CODISeSTRs may be in LD with a causal variant by examining their LD with putative causal sites identified 
by CAVIAR, as well as DHS sites.     
 
RESULTS 
 
Gene expression and the CODIS loci in the 1000 Genomes data set 
 
We turned to a subset of the 1000 Genomes Project to investigate the relationship between gene 
expression levels and CODIS loci genotypes. STR length variation was not directly genotyped in the 1000 
Genomes Project because this dataset used short-read sequencing.  Thus, additional measures were 
taken to genotype these loci.  Saini et al. (2018) imputed STR genotypes for the 1000 Genomes data by 
leveraging linkage disequilibrium between STRs and surrounding SNPs to create a publicly available 
haplotype reference panel. This haplotype reference panel includes 18 of the 20 core CODIS STRs 
currently in use (FBI n.d.).  Genotypes for STRs D16S539 and D21S11 were unavailable because their 
unusually long alleles are challenging to impute from short read data.   
 
While these imputed STR genotypes provide a tremendous resource, their accuracy is limited.  The 
CODIS STRs in particular have a lower genotype imputation accuracy because of their extensive length 
and variation.  Further, the accuracy of imputed STR genotypes is lower for individuals with non-
European ancestry because the imputation training data consisted only of individuals with European 
ancestry, (Saini et al. 2018). The concordance between imputation and direct genotyping at a subset of 
the CODIS loci varied from 48% to 94%, even when benchmarking against a different European ancestry 
cohort (Saini et al. 2018). These limitations of the data erode power to detect signal related to CODIS 
loci genotypes, thus; we use a summary statistic, β, to describe the expected sum of alleles at a locus, 
given the probability assigned to each possible allele (see Methods).  
 
We considered gene expression values based on transcriptome data from lymphoblastoid cell lines from 
421 individuals in the 1000 Genomes Project.  The populations represented in this set are: CEPH (CEU), 
Finns (FIN), British (GBR), Toscani (TSI) and Yoruba (YRI), each population with a sample size ranging 
from 89 to 95 individuals (Lappalainen, Sammeth, Friedländer, ‘t Hoen, et al. 2013).  We investigated a 
model of CODIS STRs causing or being in LD with cis eQTLs by considering expression level variation of 
genes within 100kb of the CODIS loci.  Out of the 18 CODIS STRs included in the haplotype reference 
panel, only 14 CODIS STRs are within 100kb of at least one gene that is expressed in the lymphoblastoid 
data (Supplemental Table 1). We considered a total of 39 CODIS STR-gene pairs, as the number of 
expressed genes within 100kb varied for each CODIS loci.  For each CODIS STR-gene pair, we tested for 
correlation between CODIS loci genotypes and the expression levels of neighboring genes. Note that in 
this analysis we did not correct for population structure because we are not querying the molecular 
causality of an STR.  Instead, we are investigating informative STR-expression associations, regardless of 
their cause.    
 
Of the 39 CODIS STR-gene pairs tested, six showed significant correlations with p-values below 0.05 and 
a false discovery rate of 0.23 (so the expected number of false positives is 1.4 (Figure 1, Supplemental 
Table 1, Supplemental Figure 1).  The strongest signal was between D3S1358 and LARS2 (p = 1.1e-6, 
𝑟! = 0.059	), while we see less strong correlations, although still significant, between CSF1PO and 
CSF1R (p=0.03, 𝑟! = 0.01), between CSF1PO and TIGD6 (p=0.04, 𝑟! = 0.009), between D2S441 and C1D 
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(p=0.01, 𝑟! = 0.014), between D18S51 and KDSR (p=0.02, 𝑟! = 0.011) and between FGA and PLRG1 
(p=0.03, 𝑟! = 0.011) (Supplemental Table 1).  While the coefficients of determination (r2) observed are 
weak, their statistical significance or marginal significance invites further investigation.  The six CODIS 
STR-gene pairs with p < 0.05 represent an excess of correlation between CODIS loci and gene expression 
(p=2.9e-3, chi square test). We refer to the CODIS STRs associated with gene expression levels as 
CODISeSTRs.   
 
The correlations that we observe could be explained by 1) CODISeSTRs causally impacting the expression 
of a neighboring gene, 2) LD between the CODISeSTR and a different causal locus that impacts 
expression, 3) a confounding factor like population structure and/or environmental variables in both 
CODISeSTR genotypes and expression levels, or 4) a spurious association in this particular dataset.  If the 
correlation has any non-spurious basis, then the critical observation is that expression information may 
be inferred from the CODIS genotype, regardless of the precise mechanism for the association.  
However, establishing a putative mechanism for each of the observed associations may inform us about 
its stability and generalizability.  We explore these hypotheses in the following analyses.   
 
 

 
 
Figure 1: Correlations between CODIS loci and the expression of neighboring genes. Associations of 
CODIS STR-gene pairs are shown as negative log p-values. Red dotted line denotes the significant p-value 
threshold. CODISeSTRs are shown in dark blue and non-CODISeSTRs are shown in light blue.  
 
Exploring the role of population sub-structure in observed CODISeSTR correlations 
 
First, we investigate if the observed CODISeSTR-expression level associations observed across the whole 
data set (including CEU, GBR, FIN, TSI, and YRI) are be caused by population structure as a confounding 
factor.  We investigate this possibility by adding population membership as a covariate in the linear 
models of gene expression and CODISeSTR variation.  For most CODISeSTR-gene pairs (D3S1358-LARS2, 
D18S51-KDSR, D2S441-C1D, and FGA-PLRG1) the associations remain significant with population as a 
covariate. Thus the associations observed are unlikely to be caused by population structure 
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(Supplemental Table 2).  For CSF1PO-CSF1R and CSF1PO-TIGD6, the associations are somewhat less 
pronounced with population as a covariate (CSF1PO-CSF1R p-value goes from 0.03 to 0.06 and CSF1PO-
TIGD6 0.04 to 0.06).  This suggests that the CSF1PO associations may be caused in part by population 
stratification. 
 
If a cumulative association is caused entirely by structure at the level of the specified subpopulations, 
then there would be no associations within subpopulations, and there would be differences in β and 
expression level distributions across subpopulations.  We further investigate population-specific 
associations by testing for CODISeSTR-expression level associations within subpopulations 
(Supplemental Figure 2, Supplemental Table 3).  We found 6 significant associations under a p-value 
threshold of 0.05, with false discovery rate of .21 (expected number of false positives is 1.3) 
(Supplemental Table 2, Supplemental Table 3).  
 
For D3S1358-LARS2, D18S51-KDSR, and CSF1PO-CSF1R, we observe CODISeSTR-expression level 
associations within subpopulations.  D3S1358 β is significantly correlated with LARS2 expression in the 
FIN group (p=0.0013, 𝑟! = 0.11) as well as showing a significant correlation in the TSI (p=0.005, 𝑟! =
0.08) and the GBR (p=0.02, 𝑟! = 0.06) group.  This is consistent with the significant p-value in the 
cumulative population (p=1.12e-6, r2=0.06).  Similarly, for D18S51 and KDSR we see a significant 
association in YRI (p=0.003, r2=0.11), with non-significant results for all other sub-populations.  We again 
see consistent correlations in some subpopulations for the CSF1PO-CSF1R association in FIN (p=0.04, 
r2=0.04) and GBR (p=0.04, r2=0.04). These results suggest that for those CODISeSTR-gene pairs, the 
cumulative signal is not a product of population structure, but it may be driven by stronger associations 
in some subpopulation groups. 
 
By contrast, while the associations for D2S441-C1D, CSF1PO-TIGD6, and FGA-PLRG1 are significant in the 
cumulative dataset, within subpopulations we observe no significant or nominally significant 
correlations (Supplemental Table 3). To determine subpopulation structure is causing both the 
cumulative association and lack of associations within populations are due to, we tested for differences 
in the β and expression level distributions between subpopulations (Supplemental Table 4, 
Supplemental Figure 3).  We do observe some significant differences in β distributions for FGA (YRI-CEU) 
and CSF1PO (YRI-FIN, -GBR, -TSI), but there are no corresponding significant differences in the 
expression distributions of C1D, TIGD6, or PLRG1.  Thus, the significant associations for these 
CODISeSTR-gene pairs are not caused by this level of population structure as a confounding factor. 
Instead, it suggests either that the association is too weak to detect within subpopulations with 
decreased sample size and statistical power, or that the cumulative correlation is spurious.   
 
Comparing genomic features of CODISeSTRs and FMeSTRs 
 
We go on to investigate if the CODISeSTRs resemble expression-associated STRs (eSTRs).  A previous 
genomic analysis of a total of 1,620,030 STRs in humans identified 20,609 eSTRs with evidence of 
impacting gene expression (Fotsing et al. 2019). These eSTRs were then fine-mapped and ranked by 
their probability of causality using the statistical framework, CAVIAR (Hormozdiari et al. 2014). The 
eSTRs with the top 5% of probabilities of causality (1380 unique STRs) were then characterized as fine-
mapped expression-associated STRs (FMeSTRs) to express the additional evidence for their impact on 
gene expression (Fotsing et al. 2019).  Of note, three of the 20 CODIS STRs were previously identified as 
eSTRs by Fotsing et al. (2019), more than expected by chance (one-tailed binomial test, p = 0.002).  
Specifically, expression associations were found for TPOX in tibial nerve tissue, for D2S1338 in heart left 
ventricle tissue and for THO1 in both visceral adipose and esophagus mucosa tissues (Fotsing et al. 
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2019).  It is unsurprising that this study in lymphoblast cell lines did not reproduce those associations.  
However, these potential associations raise questions about expression associations of other CODIS loci 
across tissues.   
 
The genomic features of FMeSTRs were characterized, showing that they are more likely to be long, 
intronic, located near transcription start sites (TSSs), located near DNAse I hypersensitivity (DHS) sites, 
and to contain particular repeating units.  We examine how the CODISeSTRs fit the FMeSTR profile in 
order to investigate the hypothesis that the CODISeSTR genotypes are directly causing changes in the 
expression of neighboring genes (Table 1). 
 
In general, the CODIS loci are similar to FMeSTRs in their extreme length — the CODISeSTRs, in 
particular, are all in at least the 93rd percentile of lengths compared to all genomic STRs (Supplemental 
Figure 4). The CODISeSTRs further resemble FMeSTRs in that four of the five are intronic (CSF1PO:CSF1R; 
D18S51:BCL2; D3S1358:LARS2; FGA:FGA). Like FMeSTRs, two CODISeSTRs are unusually near to a TSS: 
FGA is 2.92 kilobases from the TSS of the gene FGA (92.7d genomic  percentile) and CSF1PO is 4.65 
kilobases from the TSS of CSF1R (88.6th genomic percentile) (Supplemental Figure 5).  Similar to 
FMeSTRs which are disproportionately found near DHS sites, one CODISeSTR in particular overlaps with 
a DHS site observed in lymphoblasts or lymphoblast derivatives: CSF1PO (100th genomic percentile) 
(Supplemental Figure 6, Supplemental Figure 7).  Finally, the repeating units of four of the five 
CODISeSTRs have been found to be significantly enriched among eSTRs (D3S1358, CSF1PO, D2S441, 
D18S51) (Fotsing et al. 2019)  (Table 1). 
 
Altogether, CODISeSTRs, most particularly CSF1PO, fit the genomic profile of a FMeSTR that putatively 
impacts gene expression levels.  These results are consistent with a hypothesis that CSF1PO has a causal 
impact on CSF1R expression levels, without being conclusive evidence.   
 
Table 1: Genomic features of CODISeSTRs  

CODISeSTR Location 
relative to 
genes 

Distance to 
nearest TSS 
(genomic 
percentile) 

Distance to 
TSS of 
associated 
gene 

Distance to 
nearest DHS 
site 
(genomic 
percentile) 

Distance to 
nearest 
lymph DHS 
site 
(genomic 
percentile) 

Length 
(genomic 
percentile) 

Repeating unit 

D3S1358 Intronic to 
LARS2  

31,194 bp 
(52.6%) 

152,157 bp 
to LARS2 TSS 

1,916 bp 
(72.3%) 
 

4651 bp 
(69.1%) 

63 bp 
(96.7%) 

[AGAT]n 
 

D2S441 Intergenic 41,143 bp 
(45.8%) 

41,143 bp to 
C1D TSS. 

14,064 bp 
(28.1%) 

19,514 bp 
(39.3%) 

47 bp 
(93.6%) 

[TGCC]m[TTCC]n 
 

CSF1PO Intronic to 
CSF1R  

4,649 bp 
(88.6%) 

4,649 bp to 
CSF1R TSS.  
75,157 bp to 
TIGD6 TSS 

0 bp 
(100.0%) 

0 bp 
(100.0%) 

51 bp 
(94.8%) 

[AGAT]n 

D18S51 Intronic to 
BCL2  

36,928 bp 
(48.4%) 

85,535 bp to 
KDSR TSS 

13,230 bp 
(29.3%) 

3714 bp 
(73.2%) 

71 bp 
(97.3%) 

[AGAA]n 

FGA Intronic to 
FGA  

2,922 bp 
(92.7%) 

2,922 bp to 
FGA TSS  
37,303 bp to 
PLRG1 TSS 

8,065 bp 
(40%) 

27,933 
(27.9%) 

87 bp 
(98.1%) 

[TTTC]mTTTTTTCT[C
TTT]nCTCC[TTCC]o 
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Identifying local genetic variants to explain observed variation in gene expression 
 
Knowing that CODISeSTRs resemble STRs that impact expression, we attempted to determine whether 
the expression variation is being driven by each CODISeSTR itself, or if it is due to nearby causal genetic 
variants (other STRs or SNPs) in LD with the CODISeSTR. To identify causal cis variants, we use CAVIAR, a 
Bayesian fine-mapping framework that leverages pairwise LD and z-scores to identify a set of putatively 
causal variants (Hormozdiari et al. 2014). CAVIAR assigns a posterior probability (which we will refer to 
as “CAVIAR score”) to each marker in the ρ-causal set (Willems et al. 2017; Fotsing et al. 2019). With a 
ρ=0.95, the ρ-causal set is a subset of markers that with 95% confidence contains all causal variants. 
Fine-mapping was performed in each subpopulation and CODISeSTR-gene combination for which we 
found a significant or nominally significant association (see section below “Exploring the role of 
population sub-structure in observed CODISeSTR correlations”). Thus, this causality analysis includes 
LARS2 in the FIN, GBR, and TSI populations; CSF1R in the FIN and GBR populations, and KDSR in YRI. 
 
These CAVIAR analyses produced scores between 0.04 and 0.60 for the putative causal variants 
(Supplemental Table 5).  While the relatively small sample sizes (65-83 individuals) mean that power 
may be limited for some of these analyses, scores as high as 0.60 are noteworthy.    
 
We also used CAVIAR to estimate the most likely n causal variants contributing to the phenotype with a 
max of n=4.  The “putative causal set” is comprised of n variants in the ρ-causal set with the highest 
CAVIAR scores.  While the CODISeSTRs were not tagged as putative causal variants, they do appear in 
most of the ρ-causal sets. For example, the highest CAVIAR score in a CODISeSTR is for D18S51 in the YRI 
subpopulation at 0.10. 
 
Investigating LD between CODISeSTRs and putative regulatory elements 
 
The observed correlation between CODISeSTR genotypes and expression levels of neighboring genes 
could be caused by LD between a CODISeSTR and a regulatory variant that impacts gene expression.  To 
investigate this possibility, we consider LD between CODISeSTRs and both CAVIAR-identified putative 
causal variants and DHS sites, indicating accessible DNA likely to contain regulatory elements.   
 
In addition to the identification of CODISeSTR D18S51 in the ρ-causal set for KDSR expression in YRI, we 
observe high LD between CODISeSTR D3S1358 and the putative causal variants impacting LARS2 
expression levels (Supplemental Figure 7,  Figure 2).  Two of the putative causal variants for LARS2 
expression in FIN have LD of at least 0.61 with CODISeSTR D3S1358, while four of the putative causal 
variants for LARS2 expression in GBR have LD of 0.54 with D3S1358, and the putative causal variants 
with top CAVIAR scores for LARS2 expression in TSI have LD of at least 0.68 with D3S1358.  While the 
CAVIAR scores associated with these ρ-causal sets are modest, the convergent high LD values across 
subpopulations support the hypothesis that D3S1358 may be in LD with a causal locus contributing to 
LARS2 expression variation.    
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2021. ; https://doi.org/10.1101/2021.07.20.21260897doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.20.21260897
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 
Figure 2: LARS2-D3S1358 CAVIAR and local LD landscape  
Local LD and CAVIAR score landscapes in a 100kb window centered on LARS2 gene for a) FIN subpopulation, b) 
GBR subpopulation, and c) TSI subpopulation. For each plot, the top panel shows LD between the CODISeSTR 
D3S1358 versus each variant in the ⍴	causal set. Bottom panel shows CAVIAR scores for variants in the ⍴	causal set. 
Dark green circles enclose putative causal variants in both CAVIAR and LD panels.  
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We also examined the LD between CODIS STRs and DHS sites within 100kb (Supplemental Figure 8).  We 
measured STR-DHS site LD as the maximum correlation between the STR and a SNP located in the DHS 
site (Supplemental Figure 9, Supplemental Table 6).  We observe high DHS site LD for some CODIS STRs 
(D1S1656, THO1, TPOX, vWA), and a large number of DHS sites surrounding others (CSF1PO, D22S1045, 
THO1). Note that of these, one is a CODISeSTR, while TPOX and THO1 were previously identified as 
eSTRs (Fotsing et al. 2019). We do not observe a general excess of LD with DHS sites for CODISeSTRs, as 
compared to other CODIS STRs (p=0.52, two-tailed Kolmogorov-Smirnov test).   
 
Additionally, the CODISeSTR CSF1PO overlaps with a DHS, suggesting that variation in CSF1PO length 
may directly impact the action of that DHS.  D3S1358 is in LD (r2>0.45) with SNPs in four DHSs detected 
in lymphoblasts, while D18S51 has LD of r2 = 0.31 with SNPs in one DHS (Supplemental Table 6).   
 
Putative mechanisms for observed CODISeSTR-expression associations 
 
For each CODISeSTR-gene pair, we weighed the results supporting different mechanisms for the 
observed STR-gene expression association.  (Table 2). 
 
TABLE 2: Putative mechanisms for observed CODISeSTR-expression associations 
 

CODISeSTR - Gene Association 
Observed at 

Subpopulation 
Level 

CODISeSTR 
Fits FMeSTR  

Profile* 
 

CODISeSTR LD With 
CAVIAR Causal 

Variants+ 

CODISeSTR LD With 
DHS Sites Active In 

Lymphoblasts+ 

CSF1PO - CSF1R Yes Strong Low	
 

Overlaps	with	DHS	
site 

D18S51 - KDSR Yes Moderately	 Low Low 

D3S1358 - LARS2 Yes Weak	 Moderate	-	High Low	-	Moderate 

CSF1PO -TIGD6 No Strong	 N/A Low	-	Moderate 

D2S441 – C1D No Weak	 N/A	 Low	

FGA – PLRG1 No Weak N/A	 Low 
*Strong fit is defined as satisfying most or all of the FMeSTR characteristics described in table  
Table 1; mid-scale is defined as satisfying at least half; weak is defined as satisfying less than half.   
+High LD is considered >= 0.7; moderate LD is between 0.4 and 0.69; low LD is <0.4.  N/A values indicate 
STR-gene pairs that were not included in the CAVIAR analysis.  
 
Association between D3S1358 and LARS2 expression 
We observe concordant significant negative correlations between D3S1358 allele length and the LARS2 
expression levels in our cumulative 1000 genomes analysis (Supplemental Table 11).  The strength of 
this correlation is demonstrated by the maintenance of the significant association within the smaller FIN 
subpopulation, as well as significant associations within GBR and TSI (Supplemental Table 2).  As to the 
mechanism for this correlation, there is weak evidence suggesting that D3S1358 resembles a causal 
FMeSTR (Table 2). However, there is stronger evidence that D3S1358 is in LD with both a variant that 
putatively impacts LARS2 expression (Supplemental Table 5), and DHS sites active in lymphoblasts 
(Supplemental Table 6).  Together, these results are consistent with the hypothesis that D3S1358 may 
be in LD with a locus which impacts LARS2 expression.   
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Association between CSF1PO and CSF1R expression 
CSF1R expression has a significant positive correlation with the genotype of intronic CODIS locus CSF1PO 
(Supplemental Table 1). The subpopulations FIN and GBR show consistent significant positive 
correlations (Supplemental Table 2), and there is only weak evidence that the association is partially due 
to population stratification (Supplemental Table 2).  CSF1PO bears a remarkable resemblance to 
FMeSTRs with its close proximity to CSF1R’s TSS and particularly with its overlap with a DHS site found in 
lymph cell lines, as well as its length, and repeating unit (Table 1, Figure 9).  These results are consistent 
with the hypothesis that CSF1PO could causally impact CSF1R expression, or be in LD with a different 
causal locus.   
 
Association between D18S51 and KDSR expression 
D18S51 β values are significantly correlated with KDSR expression across all samples, as well as within 
the YRI subpopulation (Supplemental Table 1, Supplemental Table 2).  We note that the distribution of β 
values is significantly different in YRI compared to the other subpopulations (Supplemental Table 4, 
Supplemental Figure 3).  Further, in the YRI subpopulation, the D18S51 was identified as the second 
most probable locus to cause KDSR expression variation with a CAVIAR score of 0.10 (Supplemental 
Table 5).  Even if D18S51 itself is not causal, we note that its LD with a DHS site is 0.31 (Supplemental 
Table 6).  Together, these results suggest that a correlation within the YRI subpopulation could be 
driving the correlation at the cumulative level, and that the correlation likely has a molecular basis 
(whether causal, or in LD with a causal locus).   
 
Associations between CSF1PO and TIGD6 expression; D2S441 and C1D expression; and FGA and PLRG1 
expression 
For the remaining CODISeSTR-gene pairs, we see significant correlations at the cumulative population 
level, with no significant associations within subpopulations (Supplemental Table 1, Supplemental Table 
2).   While this might suggest the associations are due to population structure, two factors tell a 
different story: 1) the maintenance of a significant association with population as a covariate 
(Supplemental Table 2) and 2) the lack of consistent subpopulation differences in both β frequencies 
and expression levels tell a different story (Supplemental Table 4, Supplemental Figure 3). These results 
may be explained by either the smaller sub-population group sample sizes reducing power to detect 
weak correlations, or a spurious association in the cumulative analysis. This is consistent with the other 
analyses that show that D2S441 and FGA more weakly fit the pattern of FMeSTRs (Table 1) and relatively 
low LD to local DHS sites (Supplemental Table 6).    
 
DISCUSSION 
 
CODIS loci were chosen because, at the time, researchers believed that no medical information would 
be revealed. However, in this study, we identified CODISeSTRs whose genotypes are correlated to the 
expression of neighboring genes in lymphoblast cell lines.  Our results build on previous work finding 
expression associations with CODIS loci TPOX, THO1, and D2S1338 in other tissues (Fotsing et al. 2019).  
Specifically, we observed six significant correlations: between D3S1358 and LARS2, between D18S51 and 
KDSR, CSF1PO and both CSF1R and TIGD6, D2S441 and C1D, and FGA and PLRG1.  We go on to 
investigate the putative mechanism for these correlations, finding that the associations between 
D3S1358-LARS, D18S51-KDSR, and CSF1PO-CSF1R are likely due to a causal relationship or LD with at 
least one causal locus, while the other associations are weaker or possibly spurious.  These results 
provide evidence that contravenes the assumption that CODIS genotypes convey no trait information.  
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Medical relevance of CODISeSTR-associated gene expression variance 
 
Our analysis shows that a CODIS genotype profile can be used to infer the expression of some genes.  
This raises the question: would inferring those expression levels reveal medical information?  We 
consulted the medical genetics literature to begin to address this question (Supplemental Table 7, 
Supplemental Text 1-6). We discuss some of the most striking cases: CSF1R, LARS2, and KDSR   
 
CSF1R expression variation and neural and psychiatric conditions 
CSF1R, which is intronic to CSF1PO, encodes a cytokine receptor that plays a key role in microglial 
regulation (Konno et al. 2014).  Disruptive sequence mutations in CSF1R lead to a variety of brain 
conditions including leukoencephalopathy (Guo et al. 2019; Nicholson et al. 2013; Eichler et al. 2016; 
Rademakers et al. 2012; Oosterhof et al. 2019; Konno et al. 2014), while inhibition of CSf1R protein 
function seems to ameliorate some neural conditions like epilepsy (Srivastava et al. 2018), Alzheimer’s 
disease (Mancuso et al. 2019; Olmos-Alonso et al. 2016; Sosna et al. 2018), and spinal cord injury 
recovery (Bellver-Landete et al. 2019) (Supplemental Text 3).  Further, and most relevantly for this 
study, variation in the expression and splicing CSF1R are associated with psychiatric conditions including 
depression and schizophrenia in humans (Zhang et al. 2020; Shimamoto-Mitsuyama et al. 2021; Gandal 
et al. 2018).  Since CSF1R expression is correlated with CSF1PO, the CODIS genotype may be informative 
about those psychiatric conditions.   
 
LARS2 and KDSR associations with medical conditions 
LARS2 and KDSR function reduction or elimination have also been associated with medical conditions.  
LARS2, which contains D3S1538 in an intron, encodes a mitochondrial leucyl-tRNA synthetase gene 
(Bullard, Cai, and Spremulli 2000).  LARS2 is well-established as an essential gene, as mutations that 
reduce or knock out its function have been associated with Perrault syndrome (Pierce et al. 2013; 
Willems et al. 2014; Soldà et al. 2016; Demain et al. 2017), MELAS syndrome (Li, Chomyn, and Guan 
2010), and other conditions (Supplemental Text 1). KDSR, which is near to D18S51, encodes an enzyme 
involved in synthesis of the lipid ceramide.  Mutations in KDSR that eliminate or decrease enzyme 
function have been associated with a number of severe skin and platelet conditions (Boyden et al. 2017; 
Bariana et al. 2019; Takeichi et al. 2017) (Supplemental Text 5).  These medical genetic studies provide 
strong evidence that LARS2 and KDSR expression variation impact a number of medical conditions.  The 
fact that dramatically reduced function leads to severe phenotypes raises the question whether 
marginally lowered expression may lead to intermediate conditions.  The association between 
CODISeSTRs and those genes’ expression means that the CODIS genotype may be informative about risk 
of those conditions, or other intermediate phenotypes.   
 
Limitations 
The associations reported here were observed in the subset of the 1000 Genomes Project where 
expression data was also available.  These data are limited in a few important ways.  First, expression 
data was only available in lymphoblastoid cell lines.  This single cell type means that our analysis will 
miss genes which are not highly expressed, or whose expression isn’t regulated by cis-elements, in 
lymphoblastoid cell lines specifically.  Second, data was only available from CEU, FIN, GBR, TSI, and YRI 
subpopulations.  As four of five of these populations are European, they do not reflect the genetic 
diversity of the general population of the United States, notably with regards to their lack of admixture.  
Correlations due to population structure as a confounding factor may be underestimated in our analysis.  
Further, this analysis is unable to identify correlations that are specific to subpopulations not 
represented here. Third, errors in the imputation of the CODIS genotypes may erode power to identify 
associations, particularly in non-European subpopulations where imputation has higher error rates.   
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In addition, our approach to detecting associations is specifically testing for a linear relationship 
between STR allele length and expression levels.  While this type of linear relationship is generally 
expected (see Methods), there could be other non-linear relationships present that were not detected 
here.   
 
Altogether, while our analysis produced significant correlations, it is limited in scope and underpowered.  
This raises the question of whether stronger correlations would be identified in an analysis on a larger 
more representative sample, with direct STR genotyping, using more expression data from more varied 
tissues.   
 
Conclusion 
Within the limitations of the publicly available data examined here, our results suggest that information 
on gene expression levels may be revealed by CODIS profiles.  Further, some of those gene expression 
levels have been connected to medical phenotypes.  These results join a growing body of work showing 
that CODIS genotypes may contain more information than purely identity.  CODIS profiles have been 
found to provide information about the surrounding haplotype (Edge et al. 2017; Kim et al. 2018), as 
well as genetic ancestry (Algee-Hewitt et al. 2016).  Together, these findings raise concerns about the 
medical privacy of individuals whose CODIS profiles are seized, databased, and accessed, as well as the 
genetic relatives of those persons.   
 
 
MATERIALS AND METHODS 

1000 Genomes Project CODIS Genotype Data 

Phase 3 of the 1000 Genomes Project sampled 2,504 individuals from 26 different populations with 
ancestry from Africa, East Asia, Europe, South Asia and the Americas (Auton et al. 2015).  The short-read 
sequencing approach used for this dataset presents a challenge for genotyping the CODIS loci, which are 
highly polymorphic, often with very long alleles. We used imputed CODIS loci genotype data that was 
made publicly available as a haplotype reference panel (see Online Resources for url) (Saini et al. 2018; 
Browning, Zhou, and Browning 2018). Because of the limits of this approach with particularly long 
alleles, genotypes for only 18 of the 20 CODIS STRs were successfully imputed (Saini et al. 2018). These 
18 loci are D22S1045, TPOX, D2S441, D2S1338, vWA, D12S391, D5S818, CSF1PO, D1S1656, D10S1248, 
TH01, D13S317, D18S51, D19S433, D3S1358, FGA, D7S820, and D8S1179.  The two CODIS STRs not 
included in our study are D16S539 and D21S11. We note that the very factors that make these loci 
difficult to impute (length and polymorphism) may make them particularly relevant for studies of 
phenotypic impact (Fotsing et al. 2019).   

For our analysis of correlation between CODIS genotypes and expression levels, we created a summary 
statistic based on estimated allelic dosages generated by Beagle during imputation.  For each individual, 
STR estimated allele dosages are the sum of the posterior allele probabilities for both haplotypes 
(Browning and Browning 2016).  Hence, their values range from 0 to 2 (Yun et al. 2009).   
 
We used the imputed STR allelic dosages to compute a normalized linear weighted genotype for each 
CODIS STR. We refer to this weighted average genotype as β (beta). We computed β for each individual 
for each CODIS STR using the following: 
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β  =  
 

 

where 𝑛	 is the number of distinct alleles on record at the locus, 𝑟"  is the number of repeats in allele 𝑖, 
and 𝑑"  is its estimated allelic dosage (genotype probability). For non-CODIS STRs, β genotypes were 
computed by substituting 𝑟"  with the allele nucleotide length, instead of the repeat count.  

1000 Genomes Project Gene Expression Data 

Transcriptomes were typed from lymphoblastoid cell lines of 462 unrelated individuals from the 1000 
Genomes Project (Lappalainen, Sammeth, Friedländer, ’T Hoen, et al. 2013). The samples in this set 
correspond to five populations: the CEPH (CEU), Finns (FIN), British (GBR), Toscani (TSI) and Yoruba (YRI).  
Transcriptomic levels were quantified with Reads Per Kilobase of transcription per Million mapped reads 
(RPKM).  Transcripts with 0 counts in more than half the number of samples were removed 
(Lappalainen, Sammeth, Friedländer, ’T Hoen, et al. 2013).  Full data is available at the EBI ArrayExpress 
portal, under accession E-GEUV-1 (see Online Resources for url).   
 
Of the 462 individuals with gene expression data, 90 were filtered out because either β genotypes or 
gene expression values were missing. Our study was performed with 372 individuals for which we have 
CODIS genotype data and where at least one known gene within a 100kb window was expressed in the 
lymphoblastoid cell lines data. Within population analysis contained between 65 and 83 individuals. 

Testing associations between STR length and gene expression  

Using data from the UCSC Genome Browser, we identified genes within 100 kilobases of the CODIS 
markers, measuring 100 kb from the start and end of each CODIS STR genomic location. We summarized 
the genotypes with β values, as detailed in section “1000 Genomes Project CODIS Genotype Data”.  We 
next fit linear regression models to test for Pearson correlation between the β genotypes for each CODIS 
STR versus the expression levels of nearby genes.   
 
The approach implicitly assumed a linear relationship between STR alleles by length.  This assumption is 
justified by findings that STR impact on expression level scales with allele length (Tirosh, Barkai, and 
Verstrepen 2009; Mirkin 2007; Hannan 2018).  For an STR that is not causal, but is in LD with a causal 
locus, the step-wise STR mutational process (Levinson and Gutman 1987; Ellegren 2004) will lead to 
multiple similarly-lengthed STR alleles on the causal haplotype.   
 
We controlled for false discovery rate (FDR) using q values (Storey and Tibshirani 2003).  With 6 features 
under a p-value threshold of 0.05, we expect 1.4 of those to be a false positive (Supplemental Table 2). 
 
Characterizing genomic features of CODISeSTRs 
 
We quantified several genomic features of the CODISeSTRs in order to examine how they compare to 
the characteristics of putatively causative expression-altering STRs (referred to as FMeSTRs) (Fotsing et 
al. 2019). Genomic STR coordinates, including those of CODIS STRs and CODISeSTRs, were gathered from 
a genome-wide survey of STRs (Willems et al. 2017) (see Online Resources). 
 

1
2

n

∑
i=1

(ri ⋅ di)
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For context, we used the survey data to compute CODISeSTR lengths and their length percentiles as the 
proportion of genome-wide STRs that are at least as long. Distance, in bp, between STRs to the nearest 
gene and the nearest TSS was determined by additionally using genetic coordinates from the UCSC 
Genes track in the UCSC Genome Browser (Haeussler et al. 2019).  We also used the UCSC Genes track 
to determine the distance of each STR relative to its associated gene(s) and the TSS(s) thereof. The 
repeating units for each CODISeSTR were gathered from STRbase (J. Butler n.d.) (see Online Resources).   
   
Like in analysis of FMeSTRs (Willems et al. 2017; Fotsing et al. 2019), for each CODISeSTR, we computed 
the distance between each STR and the nearest DHS site. DHS site cluster locations were taken from the 
ENCODE Regulation 'DNase Clusters' track via the UCSC Genome Browser (Rosenbloom et al. 2013) (see 
Online Resources).  All distances between STRs and nearby genomic elements, except for TSSs which are 
represented by the starting coordinate of the protein coding region, were calculated to reflect the 
distance between the closest endpoints of the elements in question.  
 
For the general analysis, we considered DHS site clusters annotated in at least 20 sources. We 
performed additional analyses focusing on DHS site clusters observed in lymphoblasts or lymphoblast 
derivatives.  We identified 20 cell lines that are lymphoblasts or lymphoblast derivatives, specifically 
Adult_CD4_Th0*, CD20+, CLL, CMK, GM06990, GM12864, GM12865, GM12878, GM12891, GM12892, 
GM18507, GM19238, GM19239, GM19240, HL-60, Jurkat, K562, NB4, Th1, and Th2.  For lymphoblast 
specific analyses, we consider DHS sites that were observed in at least 5 of the 20 lymphoblasts or 
lymphoblast derivatives in the dataset.   
 
Evaluating the potential causality of cis variants 
 
We performed a fine-mapping analysis with CAVIAR (Willems et al. 2017; Fotsing et al. 2019) to identify 
specific local genetic variants (either CODISeSTRs, other STRs or SNPs) that are putatively causal of the 
variation in expression levels. CAVIAR employs the variants’ LD structure as well as association statistics 
to predict a subset of variants, the ⍴ causal set, in which all causal markers are said to be included with a 
certain probability ⍴, ⍴ = 95% in our case.  Each variant in the CAVIAR ⍴ credible set is then assigned a 
probability of being causal. We refer to this posterior probability as CAVIAR score.  
 
We considered SNPs and STRs within 100 kilobases up and downstream of genes with significant or 
marginally significant CODIS locus associations at the subpopulation level: LARS2, CSF1R, and KDSR.  
SNPs that did not exhibit variation within each subpopulation group were removed. We followed the 
CAVIAR protocol established by Fotsing et al. (Fotsing et al. 2019).  Next, we filtered for SNPs and STRs 
that hold a significant association with gene expression level. Specifically, we tested for correlation 
between gene expression and either SNP or STR genotypes.  For non-CODIS STRs, genotypes were 
considered as the nucleotide length of each allele and β values were computed, while for CODIS STRs we 
consider the number of repeats.  Variants with a p-value > 0.05 were excluded from further analysis. 
Since it is unlikely for a phenotype to be caused by one variant alone, we allowed for CAVIAR to consider 
up to four independent causal variants per locus by including the parameters -f1 -c 4. We define the 
putative causal variants as the n number of variants with the highest CAVIAR scores, where n is CAVIAR’s 
predicted number of putative causal variants, ranging from 1 to 4. In the cases where a set of variants 
are in perfect LD with one another (and therefore have identical CAVIAR scores), the set is considered as 
a single prediction. 
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Quantifying linkage disequilibrium  
 
LD between STRs and SNPs was quantified as correlation between CODIS STR β values versus the SNP 
genotypes (sum of alternative alleles), implicitly testing a linear relationship.  This measure of LD 
between STRs and SNPs is similar to a haplotype-based method shown to reliably follow the expected 
patterns of variation when applied to phased X-chromosome haplotypes (Willems et al. 2014).  LD 
between two STRs was quantified as the correlation between β values.  For CODISeSTRs, β was based on 
the number of repeats, while for non-CODIS STRs β was based on the nucleotide length.  We used 
genotypic LD, rather than haplotypic LD, because the imputed STR estimated allele dosages lack phase 
information.   
 
For analyses of LD between STRs and DHS sites, we calculated LD between CODIS loci and all SNPs within 
a DHS site.  We considered DHS sites found within at least 5 of the 20 available lymphoblast cell lines or 
derivatives, as well as DHS sites found within at least 20 cell line sources (Supplemental Figure 8). As a 
summary, we considered the highest LD per DHS site (Supplemental Table 6). For DHS sites without 
SNPs in the region, LD was not computed and therefore not included in the summary.  
  
Online resources 
 
CODIS STR genotypes imputed in 1000 Genomes Dataset: 
http://gymreklab.com/2018/03/05/snpstr_imputation.html 
 
Transcriptome data from cell lines derived from individuals participating in 1000 Genomes Dataset: 
https://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-1/ 
 
Genome-wide STR survey: 
https://github.com/HipSTR-Tool/HipSTR-references/blob/master/human/hg19.hipstr_reference.bed.gz 
 
Technical details on CODIS STRs: 
https://strbase.nist.gov/str_fact.htm 
 
DHS site locations from ENCODE: 
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeRegDnaseClustered/wgEncod
eRegDnaseClusteredV3.bed.gz 
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