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Abstract  46 

For the control of COVID-19, vaccination programmes provide a long-term solution. The 47 

amount of available vaccines is often limited, and thus it is crucial to determine the allocation 48 

strategy. While mathematical modelling approaches have been used to find an optimal 49 

distribution of vaccines, there is an excessively large number of possible schemes to be simulated.  50 

Here, we propose an algorithm to find a near-optimal allocation scheme given an 51 

intervention objective such as minimization of new infections, hospitalizations, or deaths, where 52 

multiple vaccines are available. The proposed principle for allocating vaccines is to target 53 

subgroups with the largest reduction in the outcome of interest, such as new infections, due to 54 

vaccination that fully immunizes a single individual. We express the expected impact of 55 

vaccinating each subgroup in terms of the observed incidence of infection and force of infection. 56 

The proposed approach is firstly evaluated with a simulated epidemic and then applied to the 57 

epidemiological data on COVID-19 in the Netherlands.  58 

Our results reveal how the optimal allocation depends on the objective of infection control. 59 

In the case of COVID-19, if we wish to minimize deaths, the optimal allocation strategy is not 60 

efficient for minimizing other outcomes, such as infections. In simulated epidemics, an allocation 61 

strategy optimized for an outcome outperforms other strategies such as the allocation from young 62 

to old, from old to young, and at random. Our simulations clarify that the current policy in the 63 

Netherlands (i.e., allocation from old to young) was concordant with the allocation scheme that 64 

minimizes deaths. 65 

The proposed method provides an optimal allocation scheme, given routine surveillance 66 

data that reflect ongoing transmissions. The principle of allocation is useful for providing plausible 67 

simulation scenarios for complex models, which give a more robust basis to determine 68 

intervention strategies.  69 

 70 

 71 

Author summary  72 

Vaccination is the key to controlling the ongoing COVID-19 pandemic. In the early stages of 73 

an epidemic, there is shortage of vaccine stocks. Here, we propose an algorithm that computes an 74 

optimal vaccine distribution among groups for each intervention objective (e.g., minimizing new 75 

infections, hospitalizations, or deaths). Unlike existing approaches that use detailed information on 76 

at-risk contacts between and among groups, the proposed algorithm requires only routine 77 

surveillance data on the number of cases. This method is applicable even when multiple vaccines 78 

are available. Simulation results show that the allocation scheme optimized by our algorithm 79 

performed the best compared with other strategies such as allocating vaccines at random and in 80 

the order of age. Our results also reveal that an allocation scheme optimized for one specific 81 

objective is not necessarily efficient for another, indicating the importance of the decision-making 82 

at the early phase of distributions. 83 

  84 
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Introduction 85 

SARS-CoV-2 has posed a great threat to public health. As of 8 July 2021, 33,270,049 cases   86 

and 740,809 deaths with COVID-19 have been reported in the EU/EEA (1), and globally there have 87 

been 4,006,882 deaths reported (2). While non-pharmaceutical interventions (NPIs) reduce 88 

transmission (3,4), the societal cost of implementing these measures is enormous (5,6), and the 89 

effect is short-lived. Vaccination offers a long-term approach to control COVID-19.  90 

Currently, sixteen vaccines have been approved for use, 99 companies are still conducting 91 

clinical trials to develop next generation vaccines (7). There is a limited amount of vaccine 92 

available, especially in low- and middle-income countries, because of narrow production capacity 93 

and logistics (2,8,9). There is an urgent need to optimize the allocation of scarce vaccines.  94 

The optimal allocation depends on the objective of infection control. If the objective is to 95 

minimize hospitalizations, it might be best to target those with the highest risk of severe illness 96 

upon infection. If the objective is to reduce transmission of infection, it might be best to target the 97 

individuals who contribute most to future infections. Similar allocation problems were previously 98 

explored for influenza vaccination programmes (10–12). The allocation of COVID-19 vaccines has 99 

been evaluated in combination with NPIs (13–15), with age-varying vaccine efficacy (16), and with 100 

different sizes of the vaccine stockpile (17,18). These studies examined plausible scenarios with 101 

numerous combinations of models and parameters; however, the challenge here is that there are 102 

innumerable possible allocation schemes to compare. 103 

Here we show a data-driven approach to find optimal allocation schemes, by age group 104 

and vaccine type, that minimize either new infections, hospitalizations, or deaths. As per previous 105 

studies (13–18), we stratify the population by age, because age is shown to be an important risk 106 

factor for susceptibility (19,20), severe illness (21,22), and mortality (21,23,24). We apply the 107 

proposed approach to a simulated epidemic to evaluate its performance. We also test it with 108 

epidemiological data of COVID-19 in the Netherlands, in order to find optimal allocation schemes 109 

for different types of vaccines.  110 
111 
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Results 112 

Impact of a single unit of vaccination 113 

We are interested in prioritizing a subgroup, to target vaccination of individuals in group 𝑖, 114 

by considering within- and between-subgroup transmissions. To find optimal allocation schemes, 115 

the proposed approach relies on establishing the impact of a single unit of vaccine (i.e., the number 116 

of doses to fully immunize a single individual), as described in the following three steps.  117 

First, we write an age-stratified transmission process in matrix form by introducing the 118 

next generation matrix 𝑲 (25–27). The next generation matrix 𝑲 gives the number of new infections 119 

in a successive generation, such that the number of new infections at time 𝑡 + 1 after one 120 

generation of infections is 𝒙(𝑡 + 1) = 𝑲𝒙(𝑡). Note that 𝑲 is a 𝑚 × 𝑚 matrix, and we have 𝑚 age 121 

groups. We start with a 𝑚 × 1 vector of age-specific infection at time 𝑡, 𝒙(𝑡). 122 

Second, we define the “impact” of a single unit of vaccination as the reduction in the 123 

number of new infections generated by an infected individual. A decrease in the number of 124 

infected individuals at time 𝑡 + 1, 𝒙(𝑡 + 1), is expressed as a result of changes in the next 125 

generation matrix 𝑲 and in the number of infected individuals 𝒙(𝑡) due to vaccinating one 126 

individual. With simplified notation, we can write this as 𝒙′(𝑡 + 1) = 𝑲′𝒙(𝑡) + 𝑲𝒙′(𝑡), where 𝑲′ 127 

and 𝒙′(𝑡) are derivatives with respect to the number of vaccinated individuals; 𝑲′𝒙(𝑡) is the direct 128 

effect of vaccinating an individual and removing them from the susceptible population and 𝑲𝒙′(𝑡) 129 

is the indirect effect of vaccinating a single individual by reducing onward infections (see Eq.S4 130 

and Eq.S7 for full notation).  131 

Third, the main interest here is to approximate the next generation matrix 𝑲 using 132 

observed epidemiological data. By approximating 𝑲, we can calculate above-defined changes 133 

without knowing the detailed contact information between groups. To derive the approximated 134 

form, we require that at-risk contacts are reciprocal. With this condition, the next generation 135 

matrix 𝑲 can be safely approximated by the combination of the force of infection 
𝑥𝑖(𝑡)

𝑠𝑖(𝑡)
 (i.e., 136 

incidence rate of new infections 𝑥𝑖(𝑡) per susceptible individual 𝑠𝑖(𝑡)) and the incidence rate of 137 

new infections per individual 
𝑥𝑖(𝑡)

𝑛𝑖
, and its approximation error is guaranteed to be small if the 138 

observation interval for new infections is more than two generation intervals (28) (see detailed 139 

derivation in SI Text-1).  140 

Using the above results, when age group 𝑖 is targeted for vaccination, its impact can be 141 

measured as the contribution of the change in group 𝑖 to the relative reduction in the number of 142 

new infections after one generation of infection (see Eq. S11 in SI Text-1). As a result, we can 143 

define this quantity as the “importance weight” of infection 𝑦𝑖
(𝐼)

, given by  144 

𝑦𝑖
(𝐼)

= 𝑅𝑓𝑔 (𝑞𝑖
(𝑆)

+ 𝑞𝑖
(𝑇)

)
𝑐𝑖

𝑎𝑖

𝑥𝑖(𝑡)

𝑠𝑖(𝑡)

𝑥𝑖(𝑡)

𝑛𝑖
(𝐸𝑞. 1) 145 

where 𝑅 is the reproduction number, 𝑓 and 𝑔 are normalizing constants, 𝑞𝑖
(𝑆)

 and 𝑞𝑖
(𝑇)

 are vaccine 146 

efficacies for susceptibility and transmissibility in age group 𝑖, 𝑐𝑖 is per contact probability of 147 

transmitting infection for age group 𝑖, and 𝑎𝑖 is per contact probability of acquiring infection for 148 

age group 𝑖. We can interpret the quantity 𝑦𝑖
(𝐼)

 as the expected reduction in the number of new 149 

infections generated by an infected individual after introducing a single unit of vaccine in group i, 150 

compared with the counterfactual situation where no vaccine is introduced. 151 

The importance weight can be generalized for other disease outcomes. We find that the 152 

generalized form of Eq.1 for other disease outcomes can be written as the product of the relative 153 

change in the number of new infections 𝑦𝑖
(𝐼)

 and a disease progression rate (see the derivation in SI 154 

Text-1). To illustrate its application, we introduce the importance weight of hospitalization 𝑦𝑖
(𝐻)

 155 

and death 𝑦𝑖
(𝐷)

, which are defined as the relative reduction in the number of hospitalizations and 156 
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deaths; 157 

𝑦𝑖
(𝐻)

= 𝜂𝑖𝑦𝑖
(𝐼) (𝐸𝑞. 2) 158 

and 159 

𝑦𝑖
(𝐷)

= 𝜇𝑖𝑦𝑖
(𝐼) (𝐸𝑞. 3) 160 

where 𝜂𝑖 is the infection hospitalization rate and 𝜇𝑖 is the infection mortality rate for age group 𝑖.  161 

 162 

Prioritization algorithm  163 

Given a limited stockpile of vaccines, we assess the expected impacts of a single vaccination 164 

on the number of new infections, hospitalization, or deaths, with importance weights (i.e., 𝑦𝑖
(𝐼)

, 165 

𝑦𝑖
(𝐻)

 and 𝑦𝑖
(𝐷)

 shown in Eq.1-3). In the case that there are multiple types of vaccines, we can define 166 

importance weights by vaccine type. To illustrate the algorithm proposed in this study, we use the 167 

example of minimization of hospitalization, letting 𝑦𝑖
(𝐻)(𝑗)

 denote the importance weight of 168 

hospitalization (H) for vaccine type 𝑗 in age group 𝑖. By comparing age and vaccine type specific 169 

importance weights, the sequential allocation is performed as described below: 170 

   Step-1: Decide the objective of infection control (in this example, minimizing hospitalization (H))  171 

   Step-2: Calculate importance weights 𝑦𝑖
(𝐻)(𝑗)

 per age-group 𝑖 and vaccine type 𝑗 172 

   Step-3: Find a combination of age-group 𝑖 and vaccine type 𝑗 that has the largest importance 173 

weight; this provides the selected age group and selected vaccine type.  174 

   Step-4: Allocate a single unit of the selected vaccine to the selected age-group 175 

   Step-5: Re-calculate importance weights by decreasing the weights in the targeted age-group, as  176 

𝑦𝑖
(𝐻)(𝑗)

+
𝑑𝑦𝑖

(𝐻)(𝑗)

𝑑𝑢𝑖
. Others remain the same. 177 

   Step-6: Repeat above until the end of vaccine stockpile. 178 

Note that in step-5 all the importance weights of the age group 𝑖 are updated. This is because the 179 

allocation of one vaccine type depletes susceptible and infectious individuals in the targeted age 180 

group, and thus it affects the expected impacts of other vaccines from next iterations (see detailed 181 

derivation in SI Text-1). The pseudo code for this algorithm is provided in Table-S2. 182 

There are four conditions that should be met; (i) the epidemic grows exponentially over the 183 

time interval, (ii) at-risk contacts are reciprocal, (iii) the observation interval for new infections is 184 

sufficiently long, and (iv) there is no major change in the age distribution of the risk of infection. 185 

With these assumptions, we can reconstruct the (approximated) next generation matrix and 186 

calculate the expected impact on each outcome due to vaccination, without detailed information 187 

about contacts between groups (28). 188 

 189 

Test against simulated data 190 

We test the performance of the proposed algorithm using a simulated epidemic. Figure-191 

1(A) illustrates the generated epidemic curve where we set the basic reproduction number R0 to 1.2 192 

and the generation time as 5 days, based on the estimates of SARS-CoV-2 infections, following 193 

previous modelling studies (13,16) (see Method for details of simulation settings). Although only 194 

partial observations on the incidence and force of infection are used as inputs, the allocation 195 

strategies yielded by our algorithm perform better than other strategies that we tested in most 196 

cases (i.e., random allocation, allocation from young to old groups, allocation from old to young 197 

groups, and no vaccination) (Figure-1(D)-(F)).  198 

 199 
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Age distribution of allocated vaccines by prioritization scheme  200 

We apply the proposed approach to epidemiological data on COVID-19 in the Netherlands. 201 

Higher efficacious vaccines are allocated first, and then lower efficacious vaccines are distributed 202 

later on (Figure 2 and Figure S2). Figure 2 shows the detailed breakdown of allocated vaccines by 203 

age group and vaccine type in each allocation scheme, and all the schemes start with the highest 204 

efficacious vaccine (i.e., Pfizer vaccine). Since high vaccine efficacy results in larger impacts per 205 

vaccination (Eq-2), it is natural to prioritize the allocation of higher efficacious vaccines.  206 

Depending on the objective of infection control, the type of vaccines that each age group 207 

receives would differ. If a specific age group is significantly contributing to the objective, it is 208 

better to distribute higher efficacious vaccines to that group. For example, there is a large 209 

contribution of age 21-30 for the number of infections (Figure S1), and thus higher efficacious 210 

vaccines are distributed to that group if the objective is to minimize the number of infections (top 211 

row in Figure 2). If we wish to minimize the number of hospitalizations or deaths, those vaccines 212 

would be distributed to the elderly (second and third rows in Figure 2). 213 

The optimal timing of switching from one age group to another also varies by objective. 214 

When we set the objective as the minimization of the number of infections or hospitalizations, the 215 

selected allocation orders for these two objectives suggest to distribute vaccines to several age-216 

groups in parallel (first and second rows in Figure 2 and Figure S3). By contrast, when we set the 217 

objective as the minimization of the number of deaths, the allocation scheme generally focused on 218 

one age group, from old to young, and did not switch to the next age group until the vaccination of 219 

the first age group (i.e., age 60+) is finished (third row in Figure 2 and Figure S3). In terms of the 220 

order and the switching timing, the selected allocation scheme that minimizes deaths is concordant 221 

with the current allocation policy in the Netherlands (29). 222 

 223 

Different benefits between vaccine prioritization strategies  224 

Allocation schemes that are optimized for one objective may not be optimal with respect to 225 

another, as illustrated by our simulations. If we choose to minimize the number of infections, that 226 

allocation scheme is not efficient for the minimization of deaths (Figure 3 (A)). In contrast, if we 227 

wish to minimize the number of hospitalizations or deaths (Figure 3 (B) and (C)), those strategies 228 

are not efficient for minimizing infections. Especially, the difference in the expected reduction is 229 

larger at the early phase of allocations; this is because mainly younger age groups are drivers of 230 

transmission (Figure S1 (A)), while younger individuals are not in high-risk groups in terms of 231 

hospitalization or death (Figure S1 (F) and (G)). 232 

The proposed algorithm finds the best solution at each allocation step. This results in an 233 

optimal solution for small stockpiles, but this local optimal solution is not necessarily optimal for 234 

larger stockpiles (so called “greedy algorithm” (30)). To elucidate this property, we simulate an 235 

alternative situation, before the approval of the Janssen vaccine, where the breakdown of the stock 236 

is Pfizer (40%), AstraZeneca (40%), and Moderna (20%). Figure S4 illustrates that the allocation 237 

scheme to minimize infections results in nearly equal reduction of infections at the end of 238 

allocations compared to the other two schemes, although it performed best at the beginning phase.  239 

 240 

 241 

Discussion 242 

 The present study proposes a prioritization algorithm that can find an optimal allocation of 243 

vaccines to different age groups, even with a limited amount of data. Our simulation results show 244 

how optimal allocation differs depending on the objective. We apply the algorithm to available 245 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2021. ; https://doi.org/10.1101/2021.07.20.21260889doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.20.21260889
http://creativecommons.org/licenses/by-nc/4.0/


7 
 

 

Dutch epidemiological data on COVID-19, and the allocation scheme that minimizes deaths is 246 

concordant with the current policy in the Netherlands that allocates vaccines from old to young 247 

(29). 248 

 The proposed method provides first principles to find optimal allocation schemes with 249 

limited data, and the output can also be used as a complementary tool to existing computational 250 

approaches. Previous studies hinged on dynamic modeling to determine the prioritization of 251 

vaccine allocation (13,16,17), and our algorithm can inform a near-optimal distribution of vaccines 252 

as input values for those simulations. The proposed method can be used as a cross-check of 253 

assumptions in dynamic models, because it does not require the detailed information on contact 254 

matrices or non-pharmaceutical interventions. In the COVID-19 pandemic, we have already 255 

observed immediate changes of the age distribution of reported cases (20,31), and contact patterns 256 

during lockdown are different from usual patterns (32). The strength of our approach is that it 257 

relies only on routine surveillance data.  258 

 Choosing a different objective for COVID-19 control implies choosing a different optimal 259 

allocation scheme. In the case of SARS-CoV-2 infection, individuals who are at higher risk of 260 

severe illness and who transmit are different (19,22). Our results (Fig-1 and Fig-3) illustrated that, 261 

if we weigh an objective (e.g., minimization of infections) and choose a strategy, the selected 262 

scheme is not necessarily efficient for the other objectives (e.g., minimization of hospitalizations 263 

and deaths). In our analysis, the difference in the reduction of each outcome was larger at the 264 

earlier phase of vaccinations (Fig-3), indicating the importance of decision-making in the 265 

beginning stage of allocations. While vaccine rollout has progressed rapidly in the first half of 2021 266 

in high-income countries, there is large vaccine inequity globally (33). In many low- and middle-267 

income countries vaccine rollout is hindered by limited supply. An algorithm, such as the one 268 

presented here, can be very useful to prioritize vaccine allocation in those countries where 269 

maximum impact on disease outcomes must be achieved by a small supply of vaccines. Besides, 270 

the proposed method can be easily generalized for a wider range of objectives, by multiplying a 271 

disease progression rate (SI Text-1). The contribution of this study is to provide a solution how to 272 

determine the subgroup with the largest contribution to different outcomes, given limited data.      273 

When the proposed algorithm is applied, several assumptions and underlying conditions 274 

of input values should be checked. First, confirmed case counts may not reflect the actual infection 275 

dynamics in the population, depending on the level of ascertainment (34,35) . Our approach relies 276 

on the estimates of group-specific incidence and force of infection, as the best proxy of ongoing 277 

transmission, and thus potential biases in the surveillance should be carefully scrutinized. Second, 278 

our modelling simplified offering vaccine doses as a single event and parameterized vaccine 279 

efficacies as the ability of reducing infections (𝑸𝑺) and blocking transmissions (𝑸𝑻), separately. 280 

While there is an advantage to be able to evaluate various characteristics of vaccines by 281 

incorporating both the marginal benefit and direct protection, additional supportive evidence on 282 

the vaccine efficacy is required. Third, we assume that risk contacts are reciprocal and that 283 

individuals are randomly mixing in each group. Although the reciprocity is not violated by a 284 

broad class of diseases (32,36), if there were a specific age group that refuses vaccinations, and if its 285 

proportion became significantly large, that kind of clustering effect might influence the result of 286 

approximation of transmission processes. 287 

 In conclusion, the present study proposes an approach to find an optimal allocation of 288 

vaccines for various objectives, given routine surveillance data. The principle of allocation is 289 

simple and interpretable. These features are essential for decision making and for answering to 290 

ethical questions that are inherent to allocation of scarce resources. In the context of COVID-19 291 

control, the ability to base important decisions on real-time data, rather than the assumed effect of 292 
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contact patterns and non-pharmaceutical interventions, might provide a more robust scientific 293 

basis for COVID-19 control.  294 

295 
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Figures and Tables 412 

 413 

 414 
Fig-1. Simulated epidemic and evaluation of the impact of vaccination by allocation strategy. The 415 

epidemic is simulated by an age-structured SIR model. R0 and generation time were set as 1.2 and 416 

5 days, respectively. The population was stratified by 10-year age bin, and a contact matrix of the 417 

Netherlands in June 2020 was used for the simulation (32). Panel (A) illustrates the total incidence 418 

of infection in the population, and age-specific incidences (B) and the force of infection (C) reflect 419 

heterogeneous contacts between age-groups. The impact of vaccination on the number of 420 

infections (D), hospitalizations (E), and deaths (F) was compared under five different strategies; no 421 

vaccination (red), allocation from old to young groups (yellow), young to old groups (purple), at 422 

random (blue), and optimized allocation (green). For simplicity, the vaccination coverage was set 423 

as 40%, and the effect of vaccines was in place at day 50 (from the initial time point of the 424 

simulation), resulting in the immediate depletion of susceptible and infected individuals on that 425 

day.  426 
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 427 
Fig-2. The order of vaccine allocation by age and by prioritization strategy for a stockpile that 428 

suffices to vaccinate 80% of the population. From the top row, the objective is the minimization of 429 

infections, hospitalizations, and deaths respectively. From the left column, the proportion of 430 

vaccinated among age <20, 21-30, 31-40, 41-50, 51-60, 60+ are plotted over allocated vaccines. Note 431 

that the X-axis shows the percentage of allocated vaccines.  432 

 433 
Fig-3. Performance of allocation schemes on different objectives for a stockpile that suffices to 434 

vaccinate 80% of the population. The Y-axis shows the percentage reduction in the number of 435 

infections (A), hospitalizations (B), and deaths (C), and the X-axis is the percentage of allocated 436 

vaccines. Red, light blue, and dark blue plots indicate the allocation strategies to minimize the 437 

number of infections, hospitalizations, and deaths respectively. The starting point of effective 438 

reproduction number (i.e., the reference point without any vaccination) was set as 1.2.  439 

 440 

  441 
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Materials and Methods  442 

Covid-19 epidemic data in the Netherlands  443 

The population data was stratified into six age groups [<20, 21-30, 31-40, 41-50, 51-60, 60+]. 444 

For each age group, we used data on the population size, seroprevalence, incidence of notified 445 

cases, maximum vaccine uptake (i.e., willingness to be vaccinated), COVID-19 hospitalization rate, 446 

COVID-19 mortality rate, and vaccine efficacy against infection and transmission (Figure S1). The 447 

seroprevalence data was obtained from the Pienter-Corona study among a representative sample 448 

of the Dutch population, collected in June 2020 (37). We used this data to calculate the proportion 449 

of susceptible individuals per group, that is, 1 – seropositive rate. We used infection 450 

hospitalization rate and infection mortality rate that were estimated by published studies based on 451 

pooled analyses over 45 countries (22,24) rather than specific estimates for the Netherlands.  452 

The maximum vaccine uptake was assumed to be 80% for all age groups. The vaccine 453 

efficacy was assumed constant over age-groups (38–41). We assumed the same vaccine efficacies 454 

against infection and transmission (Figure-S1). To calculate the expected decrease in the number of 455 

new infections, hospitalizations, and deaths, as a function of the number of allocated vaccines, the 456 

starting point of effective reproduction number R (i.e., the reference point without any vaccination) 457 

was set to 1.2. 458 

We allocated a vaccine stockpile that covers 80% of the total population. The breakdown of 459 

the stock is Pfizer (46%), AstraZeneca (22%), Moderna (8%), and Janssen (24%). Note that we 460 

considered the unit of vaccines as a set of full doses; for example, the Pfizer vaccine needs to be 461 

administered twice, and the set of those two doses was defined as a single unit here. We assumed 462 

that one person can receive only one type of vaccines. Thus, 80% of the population was vaccinated 463 

when all vaccines were allocated. 464 

 465 

 Performance evaluation with simulated epidemics  466 

We simulated an epidemic, using a deterministic SIR model, where all parameters were 467 

known a priori. We evaluated five different allocation strategies: optimal allocation for each 468 

objective (i.e., minimization of infections, hospitalizations, and deaths) determined by the 469 

proposed algorithm; random allocation; allocation from young to old groups; allocation from old 470 

to young groups; and no vaccination. To quantify the impact of vaccinations in each strategy, we 471 

took the “no vaccination” scenario as a natural reference point. The population was stratified by 10 472 

year age group, since a contact matrix of the Netherlands in June 2020 was available with those age 473 

bins and used for the simulation (32). An age-structured SIR model was used to generate an 474 

epidemic curve where R0 was set as 1.2 with the fixed generation time as 5 days, based on the 475 

estimates of SARS-CoV-2 infections following previous modelling studies (13,16). For simplicity, 476 

per contact probability of acquiring infection (𝑎𝑖) and per contact of transmitting infection (𝑐𝑖) were 477 

assumed to be equal, and the vaccine efficacy was 0.946 based on the estimate for Pfizer (38). The 478 

available vaccine stock was set as 40% coverage of the population, which covers a half of the 479 

population that are willing to get vaccinated. 480 

As a practical application, observable information (i.e., the incidence of infection and the 481 

force of infection) until day 45 was used as inputs, where day 0 is the initial time point of a 482 

simulated SIR epidemic. The optimal distribution of vaccines to each age group was yielded by the 483 

proposed algorithm. Note that the algorithm does not use the contact matrix. In each scenario, the 484 

effect of allocated vaccines became in place at day 50 all at once, resulting in the immediate 485 

depletion of susceptible and infected individuals in the population. Replication code is available 486 

on GitHub (https://github.com/fmiura/VacAllo_2021). 487 

 488 
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Derivation of importance weights 489 

For a broad class of compartmental models, the disease transmission is described as 490 

transitions from discrete states (e.g., susceptible-infectious-recovered states in the SIR model), and 491 

the dynamics is generated by a system of nonlinear ordinary differential equations (ODEs) that 492 

depicts the change over time. By linearizing ODEs, any (linear) system can be described by a 493 

matrix form (26). Within this linearized subsystem, one can determine the reproduction number R 494 

as the dominant eigenvalue of the next generation matrix 𝑲 (25–27).  495 

The first step is to relate the observed data to the next generation matrix 𝑲. If at-risk 496 

contacts are reciprocal, the next generation matrix 𝑲 becomes a product of symmetric matrices and 497 

diagonalizable. This condition allows the decomposition of 𝑲, and thus we can approximate 𝑲 by 498 

the top left and right eigenvectors that can be (approximately) described by the incidence of new 499 

infections and force of infection (28).  500 

Once the matrices are specified, we can evaluate the impact of a single unit of vaccination, 501 

as the sensitivity (or elasticity) of the transition matrix (see the general idea of the sensitivity of a 502 

matrix in (42), and its application in infectious disease epidemiology in (27,43)). The change in the 503 

number of infections per single vaccination can be formulated as the result of depletion of 504 

susceptible and infectious individuals from the population (Eq-S4 in Text-S1), and subsequently, 505 

we obtain its effect on the dominant eigenvalue of the next generation matrix that was already 506 

introduced in the first step as an approximation with observed data. The expected impact here is 507 

defined as the importance weight; if we allocate a single unit of vaccine to the group with the 508 

largest importance weight, that results in the minimization of the dominant eigenvalue, that is, the 509 

expected number of infections, hospitalizations, or deaths in total.  510 

  511 
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Supporting information 512 

Figure S1. Age-specific input data 513 

Figure S2. Simulated vaccine allocations by age and by vaccine type 514 

Figure S3. Simulated prioritization of age-group by allocation scheme 515 

Figure S4.  Simulated impact of vaccinations 516 

 517 

Table S1. Notation and meaning of variables 518 

Table S2. Pseudo code of the allocation algorithm 519 

 520 

Text S1. Mathematical details 521 

 522 

523 
Figure S1. Age-specific input data for the proposed algorithm to obtain optimal allocation 524 

schemes. (A) Population structure in the Netherlands in 2019 (B) Seroprevalence observed in the 525 

Pienter-Corona study among a representative sample of the Dutch population in June (37). (C) 526 

Incidence of notified cases, in 30 days before October 19, 2020 (D) Vaccine Efficacy by vaccine type. 527 

From lighter to darker blue, bars indicate Pfizer Moderna, Janssen, AstraZeneca. Note that the 528 

constant efficacy by age here is an assumption, based on reported over all vaccine efficacies (38–529 

41). (E) Maximum vaccine uptake per age group. 80% for all groups is assumed here. (F) COVID-530 

19 hospitalization rate. These values are based on (22). (G) COVID-19 mortality rate. These values 531 

are based on (24).  532 
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 533 
Figure S2. Vaccine allocations based on simulated data when the objective is to minimize the 534 

number of infections ((A) and (B)), hospitalizations ((C) and (D)), and deaths ((E) and (F)). In left 535 

three panels, from lighter to darker blue, bars indicate Pfizer Moderna, Janssen, AstraZeneca. In 536 

right three panels, the darker color shows the older age groups, and age bins are [20<,21-30,31-537 

40,41-50,51-60,60+]. 538 

539 
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 540 
Figure S3. Vaccine allocation based on simulated data when the objective is to minimize the 541 

number of infections (A), hospitalizations (B), and deaths (C). The darker color shows the older age 542 

groups, and age bins are [20<,21-30,31-40,41-50,51-60,60+].  543 

  544 
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 545 
Figure S4.  Performance of allocation schemes on different objectives for a stockpile that suffices to 546 

vaccinate 80% of the population. The breakdown of the stock is Pfizer (40%), AstraZeneca (40%), 547 

and Moderna (20%). The Y-axis shows the percentage reduction in the number of infections (A), 548 

hospitalizations (B), and deaths (C), and the X-axis is the percentage of allocated vaccines. Red, 549 

light blue, and dark blue plots indicate the allocation strategies to minimize the number of 550 

infections, hospitalizations, and deaths respectively. The starting point of effective reproduction 551 

number (i.e., the reference point without any vaccination) was set as 1.2. 552 

 553 

 554 

Table S1. Notation and meaning of variables 555 

Symbol Meaning 

𝑲 Next generation matrix with elements 𝑘𝑖𝑗 

𝐒 Matrix with group-specific number of susceptible individuals  

𝑠𝑖(𝑡) in group i at time t 
𝑨 Matrix with per contact probability of acquiring infection 𝑎𝑖 for group i 
B Matrix with group-specific contact parameter  

𝑏𝑖𝑗 (i.e., the proportion of group i contacted by an infective in group j) 

C Matrix with per contact probability of transmitting infection  

𝑐𝑖 for group i 
𝐍 Matrix with the population size 𝑛𝑖 of group i 
𝑫 Matrix with group-specific infection mortality rate 𝜇𝑖 on the diagonal 
𝑯 Matrix with group-specific infection hospitalization rate 𝜂𝑖 on the diagonal 
𝑼 Matrix with the number of vaccinations 𝑢𝑖 given to group i on the diagonal 

𝑷(𝐼) Projection matrix that describes expected reductions in new infections in group i with 

the dominant eigenvalue 𝜆1
(𝐼) 

𝑸𝑺 Matrix with vaccine efficacy against acquiring infection 𝑞𝒊
(𝑆)

on the diagonal  
𝑸𝑻 Matrix with vaccine efficacy against transmission 𝑞𝒊

(𝑇)
on the diagonal 

𝒖 Vector with the number of vaccinated individuals 𝑢𝑖 in group i 
𝒙(𝒕) Vector with group-specific number of new infections 𝑥𝑖(𝑡) in group i at time t 
𝒉(𝒕) Vector with group-specific number of new infections ℎ𝑖(𝑡) in group i at time t 

f,g Normalization constants  
𝑅 Reproduction number (top eigenvalue of the next generation matrix 𝑲) 
𝜏 Generation interval of infections 

𝑧(𝒋) Number of available vaccine stocks for type j 

 556 

557 
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Table S2. Pseudo code of the allocation algorithm 558 

Algorithm 1  

Input variables:  

• Number of available vaccine stocks 𝑧(𝑗) for each vaccine type j 

• Group-specific probability of acquiring infection per contact 𝑎𝑖 and of transmitting infection 

per contact 𝑐𝑖  

• Group-specific population size 𝑛𝑖  

• Group-specific number of new infections 𝑥𝑖(𝑡) in group i at time t 

• Group-specific number of susceptible individuals 𝑠𝑖(𝑡) in group i at time t 

• Group- and vaccine type-specific vaccine efficacy against acquiring infection 𝑞𝑖
(𝑆)(𝑗)

 

• Group- and vaccine type-specific vaccine efficacy against transmission 𝑞𝑖
(𝑇)(𝑗)

 

• Initial value of the effective reproduction number R 

Pseudo code:  

• Define the objective of infection control (e.g., the number of hospitalizations) 

• Calculate initial importance weights 𝑦𝑖
(𝐻)(𝑗)

 per age group i per vaccine type j 

• Set the number of allocated vaccine type j for age group i as 0: 𝑢𝑖
(𝑗)

← 0 

• Run loops below until (i) all 𝑧(𝑗) becomes zero OR (ii) all group reach the maximum uptake: 

For j = 1, 2, …, J do: 

   For i = 1, 2, …, I do: 

     Find the largest importance weight 𝑦𝑖∗
(𝐻)(𝑗∗)

  

     If 𝑦𝑖∗
(𝐻)(𝑗∗)

= 𝑦𝑖
(𝐻)(𝑗)

 then:  

          Allocate a single unit of vaccine type j to the selected group i: 𝑢𝑖
(𝑗)

← 𝑢𝑖
(𝑗)

+ 1 ; 𝑧(𝑗) ← 𝑧(𝑗) − 1 

          Update all importance weights of the selected group i: 𝑦𝑖
(𝐻)(𝑗)

← 𝑦𝑖
(𝐻)(𝑗)

+
𝑑𝑦𝑖∗

(𝐻)(𝑗∗)

𝑑𝑢
  

     Else: 

          Keep the importance weights in the unselected group i: 𝑦𝑖
(𝐻)(𝑗)

← 𝑦𝑖
(𝐻)(𝑗)

 

     If 𝑧(𝑗) = 0 then: 

          Update all importance weights of the vaccine type j that is out of stock: 𝑦𝑖
(𝐻)(𝑗)

← 0 

     If ∑ 𝑢𝑖
(𝑗)

𝑗 = (𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑐𝑐𝑖𝑛𝑒 𝑢𝑝𝑑𝑎𝑘𝑒 𝑜𝑓 𝑔𝑟𝑜𝑢𝑝 𝑖) then: 

          Update all importance weights of the selected group i that reaches the max uptake: 𝑦𝑖
(𝐻)(𝑗)

← 0 

   End 

End 

Output variables: 

• The number of allocated vaccine type j for age group i as a function of iteration 𝑙: 𝑢𝑖
(𝑗)

(𝑙) 

• Importance weights per age group i per vaccine type j as a function of iteration 𝑙: 𝑦𝑖
(𝐻)(𝑗)

(𝑙) 

 559 

  560 
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Text S1. Mathematical details 561 

 562 

1. Mathematical details 563 

1.1 Objective 564 

The aim of following calculations is to formulate the expected impact of targeted 565 

vaccinations. We firstly present our approach to relate the expected changes in the next generation 566 

matrix 𝑲 to the observed epidemiological data (i.e., the number of new infections per group). We 567 

then generalize the argument to quantify the expected impact in the number of hospitalizations 568 

and deaths.  569 

The following analysis is known as “perturbation analysis” of a matrix in demography and 570 

population ecology (42,44), and we will refer to theorems and proofs introduced by those exiting 571 

literatures. For consistent notations, we follow Magnus and Neudecker (1988) (45); matrices are 572 

denoted by upper case bold symbols (e.g., A), and vectors are denoted by lower case bold symbols 573 

(n). Note that we define the derivatives of a matrix (or vector) as the matrix (or vector) of 574 

derivatives of the elements (e.g., 
𝑑𝒀

𝑑𝑿
= (

𝑑𝑦𝑖𝑗

𝑑𝑥𝑖𝑗
) and 

𝑑𝒚

𝑑𝒙
= (

𝑑𝑦𝑖

𝑑𝑥𝑖
)). All notations and definitions of 575 

variables are shown in Table-S2. 576 

 577 

1.2 Next generation matrix 578 

The host population is subdivided into m groups. The next generation matrix 𝑲 gives the 579 

number of new infections in a successive generation, such that the number of new infections at 580 

time 𝑡 + 1 after 1 generations of infections is 𝒙(𝑡 + 1)  =  𝑲𝒙(𝑡). For a large class of transmission 581 

models such as susceptible-infected-recovered model (SIR) model, the next generation matrix 𝑲 582 

can be written as 583 
𝑲 = 𝑺𝑨𝑩𝑪 584 

where matrices 𝑺, 𝑨, 𝑩, and 𝑪 have the following epidemiological interpretation: 𝑺 is a matrix with 585 

group-specific number of susceptible individuals 𝑠𝑖(𝑡) on the diagonal, 𝑨 is a matrix with per 586 

contact probability of acquiring infection 𝑎𝑖  on the diagonal, 𝑩 is a contact matrix with elements 587 

𝑏𝑖𝑗, and 𝑪 is a matrix with group-specific per contact probability of transmitting infection 𝑐𝑖  on the 588 

diagonal. Note that only 𝑺  is time-dependent (and thus 𝑲  is also time-dependent). For readability, 589 

when it is obvious from the context, we do not write the dependency on time. We require that at-590 

risk contacts are reciprocal, and thus the matrix 𝑩 is assumed to be symmetric. Thus, the next 591 

generation matrix 𝑲 becomes a product of symmetric matrices and diagonalizable. 592 

 593 

1.3 Approximation by observed infections 594 

By diagonalizing the next generation matrix 𝑲, we have 595 

𝑲 = 𝑾𝜦𝑾−𝟏 596 

where 𝜦 is a diagonal matrix that has eigenvalues 𝑅, 𝜆2, 𝜆2, ..., 𝜆𝑚  as its elements and zeros 597 

elsewhere, where 𝑅 is the dominant eigenvalue and is often referred to as the reproduction 598 

number. The matrix 𝑾 has as columns the right eigenvectors 𝒘1, 𝒘2,...,𝒘𝑚. The matrix 𝑾−𝟏 is the 599 

inverse of the matrix 𝑾 that has the left eigenvectors 𝐯1, 𝐯2,...,𝐯𝑚  as its rows. We require that an 600 

infector introduced in an arbitrary group reproduces a finite number of new infections in every 601 

group, and this condition ensures that the next generation matrix 𝑲 is primitive. In such condition, 602 

the Perron-Frobenius Theorem guarantees that 𝑅, 𝐰1, and 𝐯1 are real and non-negative (25,42).  603 

After τ generations of infections, the number of new infections at time 𝑡 + 𝜏 is given by 𝒙(𝑡 +604 

𝜏) = 𝑲𝜏𝒙(𝑡) = 𝑾𝜦𝜏𝑾−𝟏𝒙(𝑡). By using both right and left eigenvectors, we can rewrite the formula 605 

as  606 

𝒙(𝑡 + 𝜏) = ∑ 𝜆𝑖
𝜏𝒘𝑖𝐯𝑖

𝑻

𝑖

𝒙(𝑡). 607 
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Note that 𝒙(𝑡) is a vector that has the number of new infections in age group i as its elements, 608 

denoted as xi(t) and that the dominant eigenvalue 𝜆1 is the reproduction number 𝑅. If the 609 

dominant eigenvalue is strictly greater than other eigenvalues, the first term 𝑅𝒘1𝐯1
𝑻 will eventually 610 

dominate other terms, and other all the terms will become negligible. This characteristic yields the 611 

approximated next generation matrix 612 

�̅� = 𝑅𝒘1𝐯1
𝑻. (𝐸𝑞. 𝑆1) 613 

Now it is of interest to approximate the top right and left eigenvectors, 𝐰1 and 𝐯1, by 614 

observations. If the observation interval is long enough (typically longer than two generations of 615 

infections), we can safely approximate the top right eigenvector 𝒘1 with the number of new 616 

infections 𝒙(𝑡) (28). Thus, we have 617 
𝒘1 ≈ 𝑓𝒙(𝑡) (𝐸𝑞. 𝑆2) 618 

where 𝑓 is the normalizing constant given by 𝑓 =
1

∑ 𝑥𝑖(𝑡)𝑖
. This result is also known as the strong 619 

ergodic theorem (see ref (46), p.86). Since the contact matrix 𝐁 is symmetric and thus the next 620 

generation matrix 𝑲 is a product of symmetric matrices, there exists a transformation matrix 𝑴 621 

that transposes 𝑲, such that 𝑴𝑲𝑴−𝟏 = 𝑲𝑻. With this relationship, we can project the top left 622 

eigenvector 𝐯1 along the top right eigenvector 𝐰1, and subsequently 623 

𝐯1 ≈
𝑔

𝑓
𝐂𝐀−𝟏𝐒−𝟏𝐰1 ≈ 𝑔𝐂𝐀−𝟏𝐒−𝟏𝒙(𝑡). (𝐸𝑞. 𝑆3) 624 

where 𝑔 is the normalization constant given by 𝑔 =
∑ 𝑥𝑖(𝑡)𝑖

∑
𝑐𝑖
𝑎𝑖

𝑥𝑖(𝑡)2

𝑠𝑖(𝑡)𝑖

. See detailed derivation in the section 625 

3.4. of supporting info in (28). 626 

 627 

1.4 Sensitivity of the number of new infections to targeted vaccinations 628 

1.4.1 Changes in the number of new infections due to vaccinations 629 

A decrease in 𝒙(𝑡 + 1) is expressed as a result of changes in the next generation matrix 𝑲 630 

and in the number of infected individuals 𝒙(𝑡): 631 
𝑑𝒙(𝑡 + 1)

𝑑𝒖
=

𝑑𝑲

𝑑𝑼
𝒙(𝑡) + 𝑲

𝑑𝒙(𝑡)

𝑑𝒖
(𝐸𝑞. 𝑆4) 632 

where 
𝑑𝑲

𝑑𝑼
𝒙(𝑡) is the direct effect of vaccinating an individual and removing them from the 633 

susceptible population and 𝑲
𝑑𝒙(𝑡)

𝑑𝒖
 is the indirect effect of vaccinating a single individual by 634 

reducing onward infections. 635 

 636 

1.4.2 Perturbation in the next generation matrix 𝑲 637 

We focus on the impact of vaccinations when vaccines are allocated to the group that can 638 

be immune or susceptible. The perturbation of next generation matrix 
𝑑𝑲

𝑑𝑼
 is expressed in terms of 639 

the change in the number of susceptible individuals 
𝑑𝑺

𝑑𝑼
 due to vaccinations, such that 

𝑑𝑲

𝑑𝑼
=640 

(
𝑑𝑺

𝑑𝑼
) (𝑨𝑩𝑪). We denote the vaccine efficacy on susceptibility as 𝑸𝑺, and the depletion of susceptible 641 

individual is written as 642 
𝑑𝑺

𝑑𝑼
= −𝑸𝑺𝑺𝑵−1 643 

where 𝑵 is a diagonal matrix that has elements of total population in each age group 𝑛𝑖. Since 
𝑑𝑲

𝑑𝑼
=644 

(
𝑑𝑺

𝑑𝑼
) (𝑨𝑩𝑪) = (

𝑑𝑺

𝑑𝑼
) (𝑺−1𝑲), the perturbation of the next generation matrix is 645 

𝑑𝑲

𝑑𝑼
= (−𝑸𝑺𝑺𝑵−1)(𝑺−1𝑲) 646 

and thus 647 
𝑑𝑲

𝑑𝑼
= −𝑸𝒔𝑵−1𝑲 (𝐸𝑞. 𝑆5) 648 
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because 𝑺 and 𝑵 are diagonal matrices and thus commutative. The derivation is same as that of 649 

section 3.5. of supporting info in (28). Note that the vaccine efficacy of susceptibility here (i.e., 𝑸𝒔) 650 

is defined as the probability of protecting infection per infectious contact (see next section 1.4.3 for 651 

another effect of vaccinations, which considers the prevention of transmission from an infectious 652 

individual). 653 

 654 

1.4.3 Perturbation in the number of infected individuals 𝒙(𝑡) 655 

If vaccines are allocated also to infected individuals 𝒙(𝑡) at time 𝑡, the change in the 656 

number of infected (infectious) individuals is 657 
𝑑𝒙(𝑡)

𝑑𝒖
= −𝑸T𝑵−1𝒙(𝑡). (𝐸𝑞. 𝑆6) 658 

where 𝑸T  is the vaccine efficacy against the transmissibility. 659 

 660 

1.4.4 Importance weight of infection 661 

By substituting Eq.S5 and Eq.S6 to Eq.S4, the decrease in the number of new infections after 662 

one generation is rewritten as 663 
𝑑𝒙(𝑡 + 1)

𝑑𝒖
= −𝑸𝑆𝑵−1𝑲𝒙(𝑡)

 ⏟

direct effect

− 𝑲𝑸T𝑵−1𝒙(𝑡)
 ⏟

indirect effect

. (𝐸𝑞. 𝑆7) 664 

The interpretation of first term is the reduction in the number of new infections because 665 

susceptible individuals were depleted (i.e., direct effect), and that of second term is the effect 666 

preventing onward infections because infectious individuals are depleted (i.e., indirect effect).  667 

 Now we can relate this sensitivity 
𝑑𝒙(𝑡+1)

𝑑𝒖
 to observations. By approximating the next 668 

generation matrix by dominant right and left eigenvectors (i.e., �̅� = 𝑅𝒘1𝐯1
𝑻), the above equation is 669 

rewritten as  670 
𝑑𝒙(𝑡 + 1)

𝑑𝒖
≈ −𝑸𝑆𝑵−1�̅�𝒙(𝑡) − �̅�𝑸T𝑵−1𝒙(𝑡) = −(𝑸𝑆𝑵−1𝑅𝒘1𝐯1

𝑻 + 𝑅𝒘1𝐯1
𝑻𝑸T𝑵−1)𝒙(𝑡). (𝐸𝑞. 𝑆8) 671 

We set a projection matrix as 𝑷(𝐼) = 𝑸𝑆𝑵−1𝑅𝒘1𝐯1
𝑻 + 𝑅𝒘1𝐯1

𝑻𝑸T𝑵−1 and its dominant eigenvalue as 672 

𝜆1
(𝑅). When the vaccination is targeted to the group i, using Eq.S2 and S3, we obtain 673 

𝑅𝑤1𝑖𝑣𝑖1 ≈ 𝑅𝑓𝑔
𝑐𝑖

𝑎𝑖

𝑥𝑖(𝑡)2

𝑠𝑖(𝑡)
. (𝐸𝑞. 𝑆9) 674 

We use the same approximation method as section 1.3 for the projection matrix 𝑷(𝐼) and its top 675 

right eigenvector 𝒘1
(𝐼)

. Given the sufficient length of observation intervals, we can safely 676 

approximate 𝒘1
(𝐼)

 by the number of new infections 𝒙(𝑡) such that 𝒘1
(𝐼)

≈ 𝑓𝒙(𝑡) (see ref (46), p.86). 677 

Since 𝑷(𝐼)𝒘1
(𝐼)

= 𝜆1
(𝐼)𝒘1

(𝐼)
, the contribution of age group i to the dominant eigenvalue 𝜆1

(𝐼) is:  678 

𝜆1
(𝐼)𝑤𝑖1

(𝐼)
= 𝑷𝑖

(𝐼)
𝑤𝑖1

(𝐼)
≈ (𝑅𝑓𝑔 (𝑞𝑖

(𝑆)
+ 𝑞𝑖

(𝑇)
)

𝑐𝑖

𝑎𝑖

𝑥𝑖(𝑡)

𝑠𝑖(𝑡)

𝑥𝑖(𝑡)

𝑛𝑖
) 𝑤𝑖1

(𝐼)
. (𝐸𝑞. 𝑆10) 679 

We can interpret the quantity 𝑅𝑓𝑔 (𝑞𝑖
(𝑆)

+ 𝑞𝑖
(𝑇)

)
𝑐𝑖

𝑎𝑖

𝑥𝑖(𝑡)

𝑠𝑖(𝑡)

𝑥𝑖(𝑡)

𝑛𝑖
 as the expected reduction in the number 680 

of new infections generated by a typical infected individual in group i after introducing a single 681 

unit of vaccine. Thus, we define this expected impact of a single vaccination in group i on the 682 

dominant eigenvalue 𝜆1
(𝐼) as the importance weight of infection: 683 

𝑦𝑖
(𝐼)

= 𝑅𝑓𝑔 (𝑞𝑖
(𝑆)

+ 𝑞𝑖
(𝑇)

)
𝑐𝑖

𝑎𝑖

𝑥𝑖(𝑡)

𝑠𝑖(𝑡)

𝑥𝑖(𝑡)

𝑛𝑖
(𝐸𝑞. 𝑆11) 684 

 685 

1.5 Sensitivity of the number of hospitalizations to targeted vaccinations 686 

1.5.1 Changes in the number of hospitalizations due to vaccinations 687 

The number of hospitalized individuals 𝒉(𝑡) at time 𝑡 (i.e., 𝑚 × 1 vector with elements ℎ1, 688 

ℎ2, ..., ℎ𝑚) is defined as 689 
𝒉(𝑡) = 𝑯𝒙(𝑡) 690 
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where 𝑯 is a diagonal matrix with group-specific hospitalization rate 𝜂1, 𝜂2, ..., 𝜂𝑚. Suppose that 691 

we wish to predict the number of hospitalizations after one generation of infections. We can write 692 

the number of new hospitalizations as 693 
𝒉(𝑡 + 1) = 𝑯𝒙(𝑡 + 1) = 𝑯𝑲𝒙(𝑡). 694 

Over the observation interval from 𝑡 to 𝑡 + 1, we assume the group-specific probability of 695 

hospitalization is constant. 696 

Here we look at the perturbation of the expected number of hospitalizations 𝒉(𝑡 + 1) due to 697 

vaccinations. Since the infection hospitalization rate matrix 𝑯 is constant, the perturbation in 𝒙(𝑡 +698 

1) is of interest. Therefore, using Eq.S4, the decrease in the number of hospitalizations can be 699 

written as  700 

𝑑𝒉(𝑡 + 1)

𝑑𝒖
=

𝑑𝑯𝒙(𝑡 + 1)

𝑑𝒖
= 𝑯 (

𝑑𝑲

𝑑𝑼
𝒙(𝑡) + 𝑲

𝑑𝒙(𝑡)

𝑑𝒖
) . (𝐸𝑞. 𝑆12) 701 

 702 

1.5.2 Importance weight of hospitalization 703 

Using Eq.S12 and the result of section 1.4.4 such as Eq.S8, the small change in the expected 704 

number of hospitalizations after one generation is now written as 705 
𝑑𝒉(𝑡 + 1)

𝑑𝒖
=

𝑑𝑯𝒙(𝑡 + 1)

𝑑𝒖
= −𝑯(𝑸𝑆𝑵−1𝑅𝒘1𝐯1

𝑻 + 𝑅𝒘1𝐯1
𝑻𝑸T𝑵−1)𝒙(𝑡). 706 

Again, we set a projection matrix as 𝑷(𝐻) = 𝑯(𝑸𝑆𝑵−1𝑅𝒘1𝐯1
𝑻 + 𝑅𝒘1𝐯1

𝑻𝑸T𝑵−1) and its dominant 707 

eigenvalue as 𝜆1
(𝐻). When the vaccination is targeted to the group i, the relative change in the 708 

dominant eigenvalue 𝜆1
(𝐻) is  709 

𝜆1
(𝐻)𝑤𝑖1

(𝐻)
= (𝜂𝑖𝑅𝑓𝑔 (𝑞𝑖

(𝑆)
+ 𝑞𝑖

(𝑇)
)

𝑐𝑖

𝑎𝑖

𝑥𝑖(𝑡)

𝑠𝑖(𝑡)

𝑥𝑖(𝑡)

𝑛𝑖
) 𝑓𝑥𝑖(𝑡). (𝐸𝑞. 𝑆13) 710 

We define this expected impact of a single vaccination in group i on the dominant eigenvalue 𝜆1
(𝐻) 711 

as the importance weight of hospitalization: 712 

𝑦𝑖
(𝐻)

= 𝜂𝑖𝑅𝑓𝑔 (𝑞𝑖
(𝑆)

+ 𝑞𝑖
(𝑇)

)
𝑐𝑖

𝑎𝑖

𝑥𝑖(𝑡)

𝑠𝑖(𝑡)

𝑥𝑖(𝑡)

𝑛𝑖
. (𝐸𝑞. 𝑆14) 713 

We can interpret this quantity 𝑦𝑖
(𝐻)

 as the expected reduction in the number of new 714 

hospitalizations generated by a typical infected individual in group i after introducing a single unit 715 

of vaccine. 716 

 717 

1.6 Importance weights for other objectives 718 

We can replace the matrix 𝑯 (i.e., a diagonal matrix with the elements of infection 719 

hospitalization rates per group i) with different rate matrices for other objectives. In this study, we 720 

also aimed to test an allocation strategy to minimize the number of deaths. Thus, we introduced a 721 

diagonal matrix 𝑫 with group-specific infection mortality rate 𝜇𝑖 on the diagonal, and the 722 

importance weight of death 𝑦𝑖
(𝐷)

 can be derived in the same manner as the section 1.5;  723 

𝑦𝑖
(𝐷)

= 𝜇𝑖𝑅𝑓𝑔 (𝑞𝑖
(𝑆)

+ 𝑞𝑖
(𝑇)

)
𝑐𝑖

𝑎𝑖

𝑥𝑖(𝑡)

𝑠𝑖(𝑡)

𝑥𝑖(𝑡)

𝑛𝑖
. (𝐸𝑞. 𝑆15) 724 

We can interpret this quantity 𝑦𝑖
(𝐷)

 as the expected reduction in the number of new deaths 725 

generated by a typical infected individual in group i after introducing a single unit of vaccine. 726 

 727 

1.7 Changes in importance weights during the allocation of vaccines 728 

Since importance weights are dependent on the number of allocated vaccines, we need to 729 

update them at each allocation step. We denote the changes in importance weights in group i per 730 

single allocation as 
𝑑𝑦

𝑖
(𝐼)

𝑑𝑢𝑖
, 

𝑑𝑦
𝑖
(𝐻)

𝑑𝑢𝑖
, and 

𝑑𝑦
𝑖
(𝐷)

𝑑𝑢𝑖
 for each objective. 731 
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When vaccines are allocated, the eigenvector 𝒘1 is perturbed, and its small change 
𝑑𝒘1

𝑑𝒖
 can 732 

be approximated using the Power iteration with the new matrix 𝑲 +
𝑑𝑲

𝑑𝑼
 (see (47), p.331): 733 

𝒘1 +
𝑑𝒘1

𝑑𝒖
~ (𝑲 +

𝑑𝑲

𝑑𝑼
) 𝒘1734 

∝  𝑲𝒘1 +
𝑑𝑲

𝑑𝑼
𝒘1735 

∝  𝑅𝒘1 − 𝑸𝒔𝑵−1𝑅𝒘1 736 

where the sign ∝ means “proportional to” and the sign ~ means “approximately proportional to”. 737 

The same derivation has been introduced elsewhere (see section 3.6. of supporting info in (28)). If 738 

the allocation of vaccines is targeted to the group i, this results in the change in the i th element of 739 

the top right eigenvector, such as 740 

𝑤𝑖1 +
𝑑𝑤𝑖1

𝑑𝑢𝑖
~𝑤𝑖1 −

𝑞𝑖
(𝑆)

𝑛𝑖
𝑤𝑖1 (𝐸𝑞. 𝑆16) 741 

And all other elements remain unchanged (28). We use this equation to quantify the changes in 742 

importance weights after the allocation of a single unit of vaccines. By multiplying both sides of 743 

Eq.S16 by the factor 𝑅𝑔 (𝑞𝑖
(𝑆)

+ 𝑞𝑖
(𝑇)

)
𝑐𝑖

𝑎𝑖

𝑥𝑖(𝑡)

𝑠𝑖(𝑡)

1

𝑛𝑖
 and using 𝑤i1 ≈ 𝑓𝑥𝑖(𝑡), from Eq.S2 and Eq.S11, we 744 

obtain  745 

𝑦𝑖
(𝐼)

+
𝑑𝑦𝑖

(𝐼)

𝑑𝑢𝑖
~ 𝑦𝑖

(𝐼)
−

𝑞𝑖
(𝑆)

𝑛𝑖
𝑦𝑖

(𝐼)
. 746 

Subsequently, we can define the change in the importance weights of hospitalization and death. By 747 

multiplying both sides of Eq.S16 by factors 𝜂𝑖𝑅𝑔 (𝑞𝑖
(𝑆)

+ 𝑞𝑖
(𝑇)

)
𝑐𝑖

𝑎𝑖

𝑥𝑖(𝑡)

𝑠𝑖(𝑡)

1

𝑛𝑖
 and 𝜇𝑖𝑅𝑔 (𝑞𝑖

(𝑆)
+748 

𝑞𝑖
(𝑇)

)
𝑐𝑖

𝑎𝑖

𝑥𝑖(𝑡)

𝑠𝑖(𝑡)

1

𝑛𝑖
 respectively, from Eq.S2 and Eq.S14-15, we obtain 749 

𝑦𝑖
(𝐻)

+
𝑑𝑦𝑖

(𝐻)

𝑑𝑢𝑖
~ 𝑦𝑖

(𝐻)
−

𝑞𝑖
(𝑆)

𝑛𝑖
𝑦𝑖

(𝐻)
 750 

and 751 

𝑦𝑖
(𝐷)

+
𝑑𝑦𝑖

(𝐷)

𝑑𝑢𝑖
~ 𝑦𝑖

(𝐷)
−

𝑞𝑖
(𝑆)

𝑛𝑖
𝑦𝑖

(𝐷)
. 752 

The perturbation due to vaccination in group i does not affect other groups. 753 
 754 

 755 
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